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Abstract

For p ≥ 2 we consider the problem of, given an n×n matrix A = (aij) whose diagonal entries
vanish, approximating in polynomial time the number

Optp(A) : = max


n∑

i,j=1

aijxixj : (x1, . . . , xn) ∈ Rn ∧

(
n∑

i=1

|xi|p
)1/p

≤ 1

 .

When p = 2 this is simply the problem of computing the maximum eigenvalue of A, while
for p = ∞ (actually it suffices to take p ≈ log n) it is the Grothendieck problem on the complete
graph, which was shown to have a O(log n) approximation algorithm in [27, 26, 15], and was
used in [15] to design the best known algorithm for the problem of computing the maximum
correlation in Correlation Clustering. Thus the problem of approximating Optp(A) interpolates
between the spectral (p = 2) case and the Correlation Clustering (p = ∞) case. From a physics
point of view this problem corresponds to computing the ground states of spin glasses in a
hard-wall potential well.

We design a polynomial time algorithm which, given p ≥ 2 and an n × n matrix A = (aij)
with zeros on the diagonal, computes Optp(A) up to a factor p

e + 30 log p. On the other hand,
assuming the unique games conjecture (UGC) we show that it is NP-hard to approximate (2)
up to a factor smaller than p

e + 1
4 . Hence as p →∞ the UGC-hardness threshold for computing

Optp(A) is exactly p
e (1 + o(1)).

1 Introduction

In this paper we consider the problem of maximizing a multilinear quadratic polynomial over a
convex set K ⊆ Rn. Namely, given a symmetric n × n matrix A = (aij) whose diagonal entries
vanish, the goal is to approximate in polynomial time the number

max


n∑

i,j=1

aijxixj : (x1, . . . , xn) ∈ K

 . (1)

In recent years there has been a lot of work on approximating such polynomials in the special case
where K is the hypercube (by convexity, it makes no difference if one considers the solid hypercube
[−1, 1]n or the discrete hypercube {−1, 1}n). The case of optimizing over the hypercube has a wide
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range of applications to combinatorial optimization, and also has connections to topics in classical
Banach space theory such as Grothendieck’s inequality. We refer to [27, 26, 4, 15, 3, 5, 23, 2]
and the references therein for both positive and negative results in this case, as well as for their
applications.

Optimization over other bodies K is interesting as well. The case where K is a simplex has been
investigated in [20, 16], partly in connection to problems in computational biology. The case when K
is a polytope with polynomially many facets is classical, and is among the most important non-linear
optimization problems, with a wide range of applications in operations research, computational
biology and economics (see [17, 10, 13] for more information on the computational complexity of
such problems).

In this work our focus is on cases where K is the unit ball in `n
p for some parameter p. The

specific case mentioned above where K is the hypercube is obtained by setting p = ∞, and it is
computationally hard: an O(log n) approximation algorithm is known (it was discovered indepen-
dently in [29], [28], [25], and [15]), but it was shown to be NP-hard in [31], it was shown NP-hard
to approximate within some constant factor in [4], and in [5] it was shown to be NP-hard for any
constant factor approximation. The latter paper also showed that getting an approximation factor
better than (log n)γ is quasi-NP hard for some universal constant γ > 0, and that even improving
on the O(log n) approximation can be ruled out under some plausible complexity assumption.

Setting p = 2, on the other hand, corresponds to the case where K is the Euclidean unit ball,
and is much easier computationally. In this case the value in (1) is the maximum eigenvalue of the
coefficient matrix A = (aij), and can be computed efficiently with arbitrarily good precision.

1.1 Our results

It is natural to ask what happens for values of p that lie between 2 and ∞. Roughly speaking,
this set of problems can be viewed as a smooth interpolation between Spectral Partitioning and
Correlation Clustering (the connection between (1) when K is the hypercube and the Correlation
Clustering problem was discovered in [15]). In this paper we investigate these problems and give
both new algorithms and complexity lower-bounds (the lower bounds being based on the Unique
Games Conjecture). We note that the proofs of our results use the assumption p ≥ 2, and therefore
do not apply to the case 1 ≤ p < 2, which we did not investigate. The case p = 1 was studied
in [20, 16], and apart from that nothing seems to be known for 1 < p < 2.

The following theorem contains the approximation factors that we can achieve for 2 < p < ∞,
as well as the hardness factors that we can prove.

Theorem 1.1. There is a polynomial time algorithm which, given p ≥ 2 and an n × n matrix
A = (aij) whose diagonal entries vanish, computes the number1

max


n∑

i,j=1

aijxixj : (x1, . . . , xn) ∈ Rn ∧
n∑

j=1

|xj |p ≤ 1

 (2)

up to a factor p
e + 30 log p.

On the other hand, assuming the unique games conjecture, it is NP-hard to approximate (2) for
any constant p > 2 up to a factor smaller than p

e + 1
4 .

1As we remark in Section 3, we can actually realize an approximate solution for eqrefeq:QP(p).

2



Hence, assuming the unique games conjecture, as p →∞ the NP-hardness threshold of the convex
program (2) is p

e (1 + o(1)).
The unique games conjecture (UGC), which has been put forth by Khot [22], is a commonly

used assumption in complexity theory. We describe it formally in Section 2. The UGC has been
used in the context of hardness results for quadratic programs such as (1) in [23]. For readers
that are not familiar with the UGC let us say at this point that the hardness result in Theorem 1.1
should be viewed as evidence that efficiently computing (2) up to a factor smaller than p

e + 1
4 is

hard.

When p is close to 2. Theorem 1.1 is stated asymptotically as p →∞, but our hardness result
actually shows that for every δ ∈ (0, 1) and p > 2 it is UGC hard to approximate (2) up to a factor
smaller than (1− δ)γ2

p , where γp is the p’th norm of a standard Gaussian random variable. Since

γp =

2p/2Γ
(

p+1
2

)
√

π

1/p

≥
√

1 + c(p− 2),

where c is universal constant, we also obtain a non-trivial hardness of approximation result for
every p > 2.

1.2 The relation to spin glass models.

The problems described above are natural from the point of view of solid state physics, since they
are intimately related to the problem of efficient evaluation of ground states of spin glasses. In
the spin glass model we are given n particles, denoted by {1, . . . , n}, each of which has a spin, or
magnetization, xi ∈ R. The energy corresponding to each pair i, j in the system is proportional
to xixj : we are given an n × n matrix of pairwise interactions A = (aij) ∈ Mn(R) (the diagonal
entries are zeros), and the total energy of the system is given by

∑n
i,j=1 aijxixj . The system is

constrained to be in a potential well, or equivalently, there is an external magnetic field acting on
the particles. A “hard wall” potential well2 would simply correspond to imposing the constraint
(x1, . . . , xn) ∈ K for some K ⊆ Rn.

Since nature seems to seek the state where the energy is minimized, many physicists are inter-
ested in the computational complexity of computing the ground state, i.e. the configuration which
minimizes the total energy of the constrained system. This is precisely the problem described above
(with the matrix A replaced by −A). One reason why physicists would be interested in the com-
putation complexity of a ground state is that if this state is hard to find computationally, it may
explain (or even predict) why certain systems cannot settle in their ground state. On the other
hand, if a system does settle in a computationally-hard ground state, this would imply that it can
somehow perform a hard computation.

There is a vast amount of literature on the computational aspects of the evaluation of ground
states of physical systems, as this corresponds to understanding efficient mechanisms for pattern

2Physicists often also consider “soft constraints”, in which we are given a potential V : Rn → R and we wish to
minimize

Pn
i,j=1 aijxixj + V (x1, . . . , xn) (note that this has a similar effect to requiring that (x1, . . . , xn) is in the

set where V (x1, . . . , xn) is not very large). The case when V (x1, . . . , xn) =
Pn

j=1 v(xj) is called the case of one body
potentials, and it is studied explicitly in the physics literature, including the especially important case v(x) = |x|p,
which corresponds to the problems studied here (for example, the `p case is studied in [30, 11]).
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formation (see for example [33, 24]). The Ising case of the spin glass model corresponds to the
assumption xi = ±1. Computing the ground state in this famous simplified version clearly cor-
responds to (1) when K is the hypercube. Rigorous algorithmic results on the Ising case were
obtained in [12, 9, 7, 3, 8]. The Ising model was introduced as a more tractable simplification of
the original spin glass model, and in physically realistic scenarios the magnetization of the particles
should be allowed to take real values (actually the most interesting case is when the spins are
elements of the 2-dimensional sphere S2).

Our results give evidence of a threshold behavior of the computational tractability of the ground
state, when the hard wall constraint corresponds to the `n

p ball, p > 2. We believe that this phe-
nomenon holds true for more general potentials (see the “Discussion and open problems” section).
It would be interesting to find a physical explanation of this computational phase transition3.

1.3 About the techniques

The algorithm that we design in Theorem 1.1 departs from the standard semidefinite programming
approach that was used in [26, 4, 15, 3] by considering the convex program (which is not an SDP
for finite p) that computes the quantity

Vecp(A) : = max


n∑

i,j=1

aij〈vi, vj〉 : {v1, . . . , vn} ⊆ Rn ∧

(
n∑

i=1

‖vi‖p
2

)1/p

≤ 1

 .

This program can be solved with arbitrarily small error in polynomial time using Grötschel-Lovász-
Schrijver theory [18].

Let v1, . . . , vn ∈ Rn be the the output of this program. In the case p = ∞, which corresponds
to the constraint max1≤j≤n ‖vj‖2 ≤ 1, one can proceed as follows. Since the value of Vec∞(A)
depends only on the scalar products {〈vi, vj〉}n

i,j=1, we may replace v1, . . . , vn by Uv1, . . . , Uvn

for any orthogonal matrix U . A standard computation shows that if we choose U uniformly at
random among all n × n orthogonal matrices then for each 1 ≤ j ≤ n and t > 0 the probability
that (Uvj)k (the kth coordinate of Uvj) is greater than t√

n
is at most e−Ω(t2). Hence we can use

the union bound to select with constant positive probability an orthogonal matrix U such that
xjk : =

√
cn/ log n · (Uvj)k ≤ 1 for all 1 ≤ i, j ≤ n, where c is a universal constant. Since by

definition

Vec∞(A) =
n∑

i,j=1

aij〈vi, vj〉 =
n∑

i,j=1

aij〈Uvi, Uvj〉 =
log n

c
· 1
n

n∑
k=1

n∑
i,j=1

aijxikxjk,

there exists some 1 ≤ k ≤ n for which
∑n

i,j=1 aijxikxjk ≥ c
log nVec∞(A). We therefore get the

required O(log n) approximation algorithm (originally obtained in [29, 28, 25, 15]) by rounding vj

to xjk ∈ [−1, 1].
For bounded p we wish to obtain a constant factor approximation, so using a similar union bound

approach would not work here. We overcome this problem via a bootstrapping argument which is
a non-trivial adaptation of the Gaussian Hilbert space approach to Grothendieck’s inequality [21]
(this approach was previously used for algorithmic purposes in [4, 3]). Namely, we take a standard

3It should be pointed out here that this type of “static” complexity phase transition is different from another
popular research direction in statistical physics—the relation between statistical phase transitions and average case
hardness in random models. We refer to [1] and the references therein for more information on this topic
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Gaussian vector G ∈ Rn and consider the scalars 〈v1, G〉, . . . , 〈vn, G〉. Rather than truncating
each of the numbers 〈vi, G〉 separately, we consider the event E = {

∑n
i=1 |〈vi, G〉|p ≤ M} for some

appropriately chosen M > 0. Our rounding algorithm rounds the vector vj to the number xj : =
1

M1/p 〈vj , G〉1E . We show that this rounding procedure works by bounding the expectation of the
error term

∑n
i,j=1 aij〈vi, vj〉−

∑n
i,j=1 aijxixj using Hölder’s inequality. This error term is shown to

be a small proportion of Vecp(A) for an appropriate choice of M and the exponent used in Hölder’s
inequality. A careful optimization of these two parameters yields the optimal p

e

(
1+o(1)

)
integrality

gap. The details are presented in Section 3.
The hardness result in Theorem 1.1 is achieved via a reduction from the Unique Label Cover

problem. While the reduction is similar to the one used in [5], its analysis is considerably more
involved, and we need to reduce from the Unique Label Cover problem (and hence use the UGC)
rather than from the Label Cover problem. This complication stems, in essence, from the following
technical fact: if

∑n
i=1 εiai, where the εi’s are i.i.d. symmetric Bernoulli random variables, is

bounded in L∞, then
∑n

i=1 |ai| is bounded, while a bound on E |
∑n

i=1 aiεi|p does not imply any
bound on

∑n
i=1 |ai| which is independent on n. This issue raises significant technical difficulties in

the case of bounded p, and analytic ideas that we use to overcome them might be of independent
interest in the context of computational hardness results. See Section 4 for more details (specifically,
the remark on the difference from the L∞ case on page 15).

2 Preliminaries and notation

In this section we describe some definitions, notation, and basic facts that will be used throughout
this paper. We start with a formal definition of the `p Grothendieck problem, which we also call
the `p Quadratic Maximization problem.

Definition 2.1 (`p Quadratic Maximization problem). The Quadratic Maximization problem over
`p, denoted QM(p) for short, is defined as follows. For a given parameter p ≥ 1 (which is possibly
a function of n), an instance of the QM(p) problem is a square matrix A = (aij) ∈ Rn×n with zero
diagonal entries. The goal is to compute

Optp(A) : = max


n∑

i,j=1

aijxixj : (x1, . . . , xn) ∈ Rn ∧
n∑

i=1

|xi|p ≤ 1

 .

Our hardness results will be based on the Unique Games Conjecture (see [22]). We shall now
briefly present the necessary background on this topic.

In what follows, for an integer r, we denote the set {1, 2, . . . , r} by [r].

Definition 2.2 (Unique Label Cover problem). An instance L of the Unique Label Cover problem,
which we denote ULC for short, is a tuple L =

(
V,E, r, {πe}e∈E

)
, where V is a set of nodes, and

E ⊆ V × V is a symmetric set of directed edges, namely if (u, w) ∈ E then also (w, u) ∈ E. For a
node v ∈ V , we define d(v) to be the number of edges of the form (v, w) in E. We assume that E
contains no loops, and that d(v) ≥ 1 for every v ∈ V .

For every edge e = (u, w) ∈ E a permutation πe : [r] → [r] is given such that π(u,w) = π−1
(w,u) for

every edge (u, w) ∈ E. A function A : V → [r] is called an assignment for L . We say that an edge
e = (u, w) is satisfied by A if A (w) = πe(A (u)). The goal in the Unique Label Cover problem is

5



to find an assignment which maximizes the fraction of satisfied edges. We denote the maximum
fraction of satisfied edges in an instance L by Opt(L ). The number r is called the number of
labels in L .

Conjecture 2.3 (unique games conjecture). For any constants δ, ε > 0 satisfying δ + ε < 1 there
is an integer r = r(δ, ε) such that it is NP -hard to distinguish between ULC instances L with r
labels for which Opt(L ) ≤ δ, and instances with r labels for which Opt(L ) ≥ 1− ε.

As noted in the introduction, the unique games conjecture was put forth by Khot in [22], and it is
a commonly used complexity assumption. Despite several recent attempts to get better polynomial
time approximation algorithms for the Unique Label Cover problem (see the table in [14] for a
description of the known results), the unique games conjecture still stands.

We shall now record some moment bounds for Gaussian random variables and sums of inde-
pendent random variables. These bounds will be used extensively in what follows.

Let g be a standard Gaussian random variable. Recall that we denote its p’th moment by γp,
i.e. γp : = (E|g|p)1/p. Then

γp
p =

2√
2π

∫ ∞

0
xpe−x2/2dx

(x=
√

2t)
=

2p/2

√
π

∫ ∞

0
t

p+1
2
−1e−tdt =

2p/2Γ
(

p+1
2

)
√

π
.

The following version of Stirling’s formula [6],√
2π

x
·
(x

e

)x
≤ Γ(x) ≤

√
2π

x
·
(x

e

)x
e

1
12x ,

implies that

γp
p ∈

[√
2
e

(
p + 1

e

)p/2

,

√
2
e

(
p + 1

e

)p/2

e
1

6(p+1)

]
. (3)

In fact the following stronger lower bound holds true for p > 2 (This bound is optimal in terms of
the second order terms as p → 2 and p →∞. Since we will not use it here, we shall not include its
elementary, though tedious, proof):

γ2
p ≥ max

{
1 +

(
1− γ + ln 2

2

)
(p− 2),

p

e
+

ln 2
e

}
, (4)

where γ = 0.5772... is Euler’s constant.

Lemma 2.4. Let X1, . . . , Xn be independent random variables such that EXj = 0 and
∑n

j=1 EX2
j =

1. Assume also that for some δ ∈
(
0, e−4

)
we have

∑n
j=1 E|Xj |3 < δ. Then for every p ≥ 1,E

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣
p1/p

≥ γp ·
(
1− 4 (log (1/δ))p/2 δ

)
.
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Proof. By the Berry-Esseen theorem (see [19]. The constant we use below follows from [32]), for
every u > 0 we have

Pr

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣ ≥ u

 ≥ Pr(|g| ≥ u)− 2
n∑

j=1

E|Xj |3 ≥ Pr(|g| ≥ u)− 2δ.

Therefore, for every a > 0 we have

E

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣
p

=
∫ ∞

0
pup−1 Pr

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣ ≥ u

 du ≥
∫ a

0
pup−1 Pr(|g| > u)du− 2δap

≥
√

2
π

∫ a

0
upe−u2/2du− 2δap = γp

p −
√

2
π

∫ ∞

a
upe−u2/2du− 2δap. (5)

Choosing a = γp

√
log(1/δ) yields the required result, where we use the bound

∫∞
a upe−u2/2du ≤

2ap−1e−a2/2, which holds whenever a2 > 2p—this estimate follows from the inequality∫ ∞

a
upe−u2/2du = ap−1e−a2/2 + (p− 1)

∫ ∞

a
up−2e−u2/2du ≤ ap−1e−a2/2 +

p− 1
a2

∫ ∞

a
upe−u2/2du.

The proof of Lemma 2.4 is complete.

For large p we will need a better bound, which is contained in the following lemma. Recall that
a random variable X is symmetric if X and −X have the same distribution.

Lemma 2.5. Let X1, . . . , Xn be independent symmetric random variables such that
∑n

j=1 EX2
j = 1.

Fix p ≥ 2 and assume that max1≤j≤n

√
EX2

j ≤
2
p . Then

E

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣
p1/p

≥
√

p

e
− 2
√

p
.

Proof. Let k ∈ N be the largest integer such that 2k ≤ p. Denote aj : =
√

EX2
j , so that

∑n
j=1 a2

j =

1, and write δ : = max1≤j≤n |aj | ≤ 2
p ≤

1
k . Note that

E

 n∑
j=1

Xj

2k

=
∑

`1,...,`n∈N∪{0}
`1+···+`n=k

(2k)!∏n
j=1(2`j)!

n∏
j=1

EX
2`j

j ≥ (2k)!
2k

∑
S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j . (6)
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On the other hand

1 =

 n∑
j=1

a2
j

k

=
∑

`1,...,`n∈N∪{0}
`1+···+`n=k

k!∏n
j=1 `j !

n∏
j=1

a
2`j

j

≤ k!
∑

S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j +

n∑
j=1

a2
j

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

rj≥1

k

rj + 1
· (k − 1)!∏n

i=1 ri!

n∏
i=1

a2ri
i

≤ k!
∑

S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j +

kδ2

2

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

|{1 ≤ j ≤ n : rj ≥ 1}| (k − 1)!∏n
i=1 ri!

n∏
i=1

a2ri
i

≤ k!
∑

S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j +

k(k − 1)δ2

2

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

(k − 1)!∏n
i=1 ri!

n∏
i=1

a2ri
i

= k!
∑

S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j +

k(k − 1)δ2

2

 n∑
j=1

a2
j

k−1

= k!
∑

S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j +

k(k − 1)δ2

2
.

Hence, ∑
S⊆{1,...,n}
|S|=k

∏
j∈S

a2
j ≥

1− k(k−1)δ2

2

k!
≥ 1

2k!
. (7)

Combining (7) with (6) we get thatE

∣∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣∣
p

1
p

≥

E

 n∑
j=1

Xj

2k


1
2k

≥
(

(2k)!
2k+1k!

) 1
2k

≥
√

2k

e
− 1

4
√

k
≥
√

p

e
− 2
√

p
,

where we used Stirling’s formula and the fact that p ≥ 2k ≥ p− 2.

3 A p
e (1 + o(1)) approximation algorithm for QM(p)

Let A = (aij) ∈ Mn(R) be an n× n matrix with zeros on the diagonal and fix p ≥ 2. Recall that

Optp(A) = max


n∑

i,j=1

aijxixj : {x1, . . . , xn} ⊆ R ∧
n∑

i=1

|xi|p ≤ 1

 , (8)
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We define the following parameter:

Vecp(A) : = max


n∑

i,j=1

aij〈vi, vj〉 : {v1, . . . , vn} ⊆ L2 ∧
n∑

i=1

‖vi‖p
2 ≤ 1

 (9)

(the maximum is indeed attained, from compactness).
In this section we show that Vecp(A) can be efficiently computed, and that it approximates

Optp(A) as stated in the first part of Theorem 1.1. We also note that the approximation actually
works even if the diagonal entries of A are non-zero.

Claim 3.1. There is a PTAS for computing Vecp(A).

Proof. Let Pn denote the space of all n×n matrices P ∈ Mn(R) which are positive semidefinite. We
also write K : =

{
(mij) ∈ Mn(R) :

∑n
i=1 |mii|p/2 ≤ 1

}
. Since p ≥ 2 the set K is convex. Moreover,

K has a polynomial time membership oracle (more generally, any body given by
∑n

i=1 f(|mii|) ≤ 1,
where f is convex and computable, has polynomial time membership oracle). It follows from the
Grötschel-Lovász-Schrijver convex optimization theory [18] that there is a PTAS for computing the
maximum of the linear functional

∑n
i,j=1 aijmij on Pn∩K. This maximum is precisely Vecp(A).

Theorem 3.2. We have the following inequality:

Optp(A) ≤ Vecp(A) ≤
(p

e
+ 30 log p

)
·Optp(A).

Therefore there is a polynomial time algorithm which computes Optp(A) up to a factor of
(p

e + 30 log p
)
.

Proof. The left hand inequality in Theorem 3.2 is obvious. As is often the case with Grothendieck-
type inequalities, we will work with the Gaussian Hilbert Space—this approach to Grothendieck’s
inequality first appeared in print in a paper of Johnson and Lindenstrauss [21], and was used
extensively in [4, 3]. Let g1, g2, . . . be i.i.d. standard Gaussian random variables, and assume that
they are defined on some probability space (Ω,Pr). The Gaussian Hilbert space H is the closure
in L2(Ω) of the linear span of {g1, g2, ...}. By the definition of Vecp(A) there are h1, . . . , hn ∈ H
such that

n∑
i=1

(
Eh2

i

)p/2 ≤ 1 and E
n∑

i,j=1

aijhihj = Vecp(A).

Fix M > 1 which will be determined later, and consider the event

S : =

{
n∑

i=1

|hi|p > M · γp
p

}
. (10)

The crucial point to note here is that since each hi is a Gaussian random variable we have the
identity E|hi|p = γp

p

(
Eh2

i

)p/2. Markov’s inequality implies that

Pr[S] ≤
∑n

i=1 E|hi|p

M · γp
p

≤ 1
M

n∑
i=1

(
Eh2

i

)p/2 ≤ 1
M

. (11)

9



Now (11), and an application of Hölder’s inequality, implies that for every q > 1,

B : =
n∑

i=1

(
E (hi1S)2

)p/2
≤

n∑
i=1

(
Eh2q

i

) p
2q (Pr[S])

p(q−1)
2q ≤

n∑
i=1

(
γ2q

2q ·
(
Eh2

i

)q) p
2q 1

M
p(q−1)

2q

=

(
γ2q

2q

M q−1

) p
2q n∑

i=1

(
Eh2

i

)p/2 ≤

(
γ2q

2q

M q−1

) p
2q

.

Hence, an application of the definition of Vecp(A) to the vectors hi1S

B1/p ∈ L2(Ω) implies that

E
n∑

i,j=1

aijhihj1S ≤ B2/pVecp(A) ≤

(
γ2q

2q

M q−1

)1/q

·Vecp(A). (12)

On the other hand, the definition of Optp(A) implies that

E
n∑

i,j=1

aijhihj1Ω\S = M2/pγ2
p · E

n∑
i,j=1

aij
hi

M1/pγp
· hj

M1/pγp
1Ω\S ≤ M2/p · γ2

p · Optp(A). (13)

Combining (12) and (13) we get that

Vecp(A) = E
n∑

i,j=1

aijhihj = E
n∑

i,j=1

aijhihj1S + E
n∑

i,j=1

aijhihj1Ω\S

≤

(
γ2q

2q

M q−1

)1/q

·Vecp(A) + M2/p · γ2
p ·Optp(A). (14)

The right-hand side of (14) is mimimized for

M =

(
p(q − 1)

2q
·
(

γ2q

γp

)2

· Vecp(A)
Optp(A)

) pq
pq+2q−p

. (15)

Plugging this value of M into (14) we get the inequality

Vecp(A) ≤ [Vecp(A)]
2q

pq+2q−p ·
[
Optp(A)

] p(q−1)
pq+2q−p

· (γ2q)
4q

pq+2q−p · (γp)
2p(q−1)
pq+2q−p ·

( 2q

p(q − 1)

) p(q−1)
pq+2q−p

+
(

p(q − 1)
2q

) 2q
pq+2q−p

 ,

which simplifies to give the bound,

Vecp(A)
Optp(A)

≤ (γp)
2 · (γ2q)

4q
p(q−1) ·

( 2q

p(q − 1)

) p(q−1)
pq+2q−p

+
(

p(q − 1)
2q

) 2q
pq+2q−p

1+ 2q
p(q−1)

. (16)
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Choosing q = 2 in (16), and using the bounds in (3), yields the required result. But by
optimizing over q one can get better bounds – in particular one gets much better approximation
factors for small p. For large p the optimal choice of q is q = Θ(log p), and the bound becomes

Vecp(A) ≤
(

p

e
+

2
e

log p +
2
e

log log p + O (1)
)

Optp(A).

In any case, the proof of Theorem 3.2 is complete.

Remark 3.3. We can actually round the vectors v1, . . . , vn ∈ Rn for which Vecp(A) is approx-
imately attained to scalars x1, . . . , xn which realize the approximation to Optp(A). Specifically,
we can find random numbers x1, . . . , xn which satisfy

∑n
i=1 |xi|p ≤ 1 and E

∑n
i,j=1 aijxixj ≥

Optp(A)/
(p

e + O(log p)
)
. We can actually further show that the xi’s satisfy the above inequal-

ity with positive probability which only depends on p, but we omit the argument.
To choose the xi’s, we can concretely realize the Gaussians hi that appeared in the proof of

Theorem 3.2 as hi = 〈vi, G〉, where G is a standard Gaussian vector in Rn. We then define
xi : = 1

fM1/p
〈vi, G〉1Ω\S , where analogously to (15),

M̃ =

(
p(q − 1)

2q
·
(

γ2q

γp

)2

·
(p

e
+ 30 log p

)) pq
pq+2q−p

,

q ≈ log p and S is as in (10). By repeating the argument in the proof of Theorem 3.2 with the value
M̃ instead of the value M in (15), i.e. by replacing the term Vecp(A)

Optp(A) in the definition of M with
its a priori bound which we already proved, shows that this rounding procedure yields the desired
approximation factor.

4 UGC hardness

In this section we prove the UGC hardness of QM(p). We will make use of the notation and
definitions in Section 2, and of the following definition.

Definition 4.1. For p ≥ 2 and ε > 0 let φ(p, ε) be the largest φ > 0 such that for all n ∈ N if
(a1, . . . , an) ∈ Rn satisfy

∑n
i=1 a2

i = 1 and maxi∈[n] a
2
i ≤ φ then(

E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
p)1/p

≥ (1− ε)γp,

where ε1, . . . , εn are i.i.d. symmetric ±1 Bernoulli random variables. The existence of φ(p, ε)
follows from Lemma 2.4. Moreover, Lemma 2.5, combined with (3) implies that

φ

(
p,

10
p

)
≥ 4

p2
. (17)

It will be convenient to introduce the following notation. Given p ≥ 1 and a function f : X → R
defined on a finite set X, we write Ex∈Xf(x) : = 1

|X|
∑

x∈X f(x) and ‖f‖p : = (Ex∈X |f(x)|p)1/p

(thus in what follows `p norms will correspond exclusively to uniform distributions on finite sets).
If µ is a probability distribution µ on X then we use the notation Ex∼µf(x) : =

∫
X f(x)dµ(x).

The main result of this section is the following reduction.
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Theorem 4.2. There exists a reduction algorithm from ULC to QM(p) which, given a ULC
instance L = (V,E, r, {πe}e∈E), outputs an instance A of QM(p). The reduction algorithm runs
in time polynomial in |V | and 2r, and has the following properties:

• Completeness: Optp(A) ≥ Opt(L )− 1
|V |

• Soundness: For every ε > 0 it holds that

Optp(A) ≤

(
4γ12

p

ε4φ(p, ε)2
·Opt(L )

)(p−2)/p

+
1 + 2ε + 3/ |V |

(1− ε)γ2
p

+
1
|V |

. (18)

The proof of Theorem 4.2 spans the rest of this section, but before we commence with it, let
us show how it implies the UGC hardness for approximating QM(p) (and thus the hardness part
of Theorem 1.1). We note that while the following corollary shows QM(p) to be hard for constant
p, it can be extended for some non-constant p’s if one is willing to assume a hypothesis which is
somewhat stronger than the Unique Games Conjecture.

Corollary 4.3. Let p > 2 be any constant, and let δ > 0 be a constant such that (1 − δ)γ2
p >

1. Then assuming the unique games conjecture, it is NP-hard to approximate QM(p) within a
factor (1 − δ)γ2

p . Using (4) it follows that assuming the unique games conjecture it is NP-hard to
approximate QM(p) within a factor p

e + 1
4 (note that we are using a crude, sub-optimal in terms of

the additive constant term, version of (4) here).

Proof. Set ε′ = ε = δ/8, and pick δ′ > 0 small enough so that d′ < 1− ε′ and(
4γ12

p

ε4φ(p, ε)2
· δ′
)(p−2)/p

≤ δ

4γ2
p

.

From the unique games conjecture we have that there exists an integer r, such that it is NP -hard
to distinguish between instances L of ULC with r labels for which Opt(L ) ≥ 1−ε′, and instances
with r labels for which Opt(L ) ≤ δ′. The reduction stated in Theorem 4.2 maps instances L of
the first kind into QM(p) instances A with Optp(A) ≥ 1− ε′ − 1/|V | = 1− δ/8− 1/|V | (note that
the reduction runs in polynomial time). We call such instances ‘yes’ instances.

By the soundness property, it maps instances L of the latter kind into instances A satisfying

Optp(A) ≤ δ

4γ2
p

+
1 + 2ε + 3/|V |

(1− ε)γ2
p

+
1
|V |

≤ δ

4γ2
p

+
1 + δ/2 + 3/|V |

γ2
p

+
1
|V |

.

These are called ‘no’ instances.
Thus the ratio between the values of Optp(A) for ‘yes’ and for ‘no’ instances tends, as |V | goes to

infinity, to a number which is greater than (1−δ)γ2
p . This completes the proof of Corollary 4.3.

4.1 The reduction

Let us begin by describing the reduction algorithm. Let L = (V,E, r, {πe}e∈E) be an instance of
ULC. The reduction will make use of the following parameters:

D : = |V |3 · |E| · 22r and B : = |V |2 · |E| · 22r. (19)
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Some notation. Given L , the reduction should output a square matrix A with zero diagonal
entries. Equivalently, we prefer to think of the output of the reduction as a multilinear form
defined on vectors F , and to write A(F ) instead of 〈AF,F 〉 (multilinearity, i.e. linearity in each
of the coordinates of the vector, is equivalent in matrix notation to A having zero entries on the
diagonal).

The coordinates. It will be convenient to use meaningful indices for the coordinates of F . For
every node v ∈ V there will be D · d(v) sets of coordinates

{
Cj

v

}
j∈[D·d(v)]

. Each such set Cj
v

will contain 2r coordinates, labeled
{

Cj
v(x)

}
x∈{−1,1}r

. These coordinates serve as encodings of

assignments for v: For F to encode the assignment i for v, it should satisfy

∀ j ∈ [D · d(v)], ∀x ∈ {−1, 1}r F
Cj

v(x)
= xi.

Given a vector F with coordinates indexed as above, we define a function f j
v : {−1, 1}r → R

for every v ∈ V and j ∈ [D · d(v)], by setting

f j
v (x) = F

Cj
v(x)

(for simplicity of notation, we keep the dependency of f j
v on F implicit). We also define for every

v ∈ V a function fv : {−1, 1}r → R by taking

fv(x) : = Ej∈[D·d(v)]

[
f j

v (x)
]
. (20)

The distribution µ. Before we proceed to define the value of the multilinear form A on F , let
us note that for every q ≥ 1 we can write the Lq norm of a vector F as follows. Let µ be the
probability distribution on V defined by µ(v) : = d(v)

|E| (recall that we defined d(v) to be just the
outgoing degree of v, and therefore this really is a probability distribution). Then for every q ≥ 1,

‖F‖q =
(
Ev∼µEj∈[D·d(v)]

∥∥f j
v

∥∥q

q

)1/q
. (21)

Equation (21) follows directly from the definition of the functions f j
v . Since q ≥ 1, it now follows

from the triangle inequality in Lq and from (20) that(
Ev∼µ‖fv‖q

q

)1/q
≤ ‖F‖q. (22)

The inner and outer forms. We are ready to define the quadratic form A. Although A is
defined over the coordinates of the vector F , it will be easier to describe it as a form over the
Fourier coefficients of the functions {fv}v∈V . Such a quadratic form is also a quadratic form over
F since each of these coefficients can be written as a linear combination of the coordinates of F .
We shall deal with the multilinearity of the form later.

The form A will be a sum of two terms, one called the inner term and the other, the outer
term. The inner term will serve to prevent A from taking large values unless the functions {fv}v∈V

associated with F are very close to being linear homogeneous. The role of the outer term is, roughly,
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to allow A to obtain large values on vectors F which encode assignments for L that satisfy a large
fraction of the edges.

For each v ∈ V , we define a quadratic form Av on F by

Av(F ) : = −B ·
∑
S⊆[r]
|S|6=1

f̂v(S)2.

We take the inner term to be
Ainner(F ) : = Ev∼µ [Av(F )] .

For every edge e = (u, w) ∈ E we let

Ae(F ) : =
∑
i∈[r]

f̂u(i)f̂w(πe(i)),

and define the outer term to be
Aouter : = Ee∈E [Ae(F )] .

The quadratic form. We define A′(F ) = Ainner(F )+Aouter(F ). We would have liked to take A′

as the output of the reduction algorithm, but it turns out to have some non-multilinear terms (i.e.
some non-zero diagonal entries in matrix language). For simplicity of analysis, we therefore first
establish the completeness and soundness properties for A′ as it is defined here. In Subsection 4.4
we slightly change A′ to remove the diagonal entries, obtaining the final quadratic form A, and
show that for every vector F with ‖F‖p ≤ 1,

|A′(F )−A(F )| ≤ 1
|V |

. (23)

Running time. It is obvious from the construction that the form A′ can be constructed in time
polynomial in |V | and in 2r as required. This will also hold for the actual form A, that is defined
in Subsection 4.4.

Our next step is to establish, in the next two subsections, the completeness and soundness
properties of A′, and therefore, assuming (23), also of A.

4.2 Completeness

To get the completeness property we start with an assignment A : V → [r] for L which satisfies an
Opt(L ) fraction of the edges, and use is to get a vector F with ‖F‖p ≤ 1 such that A′(F ) = Opt(L ).
Assuming (23), this gives the completeness property.

The vector F . We define F by

∀ v ∈ V, ∀ j ∈ [D · d(v)], ∀ x ∈ {−1, 1}r, F
Cj

v(x)
= x

A (v)
.

14



It is clear that ‖F‖p = 1, since all of its coordinates are either 1 or −1, and that the functions
{fv}v∈V associated with F satisfy

∀ v ∈ V, x ∈ {−1, 1}r, fv(x) = x
A (v)

. (24)

The functions fv are therefore linear, which implies that Ainner(F ) = 0. It also follows from (24)
that for every edge e ∈ E, the value of Ae(F ) is 1 if A satisfies e and 0 otherwise, and therefore

Aouter(F ) = Ee ∈ E [Ae(F )] = Pr
e∈E

[A satisfies e] = Opt(L ).

Overall, we thus have A′(F ) = Ainner(F ) + Aouter(F ) = Opt(L ), as desired.

4.3 Soundness

To establish the soundness property, let F be any vector with ‖F‖p ≤ 1. We shall prove that

A′(F ) ≤

(
4γ12

p

ε4φ(p, ε)2
·Opt(L )

)(p−2)/p

+
1 + 2ε + 3/ |V |

(1− ε)γ2
p

, (25)

and then the soundness property will follow from (25) together with (23). We assume w.l.o.g. that
A′(F ) ≥ 0.

Our aim is to use the vector F to define an assignment for L , which will prove that Opt(L )
is large enough to make (25) hold.

On the difference between the `p case and the L∞ case. Our definition of the assignment
for L is different than that in [5]. In that paper every v ∈ V was given a multi-assignment by taking
all the elements i ∈ [r] for which |f̂v(i)| was greater than a certain threshold. The assignment for
v was then chosen randomly from among the elements of its multi-assignment. Since in [5] the L∞
norm of F was bounded by 1, it was possible there to get a bound on

∑n
i=1 |f̂v(i)|, and therefore

on the size of the multi-assignment (using the fact that the L∞ norm of a linear function f equals∑n
i=1 |f̂(i)|). Since here we only have a bound on the `p norm of F , that approach does not work

and the definition of the multi-assignment, as well as its analysis, are more involved.

Before we define the assignment for L we make the following definitions and observations.

Claim 4.4. Suppose that a real number tv is associated with every node v ∈ V . Then

Ee=(u,w)∈E [tutw] ≤ Ev∼µ

[
|tv|2

]
. (26)

Proof. Consider the set of pairs {(v, j)}v∈V, j∈[d(v)] as a set of indices, and define a vector X by
X(v,j) = tv. Then the r.h.s. of (26) equals ‖X‖2

2. The l.h.s. of (26) is the inner product of X with
a vector whose coordinates are simply a permutation of the coordinates of X (this follows from the
fact that E is symmetric). Hence (26) follows from the Cauchy-Schwarz inequality.

The following claim follows by the same argument as in Claim 4.4.
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Claim 4.5. Let S ⊆ E be a symmetric subset (that is, if (u, w) ∈ S then also (w, u) ∈ S), and let
{tv}v∈V be any real numbers. Then ∑

(u,w)∈S

tutw ≤
∑

(u,w)∈S

|tu|2.

The linear part of the functions fv play an important role later on. Let us set a notation for them.

Definition 4.6. For every v ∈ V , let f l
v denote the linear homogeneous part of fv, namely f l

v(x) =∑
i∈[r] f̂v(i)xi. Let fh

v = fv − f l
v.

We next establish some properties of the functions f l
v and fh

v .

Claim 4.7. max
v∈V, x∈{−1,1}r

(
|fh

v (x)|
)
≤ 2r ·

√
|E|
B

=
1
|V |

.

Proof. First, note that

Aouter(F ) = Ee=(u,w)∈E

∑
i∈[r]

f̂u(i)f̂w(πe(i))


≤ Ee=(u,w)∈E [‖fu‖2‖fw‖2] (Cauchy-Schwarz)

≤ Ev∼µ

[
‖fv‖2

2

]
≤ ‖F‖2

2 by Claim 4.4 and by (22)

≤ ‖F‖2
p ≤ 1.

Hence, since we assumed that A′(F ) ≥ 0, we have from the definition of Ainner, µ, and the
functions fh

v that

−1 ≤ Ainner(F ) = −B · Ev∼µ

[∥∥∥fh
v

∥∥∥2

2

]
= −B ·

∑
v∈V d(v)

∥∥fh
v

∥∥2

2

|E|
.

It follows that

max
v∈V

(∥∥∥fh
v

∥∥∥2

1

)
≤ max

v∈V

(∥∥∥fh
v

∥∥∥2

2

)
≤ |E|

B
,

and therefore that

max
v∈V, x∈{−1,1}r

(
|fh

v (x)|
)
≤ 2r max

v∈V

(∥∥∥fh
v

∥∥∥
1

)
≤ 2r ·

√
|E|
B

=
1
|V |

,

where the last equality follows from the definition of B (19). This completes the proof of the
claim.

Claim 4.8.
[
Ev∼µ

∥∥∥f l
v

∥∥∥p

p

]1/p

≤ 1 +
1
|V |

.

Proof. Using the triangle inequality in `p we have[
Ev∼µ

∥∥∥f l
v

∥∥∥p

p

]1/p

≤
[
Ev∼µ‖fv‖p

p

]1/p
+
[
Ev∼µ

∥∥∥fh
v

∥∥∥p

p

]1/p (22)

≤ ‖F‖p+ max
v∈V, x∈{−1,1}r

(
|fh

v (x)|
)
≤ 1+

1
|V |

,

where the last inequality follows from Claim 4.7 and the assumption that ‖F‖p ≤ 1.
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Influential coordinates. We now identify the influential coordinates in the functions f l
v, which

will serve as the basis for getting an assignment for L . For this purpose, we pick the parameters

a : =
γ2

p

φ(p, ε)
and b : =

γ4
p · a
ε2

,

where φ(p, ε) is as in Definition 4.1. We define for every v ∈ V subsets α(v), β(v), γ(v) ⊆ [r] as
follows: α(v) is taken to be the set of size a of coordinates i ∈ [r] for which |f̂v(i)| is largest (ties are
broken arbitrarily). β(v) is taken to be the set of b coordinates4 with the largest values of |f̂v(i)|
among [r] \ α(v), and γ(v) is defined by γ(v) = [r] \ (α(v) ∪ β(v)).

For every v ∈ V , define fα
v (x) : =

∑
i∈α(v) f̂v(i)xi, fβ

v (x) : =
∑

i∈β(v) f̂v(i)xi, fγ
v (x) : =∑

i∈γ(v) f̂v(i)xi. So that fα
v + fβ

v + fγ
v = f l

v.

The assignment for L . We view the sets {α(v) ∪ β(v)}v∈V as a multi-assignment for L , namely
an assignment of several values for each v ∈ V . We say that an edge e = (u, w) ∈ E is satisfied by
the multi-assignment if there exists an i ∈ α(u) ∪ β(u) such that πe(i) ∈ α(w) ∪ β(w). We define
S ⊆ E to be the set of edges that are satisfied by the multi-assignment. Note that S is a symmetric
set.

We use the multi-assignment to choose a random assignment A for L , choosing A (v) to be a
uniformly distributed element in α(v) ∪ β(v). In this case, each edge e ∈ S is satisfied by A with

probability at least
(

1
a+b

)2
, and therefore

|S|
|E|

≤ (a + b)2 ·Opt(L ). (27)

Bounding A’(F). We are now ready to bound A′(F ). We first bound it by a sum of several
terms, and then bound each term separately.

A′(F ) ≤ Aouter(F ) = Ee=(u,w)∈E

∑
i∈[r]

f̂u(i)f̂w(πe(i))



= Ee=(u,w)∈E

 ∑
i∈α(u)∪β(u)

πe(i)∈α(w)∪β(w)

f̂u(i)f̂w(πe(i))

 (28)

+ Ee=(u,w)∈E

 ∑
i∈α(u)

πe(i)∈γ(w)

f̂u(i)f̂w(πe(i))

+ Ee=(u,w)∈E

 ∑
i∈γ(u)

πe(i)∈α(w)

f̂u(i)f̂w(πe(i))

 (29)

+ Ee=(u,w)∈E

 ∑
i∈β(u)

πe(i)∈γ(w)

f̂u(i)f̂w(πe(i))

+ Ee=(u,w)∈E

 ∑
i∈γ(u)

πe(i)∈α(w)

f̂u(i)f̂w(πe(i))

 .(30)

4To be precise, we should have take the size of α(v) and β(v) to be dae and dbe respectively. However for simplicity
we disregard this minor issue.
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We use the following lemmas to bound the above terms.

Lemma 4.9. (28) ≤
(
(a + b)2 ·Opt(L )

)(p−2)/p.

Lemma 4.10. (29) ≤ 2 ·
√

a

b
=

2ε

γ2
p

.

Lemma 4.11. (30) ≤ 1 + 3/ |V |
(1− ε)γ2

p

.

Using the bounds from Lemma 4.9, Lemma 4.10, and Lemma 4.11, and substituting the values
of a and b, we get (25) and establish the soundness property of A′ (and assuming (23), also the
soundness of A). Let us now prove these three lemmas.

Proof of Lemma 4.9. To prove this lemma we need the following claim.

Claim 4.12. Let S ⊆ E be a symmetric subset, and let {tv}v∈V be real numbers. Then

Ee=(u,w)∈E [tutw · 1S(e)] ≤
(
|S|
|E|

)(p−2)/p

· [Ev∼µ|tv|p]2/p , (31)

where 1S denotes the indicator of the set S.

Proof. For every v ∈ V , let s(v) = |({v}×V )∩S|
d(v) . Then by the definition of µ,

Ev∼µ [s(v)] =
1
|E|

·
∑
v∈V

|({v} × V ) ∩ S| = |S|
|E|

. (32)

Now by Claim 4.5,

Ee=(u,w)∈E [tutw · 1S(e)] =
1
|E|

·
∑

(u,w)∈S

tutw

≤ 1
|E|

·
∑

(u,w)∈S

|tu|2

=
1
|E|

·
∑
v∈V

d(v) · s(v) · |tv|2

= Ev∼µ

[
s(v) · |tv|2

]
≤

[
Ev∼µs(v)p/(p−2)

](p−2)/p
· [Ev∼µ|tv|p]2/p

≤ [Ev∼µs(v)](p−2)/p · [Ev∼µ|tv|p]2/p

(32)
=

(
|S|
|E|

)(p−2)/p

· [Ev∼µ|tv|p]2/p ,

and the proof of Claim 4.12 is complete.
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We are now ready to bound (28). By our definition of S and by the Cauchy-Schwarz inequality
we have that

(28) ≤ Ee=(u,w)∈E [1S(e) · ‖fu‖2 · ‖fw‖2]

≤
(
|S|
|E|

)(p−2)/p

· [Ev∼µ‖fv‖p
2]

2/p (by Claim 4.12)

≤
(
(a + b)2 ·Opt(L )

)(p−2)/p ·
[
Ev∼µ‖fv‖p

p

]2/p
(by (27))

≤
(
(a + b)2 ·Opt(L )

)(p−2)/p
, (by (22))

as claimed.

Proof of Lemma 4.10. By the symmetry of E, the two terms in (29) are equal. Using the Cauchy-
Schwarz inequality we thus have that

(29) = 2Ee=(u,w)∈E

 ∑
i∈α(u)

πe(i)∈γ(w)

f̂u(i)f̂w(πe(i))

 ≤ 2Ee=(u,w)∈E

‖fu‖2 ·

 ∑
i∈α(u)

πe(i)∈γ(w)

f̂w(πe(i))2


1/2
 .(33)

We now consider the sum inside the square-root in (33). From the definition of γ(w), we know that
whenever πe(i) ∈ γ(w),

f̂w(πe(i))2 ≤
∥∥f l

w

∥∥2

2

a + b
≤
‖fw‖2

2

a + b

(this is because larger coefficients would have gone into α(w) or β(w)). Also, since |α(u)| = a, the
number of summands in the sum in (33) is at most a, and so for every w, ∑

i∈α(u)
πe(i)∈γ(w)

f̂w(πe(i))2


1/2

≤
√

a

a + b
· ‖fw‖2 ≤

√
a

b
· ‖fw‖2. (34)

Substituting (34) in (33), we get

(29) ≤ 2 ·
√

a

b
· Ee=(u,w)∈E [‖fu‖2 · ‖fw‖2]

≤ 2 ·
√

a

b
· Ev∼µ

[
‖fv‖2

2

]
(using Claim 4.4)

≤ 2 ·
√

a

b
· ‖F‖2

2 (using (22))

≤ 2 ·
√

a

b
=

2ε

γ2
p

. (by the definition of a and b)

This completes the proof of Lemma 4.10

19



Proof of Lemma 4.11. Using Cauchy-Schwarz and (22) we have that

(30) ≤ Ee=(u,w)∈E

 ∑
i∈β(u)∪γ(u)

πe(i)∈β(w)∪γ(w)

∣∣∣f̂u(i)
∣∣∣ ∣∣∣f̂w(πe(i))

∣∣∣


≤ Ee=(u,w)∈E

[∥∥∥fβ
u + fγ

u

∥∥∥
2
·
∥∥∥fβ

w + fγ
w

∥∥∥
2

]
≤ Ev∼µ

[∥∥∥fβ
v + fγ

v

∥∥∥2

2

]
. (35)

For every v ∈ V we would now like to bound
∥∥∥fβ

v + fγ
v

∥∥∥2

2
by considering two cases. If∥∥∥fβ

v + fγ
v

∥∥∥2

2
≥ 1

γ2
p

·
∥∥∥f l

v

∥∥∥2

2
(36)

then by the choice of the parameter a and the definition of β(v) and γ(v), we have that all of
the squares of the Fourier coefficients of fβ

v + fγ
v are smaller than 1

a ·
∥∥f l

v

∥∥2

2
= φ(p,ε)

γ2
p

·
∥∥f l

v

∥∥2

2
≤

φ(p, ε) ·
∥∥∥fβ

v + fγ
v

∥∥∥2

2
. So the definition of φ(p, ε), together with the fact that fα

v is a symmetric

random variable which is independent of the random variable fβ
v + fγ

v , we deduce that∥∥∥f l
v

∥∥∥2

p
=
∥∥∥fα

v + fβ
v + fγ

v

∥∥∥2

p
≥
∥∥∥fβ

v + fγ
v

∥∥∥2

p
≥ (1− ε)γ2

p ·
∥∥∥fβ

v + fγ
v

∥∥∥2

2
. (37)

On the other hand, if (36) does not hold, then∥∥∥fβ
v + fγ

v

∥∥∥2

2
≤ 1

γ2
p

·
∥∥∥f l

v

∥∥∥2

p
≤ 1

(1− ε)γ2
p

·
∥∥∥f l

v

∥∥∥2

p
, (38)

and thus (38) hold in both cases. Continuing (35), we therefore have that

(30) ≤ 1
(1− ε)γ2

p

· Ev∼µ

[∥∥∥f l
v

∥∥∥2

p

]
≤ 1

(1− ε)γ2
p

·
[
Ev∼µ

∥∥∥f l
v

∥∥∥p

p

]2/p

≤ 1 + 3/|V |
(1− ε)γ2

p

,

where in the last inequality we used Claim 4.8. This completes the proof of Lemma 4.11.

4.4 Removing diagonal entries

To complete the proof of the Theorem 4.2, it remain to define the actual form A, which will have
no diagonal entries (that is, no non-multilinear terms), and to prove that it satisfies (23).

Identifying the source of diagonal entries. Let us begin by identifying the source of diagonal
entries in A′. First, note that all the terms in Aouter are multilinear. This is true since it contains
sums of terms of the form f̂u(i1) · f̂w(i2), where (u, w) ∈ E. Since by definition there are no loops
in E, f̂u(i1) and f̂w(i2) are linear combinations of disjoint coordinates in F , and thus their product
is multilinear in the coordinates of F .

As for Ainner, it is a weighted sum of terms of the form

Av(F ) = −B ·
∑
S⊆[r]
|S|6=1

f̂v(S)2,
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where from the definition of fv we have that

f̂v(S)2 =
(
Ej∈[D·d(v)]

[
f̂ j

v (S)
])2

=
1

D2 · d(v)2
·

∑
j1,j2∈[D·d(v)]

f̂ j1
v (S)f̂ j2

v (S).

Here the only terms that may contribute diagonal entries are those for which j1 = j2, which are of
the form f̂ j

v (S)2.

Defining A. Let us therefore define for every v ∈ V

A∗
v(F ) : = −B ·

∑
S⊆[r]
|S|6=1

f̂v(S)2 +
B

D2 · d(v)2
·
∑

j∈[D·d(v)]

∑
S⊆[r]
|S|6=1

f̂ j
v (S)2,

and set
A∗

inner(F ) : = Ev∼µ [A∗
v(F )] and A : = A∗

inner + Aouter.

Now A does not have nonzero diagonal entries. Let us verify that it satisfies (23). For every F
such that ‖F‖p ≤ 1,∣∣A′(F )−A(F )

∣∣ = |Ainner(F )−A∗
inner(F )|

= Ev∼µ

 B

D2 · d(v)2
·
∑

j∈[D·d(v)]

∑
S⊆[r]
|S|6=1

f̂ j
v (S)2



≤ B

D
· Ev∼µEj∈[D·d(v)]

∑
S⊆[r]
|S|6=1

f̂ j
v (S)2


(dropping a factor of 1/d(v) inside the expectation)

≤ B

D
· Ev∼µEj∈[D·d(v)]

∥∥f j
v

∥∥2

2
≤ B

D
=

1
|V |

,

where the last inequality follows from (21), and the last equality is from the choice of the parameters
B and D. This gives (23), and concludes the proof of Theorem 4.2.

5 Discussion and open problems

Several open problems arise naturally from our work. We list some of them below.

• Both our algorithm, and our hardness result, do not yield anything non-trivial when 1 ≤ p < 2.
It would be interesting to understand QM(p) in this case as well. When p = 1 it is easy to
see that Opt1(A) is up to a factor of 2 the same as maxi,j∈[n] |aij |. Thus there is a trivial
factor 2 approximation algorithm for QM(1). We have recently learned from Elad Hazan and
Nimrod Megiddo (personal communication) that they obtained a PTAS for QM(1).
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• We did not try to prove an integrality gap lower bound for the convex program that we
used in Section 3, though we believe that a matching integrality gap should follow from an
adaptation of the method used in [3].

• Is γ2
p the true hardness threshold for QM(p) for every fixed p > 2 (i.e. not only asymptotically

as p →∞)?

• It would be interesting to study the complexity of correlated quadratic programs on more
general bodies K ⊆ Rn. Although our methods give non-trivial results in other cases, we did
not pursue this research direction. In particular, if K = {x ∈ Rn :

∑n
i=1 v(|xi|) ≤ 1}, where

v : R+ → R+ is convex (and computable), i.e. in the case of general one body potentials, a
tempting conjecture would be that if v

(√
t
)

is convex then the hardness threshold is (Ev(g))2,
where g is a standard Gaussian random variable.

• Is it possible to remove the UGC assumption in Theorem 1.1? Is it possible to prove a standard
NP-hardness result in this context? Perhaps the complexity assumptions that appear in [5]
can be used here as well.

• Is there a sharp hardness threshold in the Ising case (i.e. the L∞ problem in (1))? Currently
the gap between the known upper and lower bounds in this case is large, and it would be
interesting to get sharp results as in the case of finite p.
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