
Hardness of Approximating the Closest Vector Problem with Pre-Processing

Mikhail Alekhnovich∗ Subhash A. Khot† Guy Kindler‡ Nisheeth K. Vishnoi§

Abstract

We show that, unlessNP⊆DTIME(2poly log(n)), the clos-
est vector problem with pre-processing, for`p norm for
any p ≥ 1, is hard to approximate within a factor of
(log n)1/p−ε for anyε > 0. This improves the previous best
factor of31/p − ε due to Regev [19]. Our results also im-
ply that under the same complexity assumption, the nearest
codeword problem with pre-processing is hard to approxi-
mate within a factor of(log n)1−ε for anyε > 0.

1. Introduction

An n-dimensional (integer) latticeL is a set of vectors
{
∑n

i=1 aibi | ai ∈ Z}, whereb1,b2, . . . ,bn ∈ Zn is a
set of linearly independent vectors, called thebasisof the
lattice. Equivalently, one may define a lattice as an arbitrary
additive subgroup of the groupZn.

Lattices are important mathematical objects that have
many applications in various fields of mathematics, includ-
ing convex analysis, number theory and computer science.
They have been studied since the early 19th century by
Gauss [9], who gave an algorithm to compute the short-
est vector in a two-dimensional lattice. Subsequently, lat-
tices have been studied in the works of Dirichlet, Hermite
and Minkowski. The original motivation came from num-
ber theoretic problems such as solving Diophantine equa-
tions and finding rational approximations for real numbers.
In recent times, lattices have had several important applica-
tions in computational mathematics. The discovery of the
celebrated LLL algorithm of Lenstra, Lenstra and Lovász
[14], that approximates the shortest vector in a lattice, al-
lowed one to construct efficient algorithms for many com-
putational tasks, such as solving integer programs in a fixed

∗Institute for Advanced Study, Princeton, NJ. Supported by CCR grant
NCCR-0324906.

†College of Computing, Georgia Tech, Atlanta GA 30332. Email:
khot@cc.gatech.edu

‡Institute for Advanced Study, Princeton, NJ. Supported by CCR grant
NCCR-0324906 andNDMS-0111298.

§IBM India Research Lab, Block-1 IIT Delhi, New Delhi 110016.
Email: nvishnoi@in.ibm.com

number of variables [14, 15, 10], factoring polynomials over
rationals [14], and breaking a knapsack based cryptosystem
[13]. Interestingly, lattices are used in both ways in cryp-
tography: As an algorithmic tool for breaking other crypto-
graphic systems, as well as for obtaining hard cryptographic
primitives. In particular, in a ground breaking work, [2] Aj-
tai constructed an example of the worst-case to average-case
reduction based on the shortest vector problem in a lattice.
For a comprehensive introduction to the computational the-
ory of lattices we refer the reader to [17].

A central computational problem in the theory of lattices
is the so called closest vector problem (CVP): Given an in-
teger lattice, represented by a basisB, and a target vectort,
the objective is to find a lattice pointBx that minimizes the
distance‖Bx − t‖. The best known approximation factor
for CVP achieved by a (randomized) polynomial time algo-
rithm is2O(n log log n/ log n), due to Ajtaiet al. [3]. The best
known deterministic polynomial time algorithm is due to
Schnorr [20] and achieves a factor of2O(n(log log n)2/ log n).
On the other hand, a result of Dinuret al. [7] establishes
that it isNP-hard to approximateCVP within a factor bet-
ter thannO(1/ log log n).

In this paper, we investigate the complexity of the closest
vector problem withpre-processing, referred to asCVPP.
In this setting, the basisB of the lattice depends only on
the input length, and hence can be assumed to be known be-
forehand. This allows the possibility of doing arbitrary pre-
processing with the basis, and using the pre-computed in-
formation to solveCVP on the input(B, t). Although there
is no computational restriction on the pre-processing step,
given the input, which in this case is a target vectort, the
algorithm should run in time polynomial in the length oft.

The motivation to study the complexity of such pre-
processing problems comes from cryptography and coding
theory. In this setting, typically, a publicly known lattice
(or a linear error-correcting code) is being used to trans-
mit messages across a malicious/faulty channel. The de-
coding/decrypting of the received word reduces to solving
CVP for the lattice being used in the protocol. Since the
basis of the lattice is publicly known beforehand, it is natu-
ral to ask if the performance of the decoding algorithm can
be improved, or if the security of the cryptographic proto-
col can be compromised, using this prior knowledge of the

1

lattice. For more details, refer to [8, 19].
The pre-processed version ofCVP seems to be easier

than the original problem in some cases. For instance,
using the so-called Korkine-Zolotarev basis, Lagariaset
al. [12] constructed anO(n1.5) factor approximation al-
gorithm for CVPP, which is far better than the almost-
exponential approximation factor known forCVP. This was
further improved ton by Regev [19], and subsequently to
O(

√
n/ log n) by Aharonov and Regev [1].

In light of the fact that one can find much better ap-
proximation algorithms forCVPP when compared toCVP,
proving strong hardness of approximation results forCVPP
is a more challenging task than that forCVP. Bruck and
Naor [5] showedNP-hardness for the analogue ofCVPP
in coding theory, the nearest codeword problem with pre-
processing (NCPP). In this problem, a binary error correct-
ing codeC is fixed in advance and the goal is, given a vec-
tor v, to find the closest (in the hamming metric) codeword
in C. Subsequently, Micciancio [16] established theNP-
hardness ofCVPP. Both results hold only for the exact ver-
sion of the problems. The first inapproximability result was
due to Feige and Micciancio [8], who proved a(5/3)1/p− ε
factor hardness forCVPP for `p norm, for anyε > 0. They
proved this by showing a5/3−ε factor hardness forNCPP.
Regev [19] improved these to3−ε and31/p−ε respectively,
for anyε > 0.

In this paper we show thatCVPP is NP-hard to ap-
proximate within any constant factor. Under the stronger
assumption thatNP6⊆DTIME(2poly log(n)), we show that
CVPP for `p norm, for anyp ≥ 1, is hard to approximate
within a factor of(log n)1/p−ε for any ε > 0. Further, our
results imply thatNCPP is hard to approximate to within a
factor of(log n)1−ε, unlessNP⊆DTIME(2poly log(n)).

The paper is organized as follows: Section 2 presents
notations and problem definitions. The rest of the paper
contains two independent proofs of our results. Section 3
contains our first (self-contained) result that establishes the
NP-hardness of approximatingCVPP andNCPP to within
any constant factor. This result also implies that both prob-
lems are hard to approximate within a factor of(log n)O(1),
unlessNP⊆DTIME(2poly log(n)). In Sections 4 and 5 we
present another proof that gives stronger hardness results.
This proof requires a pre-processed version of the PCP The-
orem which may be of independent interest. Due to space
limitations, the proof of the pre-processed PCP theorem will
only appear in the full version of this paper.

2. Preliminaries

This section presents formal descriptions of the prob-
lems, notions, and notations which are used in our reduc-
tions.

Notations. Vectors and matrices will be denoted by bold
letters such asB,v etc. Vectors will be assumed to be col-
umn vectors. For a matrixC ∈ Fn×k

2 , let C(C) denote the
linear code{Cv : v ∈ Fk

2}. For a matrixB ∈ Zn×k, let
L(B) denote the lattice{Bv : v ∈ Zk}. For a codeC and
a t ∈ Fn

2 , let ∆(C,v) := minc∈C δ(c,v). Hereδ(·, ·) is the
hamming distance.

For a positive integern, define[n] := {1, . . . , n}. For
two setsS, T of the same cardinality, by abuse of notation,
S ≡ T will mean that we have fixed a bijection between
S andT, and hence, useS, T interchangeably as is conve-
nient. Henceforth,‖ · ‖ denotes the Euclidean norm‖ · ‖2.
However, the definitions in this paper hold for any`p norm,
for p ≥ 1. When we want to make the norm explicit, we
will use the notation‖ · ‖p.

Following is a list of problems that we consider in this pa-
per. We also presentinformal descriptions of the problems
we consider before their actual formalizations.

Nearest Codeword Problem (NCP). Given a codeC ⊆
Fn

2 , and a wordt ∈ Fn
2 , the goal is to find a codeword

c ∈ C which isclosestto t in the hamming metric. Here we
consider the case when the code is a linear subspace ofFn

2 .

Problem 2.1 For a function f ≥ 0, an instance of
GapNCPf(·) is denoted by(C, t, d), whereC ∈ Fn×k

2 ,
t ∈ Fn

2 andd ∈ Z+. It is a YES instance if∆(C(C), t) ≤ d,
and a NO instance if∆(C(C), t) > f(n) · d.

Minimum Satisfiability in Linear Space (MINSAT).
Here, we are given a CNF formulaφ = C1 ∨ · · · ∨Cm over
the variables{x1, . . . , xn}, and a linear subspaceL ⊆ Fn

2 .
The goal is to find an assignment to the variablesfrom the
linear spaceL which satisfies as few clauses ofφ as possi-
ble. This is a variant of the standard satisfiability problem:
(1) This is a minimization problem, rather than a maximiza-
tion problem. (2) The space from which one is allowed to
choose an assignment is a part of the input, rather thanFn

2 .

Problem 2.2 For a function f ≥ 0, an instance of
GapMINSATf(·) is denoted by(V,L,E, d), whereV,E ∈
{0, 1}m×n and correspond to a CNF formulaφ with vari-
ables{x1, . . . , xn} as explained later,L is a linear sub-
space ofFn

2 , andd ∈ Z+. The CNF formulaφ correspond-
ing toV,E is the following: LetVij ,Eij denote thei, j-th
entry ofV, E respectively.φ has the formC1 ∧ · · · ∧ Cm,
where eachCi is the boolean OR (overj = 1, . . . , n) of the
literals x

Eij

j for whichVij = 1 (the notationxε
j means that

the variablexj is negated if and only ifε = 0). It is a YES
instance if there is av ∈ Lwhich satisfies at-mostd clauses
of φ, and a NO instance if everyv ∈ L satisfies more than
f(n) · d clauses ofφ. Let ρ(φ) denote the minimum, over
the assignmentsv ∈ L, of the clauses ofφ satisfied byv.

k-Hypergraph Vertex Cover (HVC(k)). Given a hyper-
graphH(V,E), where each edge ofH has cardinalityk, the
goal is to find a minimum size subset ofV which intersects
with (covers) all the edges inE.

Problem 2.3 For f ≥ 0, an instance ofGapHVC(k)f(·)
is denoted by(H(V,E), d), whereH is a hypergraph with
vertex setV = [n], and edge setE consisting of edgese ⊆
V, with each edge of cardinalityk, while d ∈ Z+. It is a
YES instance if there is a setC ⊆ V, with |C| ≤ d, such
that |C ∩ e| ≥ 1 for all e ∈ E. It is a NO instance if for
everyC ⊆ V, with |C| ≤ f(n, k) ·d, there is an edgee ∈ E
with C ∩ e = ∅.

Closest Vector Problem (CVP). Given a latticeL ⊆ Zn,
and a vectort ∈ Zn, the goal is to find a lattice pointv ∈ L
which is closestto t in the `2 distance. The lattice is typ-
ically generated by a (full-rank) basis matrixB ∈ Zn×n:
L = {Bx : x ∈ Zn}. This is a variant of the closest vec-
tor problem, but for our purposes, this turns out to be more
convenient to work with instead ofCVP. Roughly, a hard-
ness result forMISP implies an equivalent hardness result
for CVP.

Problem 2.4 For a function f ≥ 0, an instance of
GapCVPf(·) is denoted by(B, t, d), whereB ∈ Zn×n,
t ∈ Zn andd ∈ Z+. It is a YES instance if there exists a
x ∈ Zn such that‖Bx − t‖ ≤ d, and a NO instance if for
all x ∈ Zn, ‖Bx− t‖ > f(n) · d.

Minimum Integral Solution Problem (MISP). The in-
put to this problem consists of a set offixed linear forms,
described byBf ∈ Zk1×n, a set ofvariable linear forms
Bv ∈ Zk2×n, and a target vectort ∈ Zk1 . The goal is to
find an integral solutionx ∈ Zn to the systemBfx = t,
which is of leastl2 norm with respect toBv; or minimizes
‖Bvx‖.

Problem 2.5 For a function f ≥ 0, an instance of
GapMISPf(·) is denoted by(Bf ,Bv, t, d), whereBf ∈
Zk1×n, Bv ∈ Zk2×n, t ∈ Zk1 and d ∈ Z+. It is a YES
instance if there exists ax ∈ Zn such thatBfx = t and
‖Bvx‖ ≤ d, and a NO instance if for allx ∈ Zn satisfy-
ing Bfx = t, ‖Bvx‖ > f(n) · d. Bf will be referred to
as “fixed” linear forms on the variables, whileBv will be
referred to as “variable” linear forms.

Label Cover Problem (LCP). The input to this problem
consists of: (1) A bipartite graphG(V,W,E). (2) Two in-
tegersR andS; the intention being to assign vertices inV
labels from[S], and to assign vertices inW labels from[R].
(3) The labeling has to satisfy certainconstraintsgiven by
functionsπ(v,w) for each edge(v, w) ∈ E. Given a label for

w ∈ W, the mapπ(v,w) fixes the label thatv ∈ V should
be assigned in order tosatisfythe edge(v, w). (4) Further,
for everyw ∈ W, a partition Pw of [R] is specified and a
permissibleset from the partitionPw is provided. w can
only be assigned labels from the setPw ⊆ [R]. The goal
is to find an assignment of labels to vertices ofG so as to
maximize the number of satisfied edges.
The reason why we have a partitionPw for every vertex
w ∈ W is technical and will become clear in subsequent
sections. It may be useful as of now to ignore the partition
and just think ofPw ⊆ [R] as the only labels that one is
allowed to assign to vertices inw. Thus, compared to the
vertices inV, each vertex inW has its own (different) set of
labels, but each is a subset of a common ground set[R].

Problem 2.6 For a function f ≥ 0, an instance of
GapLCPf(·) is

U (G(V,W,E), [R], [S], n,m, {πe}e∈E , {Pw, Pw}w∈W) ,

whereG = (V,W,E) is a a bipartite graph, with|V | = n,
|W | = m, E is the set of edges,[S] is the set of labels for
vertices inV, for everyw ∈ W,Pw =

⊔
l Rw,l is a partition

of the set[R], while Pw ∈ {Rw,l} is a set in the partition
that represents all “permissible” labels from which a label
can be assigned tow ∈ W, and for everye ∈ E, πe : [R] 7→
[S]. A “labeling” is a pair of mapsLW : W 7→ [R], LV :
V 7→ [S]. An edgee = (v, w) is “satisfied” by a labeling
(LV , LW) if LW (w) ∈ Pw andπe(LW (w)) = LV (v). U
is a YES instance if there is a labeling that satisfies all its
edges. It is a NO instance if every labeling satisfies at-most
f(n) fraction of the edges.

We note that in the standard definition of this problem,
the partition is trivial: Pw = {[R]} for all w ∈ W, and
hence, the set of permissible labelsPw = [R] for all w ∈
W.

2.1. Pre-processing versions ofGap problems

Let us formally define what pre-processing problems
are, and some specific pre-processing versions of problems.
We actually focus our attention onuniform pre-processing
problems, whose hardness can be based on uniform as-
sumptions.

Pre-processing Problems. Consider a gap problem
GapXf(·) where inputs are tuples(A1, . . . , Al) of a fixed
length, and have a size parametern which is polynomially
related to the actual size of the input. In a pre-processing
version ofGapXf(·), we consider subproblems where part
of the input depends only onn, and therefore can be as-
sumed to be known in advance.

Formally, a pre-processing instance ofGapXf(·) is spec-
ified by an algorithm which, given the string1n, generates

in polynomial time a partial input(A1, . . . , Ak) for some
fixed k < l. We refer to this algorithm as auniform par-
tial input generator, and we call(A1, . . . , Ak) theuniform
input.

An algorithm which solves GapXf(·) with pre-
processingin time T (n), is actually an arbitrary function
P, which has no complexity constraints. Given a pre-
processing instance ofGapXf(·) (namely the code of a uni-
form partial input generator),P outputs an algorithm which
solves theGapXf(·) problem in polynomial time on any in-
put (A1, . . . , Al) with size parametern, on condition that
the partial tuple(A1, . . . , Ak) is the one obtained by the
partial input generator when run on the string1n.

One can easily observe that in order to show hard-
ness of solvingGapXf(·) with preprocessing, it suffices to
come up with the following ingredients: the first is a pre-
processing instance ofGapXf(·), and the other is a reduc-
tion from a hard problem toGapXf(·), which generates in-
puts(A1, . . . , Al) of sizen, where(A1, . . . , Ak) is the out-
put of the partial instance generator on input1n.

Note that once theGapXf(·) problem is defined, its pre-
processing version is defined by specifyingk, namely the
entries of the partial inputs that are uniformly generated and
are allowed to be pre-processed. In the following list we
define pre-processing versions of problems by specifying
what the uniform part of their input should be.

• Nearest Codeword Problem with Pre-processing
(GapNCPPf(·))
From the input tuple(C, t, d) to GapNCPf(·), (C) is
the uniform input toGapNCPPf(·).

• Minimum Satisfiability in Linear Space with Pre-
processing (GapMINSATPf(·))
From the input toGapMINSATf(·), which is a tu-
ple (V,L,E, d), (V,L) is the uniform input to
GapMINSATPf(·).

• Closest Vector Problem with Pre-processing
(GapCVPPf(·))
From the input tuple(B, t, d) to GapCVPf(·), (B) is
the uniform input toGapCVPPf(·).

• Minimum Integral Solution Problem with Pre-
processing (GapMISPPf(·))
From the input toGapMISPf(·), which is a tu-
ple (Bf ,Bv, t, d), (Bf ,Bv) is the uniform input to
GapMISPPf(·).

• Label Cover Problem with Pre-processing
(GapLCPPf(·))
Recall that an input toGapLCPf(·) is a tupleU :

(G(V,W,E), [R], [S], n,m, {πe}e, {Pw, Pw}w∈W) .

The uniform part consist ofG(V,W,E), n, m, the set
of candidatelabels[R] for vertices inW, [S], and the
projection mapsπe. Further, for everyw ∈ W, a par-
tition of [R], Pw =

⊔
l Rw,l is fixed, which also de-

pends just on the length of the input. The input to
GapLCPPf(·) now consists of a setPw ∈ {Rw,l}l,
for everyw ∈ W. Recall that this is the set of permis-
sible labels forw.

When we do not wish to talk about the gap, we will refer
to these problems asNCP, MINSAT, CVP, MISP, LCP,
NCPP, MINSATP, CVPP, LCPP andMISPP.

The following proposition states thatMISPP can be re-
duced toCVPP.

Proposition 2.7 There exists a polynomial time reduction
from GapMISPPf(·) to GapCVPPf ′(·), where f ′(n) :=
f(nε), for some constantε > 0.

The proof of Proposition 2.7 can be obtained by a slight
modification of Lemma 10 in [7], where a reduction is
shown from the shortest integral solution problem, which
is a special case ofMISP.

3. Reduction from Hypergraph Vertex Cover

In this section we present a complete proof of the follow-
ing result:

Theorem 3.1 For every constantc > 0, GapNCPPc

is NP-complete. Further, under the assumption that
NP6⊆DTIME(2poly log(n)), NCPP is hard to approximate
within a factor of(log n)δ, for some constantδ > 0.

As an immediate corollary, via a reduction from
GapNCPPf(·) to GapCVPP√

f(·) (see [8, 19] for details),

we obtain the following.

Corollary 3.2 For every constantc > 0, GapCVPPc

is NP-complete. Further, under the assumption that
NP6⊆DTIME(2poly log(n)), CVPP is hard to approximate
within a factor of(log n)δ, for some constantδ > 0.

The result relies on the following theorem about the hard-
ness of approximation ofHVC(k). (This problem is referred
to as Ek-Vertex-Cover in [6].)

Theorem 3.3 (Dinur et al. [6]) For everyε > 0 and every
k ≥ 3, GapHVC(k)k−1−ε is NP-complete.

The proof of Theorem 3.1 involves two steps: (1) Lemma
3.4 gives an approximation preserving reduction from
HVC(k) to MINSATP. The instance ofMINSATP produced
is of size poly(nk). (2) Lemma 3.5 shows that, assuming
that MINSATP is NP-hard,NCPP is hard to approximate

within some (fixed) constant factor. Hence, a direct applica-
tion of Theorem 3.3, with a large enough value ofk proves
Theorem 3.1.

Lemma 3.4 For every odd integerk, there exists a
poly

(
nO(k)

)
time reduction that maps an instanceH(V,E)

(with |V | = n) of HVC(k) to an instance(V,L,E) of
MINSATP, such that ifφH denotes the CNF formula corre-
sponding to(V,E)

1. The matricesV,E are of sizen×
(
n
k

)
.

2. V andL depend only onn andk.

3. ρ(φH) is equal to the size of a minimum vertex cover
ofH.

Proof: We constructφH in the following way: The ma-
trices V and E can be read off from the description of
φH. The variables ofφH are yI,i, for all I ⊆ [n] with
|I| = k, and all i ∈ [n]. For eachi ∈ [n], φH contains
a clauseCi :=

∨
I3i(yI,i)1−χH(I), whereχH(I) = 1 if

and only ifH contains the edgeI. (Recall that the notation
xε means thatx is negated if and only ifε = 0.) L is de-
fined as the linear space overF2 spanned by the equations
{
⊕

i∈I yI,i = 0}I⊆[n],|I|=k. Note that neither the under-
lying matrix V of φH, nor L depend onH. Only E de-
pends onH. Now we prove(3). This is done in two parts:
1. ρ(φH) is less than or equal to the size of a minimum ver-
tex cover ofH.
Let C ⊆ [n] be a vertex cover ofH. For every edgeI ∈ E,
fix a vertex`I ∈ I which belongs toC. Set the variableyI,i

to 1 if and only if I ∈ E andi 6= `I , and to0 otherwise.
Then, yI,i satisfies exactly the clauses that correspond to
vertices inC. Also, sincek is odd, this solution lies in the
linear spaceL.
2. ρ(φH) is greater than or equal to the size of a minimum
vertex cover ofH.
Given an assignment for yI,i, denote C =
{i|Ci is satisfied}. We claim that C is a vertex cover:
Indeed, consider some edgeI ∈ E. Sincek is odd, and
{yI,i} lie in the linear spaceL, yI,i is 0 for at-least one
i ∈ I. This implies thati ∈ C. This completes the proof of
the lemma.

Lemma 3.5 There exists a constantµ > 0, such that for
every odd integerk ≥ 3, there exists a polynomial reduction
that maps an instance(V,L,E) (V,E ∈ {0, 1}m×n and
each row ofV has exactlyk 1s) ofMINSATP to an instance
(C,v) of NCPP, such that, ifφ denotes the CNF formula
corresponding to(V,E), then,

1. C depends only onV andL.

2. ∆(v, C(C)) ≤ ρ(φ)l1.

3. ∆(v, C(C)) ≥ µρ(φ)l1.

Herel1 := poly(n, 1/µ) andC ⊂ Fl1
2 .

Proof: Let φ =
∧m

i=1 Ci, whereCi are clauses over the
variable set{x1, . . . , xn}. First, we define a linear codeC
(depending onE andL) that will be used in the reduction.
For an integer parameterl1 = poly(n, 1/µ), fix an assymp-
totically good linear error correcting codeC′ ⊆ {0, 1}l1

of dimensionn with a generating matrixG ∈ {0, 1}l1×n,
such that for allv ∈ C′, |wt(v)/l1| ≥ µ for some positive
constantµ.

For a clauseCi =
∨
{j:Vij=1} x

Eij

j , define the matrixGi

in the following way: Thej-th column ofGi is the j-th
column ofG if Vij = 1, and the all zeroes vector,0 ∈
{0, 1}l1 , otherwise. Note thatGi depends only on the list of
variables inCi, which depends only onV. The generating
matrixC of C contains the productGi ·GL for each clause
Ci :

C = (G1 ·GL, · · · ,Gm ·GL)T ,

where GL is any generator matrix ofL (i.e. a matrix
such thaty ∈ L iff there is anx such thaty = GLx).
We are ready to define the target vectorv ∈ {0, 1}l1m.
For each clauseCi, define thei-th block of v (the block
of co-ordinates from(i − 1)n + 1, . . . , in) as vi :=⊕

j:Vij=1,Eij=0 G[j], whereG[j] is thej-th column ofG.
Now, (2) and (3) follow from the following two statements:
1. If ρ(φ) ≤ k, then∆(v, C(C)) ≤ kl1.
Consider the vectoru such thatu ∈ L, and u satisfies
at-mostk clauses ofφ, let u = GLx Then, the ham-
ming distance from the codewordCx to v is ∆(v,Cx) =∑m

i=1 ∆(Giu,vi). Note that for alli, vi − Giu is an el-
ement ofC′, becausevi ∈ C′, and every column ofGi

is in C′. Also, if the clauseCi is unsatisfied byu, then
vi = Giu. Thus,

∆(v,u) =
m∑

i=1

∆(Giu,vi)

=
∑

Ci is satisfied byu

wt(Giu− v) ≤ kl1.

2. If ρ(φ) ≥ k, then∆(v, C(C)) ≥ µkl1
Assume on the contrary that there exists a vectorx such that
∆(v,Cx) < µkl1, let u = GLx. Then,u ∈ L. Note that
vi −Giu is either0 (if and only if Ci is not satisfied byu),
or some non-zero codeword inC′. Thus, one may write

∆(v,u) =
m∑

i=1

∆(Giu,vi)

=
∑

Ci is satisfied byu

wt(Giu− v) ≥ µkl2,

which contradicts our assumption that∆(v,Cu) <
µkl1.

The first part of Theorem 3.1 now follows from Theo-
rem 3.3, Lemma 3.4 and Lemma 3.5. The second part of
Theorem 3.1 follows similarly from a strengthening of The-
orem 3.3 when we choosek = (log n)O(1).

4. PCPs for Constraint Satisfaction Problems,
2-Prover Games and the Label Cover Prob-
lem

A Quadratic Constraint Satisfaction Problem. The fol-
lowing constraint satisfaction problem (CSP) will be the
starting point for our result.

Quadratic CSP over F2 (QCSP(2)). Given a set
of quadratic polynomial equations overF2[x1, . . . , xn],
the goal is to find an assignment to the variables
{x1, . . . , xn} ∈ Fn

2 which satisfies as many equations as
possible. Each equation is of the formp(x1, . . . , xn) = c,
where the degree ofp is 2 andc ∈ F2. Further, each poly-
nomial is known to depend only on at-most3 variables.

Problem 4.1 For a function f ≥ 0, an instance
of GapQCSP(2)f(·) is denoted by

(
{pj}m

j=1, {cj}m
j=1

)
,

where eachpj is a quadratic polynomial inF2[x1, . . . , xn]
which depends on at-most three variables, andcj ∈ F2. It is
a YES instance if there exists an assignment(a1, . . . , an) ∈
Fn

2 to the variables such thatpj(a1, . . . , an) = cj , for all
1 ≤ j ≤ m. It is a NO instance if for every assignment
(a1, . . . , an) ∈ Fn

2 to the variables, the fraction of equa-
tions which are satisfied, that is, the fraction ofj for which
pj(a1, . . . , an) = cj is less thanf(n). The corresponding
decision problem where the objective is to decide whether
there is an assignment which satisfies all the equations or
not is referred to asQCSP(2).

Quadratic CSP over F2 with Pre-processing (QC-
SPP(2), GapQCSPP(2)f(·))
From the input

(
{pj}m

j=1, {cj}m
j=1

)
to QCSP(2) and

GapQCSP(2)f(·),
(
{pj}m

j=1

)
is the uniform input toQC-

SPP(2) andGapQCSPP(2)f(·) respectively.

A PCP Theorem for QCSPP(2). The main reduction of
this paper uses a PCP Theorem forQCSPP(2). But first,
we need to establishNP-completeness ofQCSPP(2).

Theorem 4.2 QCSPP(2) is NP-complete.

Proof: We reduce3SAT to QCSPP(2). For this proof, it
is convenient to view the formulation for3SAT which has
been used in the definition ofMINSAT: The input is(V,E),

whereV,E ∈ {0, 1}m×n and corresponds to a3SAT for-
mula φ = C1 ∧ · · · ∧ Cm with variables{x1, . . . , xn}.
Further, each row ofV has exactly3 1s. Since3SAT is
in NP, for every n, there is a circuitCn which takes as
input (V,E) and an assignmenta ∈ {0, 1}n, such that,
Cn(a,V,E) = (1,V,E) if a is a satisfying assignment for
φ, and(0,V,E) otherwise.

Now we present the reduction. Let(V,E) be the input
corresponding to a3SAT instanceφ. We may assume that
every gate inCn has fan-in 2 and fan-out 1. For every bit
in the input(a,V,E) to Cn, there is a variable:xi is sup-
posed to be assigned thei-th bit of a. xi,j is supposed to be
assignedVij , while x′i,j is supposed to be assignedEi,j .

Associated to the output of thei-th internal gate1 in Cn is
a variablezi. Further, lety0 be the variable corresponding
to the gate which outputs whether an assignmenta satisfies
φ or not, and denote byyi,j andy′i,j the output of the gates
outputting thei, j-th entry ofV andE respectively. We just
show the arithmetization (overF2) for the AND gate (sim-
ilar arithmetizations hold for the NOT and the OR gate): If
the input to an AND gate are variablesz, z′, and the output
z′′, then, one can write the equationz′′ − zz′ = 0 corre-
sponding to it.

We write such an equation for every gate, internal or out-
put, in Cn. Each equation is of degree at-most2 and has
at-most3 variables. Note that every such equation depends
only on the description ofCn. To see the connection with
QCSPP(2), we think ofa,V,E as variables in this set of
polynomial equations and add the additional set of equa-
tionsy0 = 1, yi,j = Vij andy′i,j = Eij . Hence, we get a
QCSPP(2) instance over the set of variables

{xi : 1 ≤ i ≤ n} ∪ {xi,j : 1 ≤ i, j ≤ n}
∪ {x′i,j : 1 ≤ i, j ≤ n} ∪ {zi : 1 ≤ i ≤ size(Cn)} ∪ y0

∪ {yi,j : 1 ≤ i, j ≤ n} ∪ {y′i,j : 1 ≤ i, j ≤ n},

(Notice thatCn can be generated by a polynomial time al-
gorithm which is given as input1n. Hence, this reduction
is a polynomial time reduction.) By definition, it follows
that this quadratic system has a solution if and only ifφ
has a satisfying solution. This completes the proof of the
lemma.

PCP Theorem for QCSPP(2). We start with an instance
U of QCSPP(2) and construct another instanceU ′ of it in
which theunsatisfiability is amplified: If U is satisfiable, so
is U ′. However, ifU is not satisfiable, then no assignment
to the variables ofU ′ satisfies more than aθ fraction of the
constraints inU ′. Here,θ > 0 is some fixed constant. The
reduction is summarized in the following theorem:

1A gate is said to be internal if its output is not an output of the circuit.

Theorem 4.3 Let
(
{pj}m

j=1, {cj}m
j=1

)
be the input to

QCSP(2) over the set of variables{x1, . . . , xn}. There is
a polynomial time constructible mapping, and a constant
θ > 0, such that:

1. The mapping takes a pair
(
{pj}m

j=1, {cj}m
j=1

)
to(

{p′j}m′

j=1, {c′j}m′

j=1

)
,

2. The set of polynomials{p′j}m′

j=1 are quadratic over
F2[x1, . . . , xn′] and depend only on{pj}m

j=1.

3. If the system{pj = cj}m
j=1 has a satisfying solution,

so does the system{p′j = c′j}m′

j=1.

4. If {pj = cj}m
j=1 is not satisfiable, then for any as-

signment to its variables{x1, . . . , xn′}, more than aθ
fraction of the equations{p′j = c′j}m′

j=1 are not satis-
fied.

5. If eachpj depends on at-most3 variables, so does each
p′j .

6. There is a fixed integern0 such that each variable in
{x1, . . . , xn′} appears in exactlyn0 of the polynomials
{p′j}m′

j=1.

Hence, there is an absolute constantθ > 0 such that
GapQCSPP(2)θ is NP-hard.

The proof of this theorem, which is a laborious and an al-
most exact mimic of the proof of the PCP Theorem, is be-
yond the scope of this version of the paper.

2-Prover Games and the Label Cover Problem(s). Now
we explain the standard framework for outer PCPs. Albeit,
instead of starting with a gap instance of3SAT, we start
with an instance ofGapQCSPP(2)θ as in Theorem 4.3.
The first step is to construct a 2-Prover-1-Round Game from

the instance
(
{p′j}m′

j=1, {c′j}m′

j=1

)
of GapQCSPP(2)θ. In

the 2-Prover Game, the first prover is supposed to provide
the assignments to the variables in each equation, while the
second prover is supposed to provide an assignment to the
variables which would satisfy all the equations. The verifier
then picks an equation at random, sayp(x1, x2, x3) = c,
reads the answer of the first prover:(a1, a2, a3), a sup-
posed assignment to the variables(x1, x2, x3), checks if
p(a1, a2, a3) = c. If so, she then picks a random variable
from among{x1, x2, x3}, sayx3, and accepts only if both
provers are consistent in their answers forx3. It is easy to

see that if the instance
(
{p′j}m′

j=1, {c′j}m′

j=1

)
is a YES in-

stance, then there is a strategy for both the provers to suc-
ceed with probability 1. While, if it is a NO instance, then
there is no strategy for the 2 provers to succeed with proba-
bility more than2/3 + θ/3.

Given an instanceφ :=
(
{p′j}m′

j=1, {c′j}m′

j=1

)
of

QCSPP(2)θ over the variable set{x1, . . . , xn′}, construct
an instance

Uφ(G(V,W,E), [8], [2], n′,m′, {πe}e∈E , {Pw, Pw}w∈W)

as follows: The graphG(V,W,E) hasV := {x1, . . . , xn′},
W := {p′1, . . . , p′m′}, and (xi, p

′
j) ∈ E if and only if p′j

depends onxi. Note that the degree of a vertex inV is
3, while of that in W is n0. We identify the set[8] with
{0, 1}3, and the set[2] with {0, 1}. For a vertexp′j ∈ W, let
Pp′j

⊆ {0, 1}3 ≡ [8] be the set of solutions to the equation
p′j = c′j . The partitionPp′j

is justPp′j
t ([8]\Pp′j

). Now we
define the projection mapsπ(xi,p′j)

. Since we have fixed a

bijection between{0, 1} and [2], and one between{0, 1}3
and[8], it suffices to describe the map fromPp′j

to {0, 1}.
For an edgee = (xi, p

′
j), wherep′j depends on variables

(xi, xj , xk), and an assignment(a, b, c) in Pp′j
, the map-

ping is πe((a, b, c)) = a. Herea is the value assigned to
xi. Notice thatUφ is an instance ofGapLCPP2/3+θ/3. By
Theorem 4.3 and the discussion preceding the reduction, it
follows thatGapLCPP2/3+θ/3 is NP-complete.

Amplifying the gap. Starting with an instance
Uφ(G(V,W,E), [8], [2], n,m, {πe}e∈E , {Pw, Pw}w∈W)
of GapLCPP2/3+θ/3, for an integerk > 0, one can use
Raz’s Parallel Repetition Theorem [18] to construct an
instanceU⊗k

φ :

(G′(V ′,W ′, E′), [R′], [S′], n′,m′, {π′e}e, {P ′
w, P ′

w}w∈W ′)

with n′ = nk, m′ = mk and R′, S′ are 2O(k). It fol-
lows from Raz’s result that thatU⊗k

φ is an instance of
GapLCPPθ′k , whereθ′ depends only onθ.

Smoothening the projection maps inLCPP. For our re-
duction we will need an additional property from the pro-
jection maps{πe}e: For aδ > 0, for anyw ∈ W, and any
pair of distinct labelsi, i′ ∈ [R],

Pr
v∈RN(w)

[
π(v,w)(i) = π(v,w)(i′)

]
≤ δ.

Here the probability is over picking a random neighbor of
w. We refer to this property asδ-smoothness, and in general
is not guaranteed by the instances ofGapLCPP′kθ produced
by parallel repetition. Khot [11] proposed a modification of
Raz’s parallel verifier with parameterk. His construction
has parametersT, k (think of T, k � 1, and can be chosen
independently of each other) and allows one to construct in-
stances which have theδ-smoothnessproperty forδ = 1/T.
More precisely, in our setting, starting with an instance
Uφ(G(V,W,E), [8], [2], n,m, {πe}e,Pw, {Pw}w∈W) of

GapLCPP2/3+θ/3, and integer parametersT, k, Khot’s

2-Prover Game can be used to construct an instanceUT,k
φ :

(G′(V ′,W ′, E′), [R′], [S′], n′,m′, {π′e}e, {P ′
w, P ′

w}w∈W ′)

with n′ = nO(Tk), m′ = mO(Tk) andR′, S′ are2O(Tk).
Using Raz’s result, he shows thatUT,k

φ is an instance of
GapLCPP2−γk , where0 < γ < 1 depends only onθ, and
hence, is fixed. Further, he shows thatUT,k

φ has the1/T -
smoothness property.

Some explanation is in order regarding the partitionP ′
w

and the set of permissible labelsP ′
w. We obtain an in-

stance ofLCPP by combining an instance promised by the
PCP Theorem forQCSPP(2) with Khot’s 2-Prover Game.
Hence, the set of satisfying assignments of a polynomial
change based on the right hand side of the equation it is in.
Hence, for ak-tuple of polynomials, based on the2k pos-
sible values of the right hand sides of the equations, there
are2k sets. These correspond to the candidate labels for a
vertexw, which in turn corresponds to thek-tuple of poly-
nomials under consideration. From these candidate labels,
based on the right hand side of the polynomial equations,
the input; the set of permissible labels forw, is specified.
This partition of candidate labels, of course, depends on the
right hand sides of the polynomials.

5. Reduction from Label Cover: (log n)1/2−ε

hardness

Theorem 5.1 For everyε > 0, GapMISPP(log n)1/2−ε is

NP-complete unlessNP⊆DTIME(2poly log(n)).

This implies, via Proposition 2.7, the hardness of approxi-
mation ofCVPP.

Corollary 5.2 For everyε > 0, GapCVPP(log n)1/2−ε is

NP-complete unlessNP⊆DTIME(2poly log(n)).

Remark 5.3 The proof of Theorem 5.1 (and hence, of
Corollary 5.2) can be easily seen to imply a hardness of
(log n)1/p−ε for MISPP andCVPP over`p norm, for any
p ≥ 1.

Noticing that our reduction produces aMISPP instance
with 0/1 values,a la Aroraet al. [4], we infer the following
corollary:

Corollary 5.4 For every ε > 0, GapNCPP(log n)1−ε is
NP-complete unlessNP⊆DTIME(2poly log(n)).

Overview. The proof of Theorem 5.1 proceeds by re-
ducing asmoothenedlabel cover instance to an instance
of MISPP. Recall that for arbitrary parametersT and k,
starting with aQCSPP(2) instance of sizepoly(n), the

PCP Theorem forQCSPP(2) (Theorem 4.2) combined
with Khot’s 2-Prover Game produces an instance ofLCPP,
namelyUT,k, of sizenO(Tk) in which the constraint maps
are1/T -smooth. Further, it is also guaranteed that deciding
whether there is a labeling which satisfies all the constraints
or no labeling satisfies more than a2−γk fraction of the con-
straints isNP-hard, for some fixedγ > 0.
The reduction takesUT,k and, in time polynomial in the size
of UT,k, converts it into aMISPP instanceB(T, k, n) such
that:

1. If there is a labeling which satisfies all the constraints
of UT,k, thenB(T, k, n) hasshortintegral solutions of
cost at-mostC(n).

2. If no labeling ofUT,k satisfies more than2−γk frac-
tion of the constraints, then every integral solution to
B(T, k, n) is of cost at-least2

γk
2 C(n).

Thus, pickingk = Ω(log log N), T = 2Ω(k), whereN is
the size ofB(T, k, n), we obtain about

√
log N hardness for

MISPP. Now we move on to the description of the precise
reduction and the choice of parameters.

The reduction. For parametersT, k to be decided later,
consider the following instance (UT,k) of GapLCPP2−γk

from Section 4:

(G(V,W,E), [R], [S], n,m, {πe}e∈E , {Pw, Pw}w∈W),

where n = |V |,m = |W | are nO(Tk), and R′, S′ are
2O(Tk). The only part of the input which is not uniform (or
does not depend onn) is {Pw}w∈W . Recall that for every
w ∈ W ,

⊔
l Rw,l a partition of[R], while the input is the

set of permissible labels for eachw, Pw ∈ {Rw,l}l. The in-
stance isδ := 1/T smooth. Recall that this means that for
anyw ∈ W and any pair of distinct labelsi, i′ ∈ [R],

Pr
v∈RN(w)

[
π(v,w)(i) = π(v,w)(i′)

]
≤ δ.

Now we define the correspondingGapMISP instance. The
variables are:

xw,i : ∀ w ∈ W, ∀i ∈ [R]
yv,j : ∀ v ∈ V, ∀j ∈ [S]

Thefixedlinear forms are∑
i∈Pw

xw,i = 1 ∀ w ∈ W (1)

∑
i∈Rw,l

xw,i = 0 ∀ w∈W, Rw,l 6=Pw (2)

∑
j∈[S]

yv,j = 1 ∀ v ∈ V (3)

(∑
i:π(v,w)[i]=j

xw,i

)
− yv,j = 0 ∀e=(v,w)∈E,

∀j∈[S] (4)

Thevariable linear forms are
√

n · xw,i : ∀ w ∈ W, ∀i ∈ [R]
√

m · yv,j : ∀ v ∈ V, ∀j ∈ [S]

Since the partitionPw =
⊔

l Rw,l depends only onn, the
only part that depends on{Pw}w∈W is the r.h.s. of(1) and
(2), and hence, this is an instance ofGapMISPP. Now we
analyze the gap of this reduction and its tradeoff with the
size of the instance produced.

Completeness

If UT,k is a YES instance ofGapLCPP2−γk , then there is
an assignment to the variables of the correspondingGap-
MISPP instance such that the objective is at-most

√
2mn.

Consider a labeling which satisfies all the edges ofUT,k.
Now we construct a solution to theGapMISPP with ob-
jective at-most

√
2mn as follows: If the labeli is assigned

to the vertexw ∈ W, then, assign1 to xw,i, and assign0
to all xw,i′ , for i′ 6= i. This makes sure that the constraints
(1) and(2) are satisfied. Similarly, if the labelj is assigned
to the vertexv ∈ V, then, assign1 to yv,j , and assign0 to
yv,j′ , for j′ 6= j. This makes sure that the constraints(3)
are satisfied. Further, if labelsi and j are assigned tow
andv respectively in this satisfying assignment, then for the
edge(v, w), π(v,w)(i) = j, and hence, the constraints(4)
are also satisfied.

Soundness

This is where we need theδ = 1/T -smoothness ofUT,k.
We will establish factorh hardness, whereh, as well as
other parameters, are fixed in the end. Assume that there is
a solution to theGapMISPP instance with objective equal
to h

√
2mn. Then,∑

w∈W,i∈[R]

x2
w,i < 2mh2 and

∑
v∈V,j∈[S]

y2
v,j < 2nh2.

(5)
We define the block of variablesBw := {xw,i : 1 ≤ i ≤
R}, for everyw ∈ W, andAv := {yv,j : 1 ≤ j ≤ S},
for everyv ∈ V. By (5), the average number of non-zero
variables in theB-blocks, as well as in theA-blocks, is at
most2h2. We throw away allv ∈ V andw ∈ W whose
respective blocks contain more than200h2 non-zero entries.
We do not care about satisfying the edges incident to such
vertices, as they make up for at-most a0.01-fraction of the
edges.

We can therefore assume that for each of the remaining
vertices, there are at-most200h2 non-zero variables in its
block. LetA+

v (resp.B+
w) denote the set of non-zero vari-

ables in the respective blocks. From (1), we have that there
is at-least onexw,i ∈ Pw which is non-zero, or in our no-
tation,B+

w ∩ Pw 6= ∅. We therefore arbitrarily assign, for

everyw ∈ W, a labellw from B+
w ∩Pw. Similarly, for every

v ∈ V, there is at-least one non-zeroyv,j . We assignv with
a label chosenat randomfrom A+

v .
Now using theδ-smoothness property, and a union

bound, we have that for all the remaining verticesw ∈ W
(that have not been thrown away)

Pr
v∈N(w)

[
∃ l′ 6= lw : π(v,w)(l′) = π(v,w)(lw)

]
≤ δ|B+

w | ≤ 200δh2.

Call an edge(v, w) good, if for all l′ 6= lw, π(v,w)(l′) 6=
π(v,w)(lw). For everyw, there are at-least1 − 200δh2

fraction of edges(v, w) which are good. For a vertexv
neighbouringw on a good edge, the constraint (4) implies
that yv,π(v,w)(lw) = xw,lw . Sincexw,lw is non-zero, so is
yv,π(v,w)(lw), and hence, with probability at-least1/|A+

v | ≥
1/200h2, the edge(v, w) is satisfied. Hence, the fraction of
edges satisfied is at-least1/(200h2)

(
1− 0.01− 200δh2

)
.

This has to be at-most2−γk, asUT,k is a NO instance of
GapLCPP2−γk .

Choice of parameters. We chooseδ as a function of
h, such that 200δh2 ≤ 0.01. Since this leaves the
fraction of edges satisfied by the above labeling at-least
0.981/(200h2), it must be thath = 2

γ
2 k−a, for some

fixed constanta. This implies thatδ = 2−γk−b, for
some fixed constantb. Hence,T (= 1/δ) = 2γk+b. The
size of the instanceN is ncTk for some fixed constant
c. Let k = 1

γε log log n. Hence,n = 22γεk

, and N =

22γεk+γk+b+log k+log c

. Hence,h = 2
γ
2 k−a ≥ (log N)1/2−ε.

This establishes that the size of the instance ofGap-
MISPP produced isNpolylog(N) and the hardness factor is
(log N)1/2−ε, and hence, Theorem 5.1 follows.

6 Acknowledgements

We are grateful to Daniele Micciancio for his simplifica-
tion of Lemma 3.5.

References

[1] D. Aharonov and O. Regev. Lattice problems in NP intersect
coNP. InAnnual Symposium on Foundations of Computer
Science, number 45, pages 362–371, 2004.

[2] M. Ajtai. The shortest vector problem iǹ2 is NP-hard for
randomized reductions. InProceedings of the ACM Sympo-
sium on the Theory of Computing, number 30, pages 10–19,
1998.

[3] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm
for the shortest lattice vector problem. InProceedings of the
ACM Symposium on the Theory of Computing, number 33,
pages 601–610, 2001.

[4] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. Hardness of
approximate optima in lattices, codes, and linear systems.
Journal of Computer and System Sciences, 54(2):317–331,
1997.

[5] J. Bruck and M. Naor. The hardness of decoding linear codes
with preprocessing.IEEE Transactions on Information The-
ory, 36(2):381–385, 1990.

[6] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new mul-
tilayered pcp and the hardness of hypergraph vertex cover.
SIAM J. Comput., 34(5):1129–1146, 2005.

[7] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating
cvp to within almost-polynomial factors is np-hard.Combi-
natorica, 23(2):205–243, 2003.

[8] U. Feige and D. Micciancio. The inapproximability of lat-
tice and coding problems with preprocessing.Journal of
Computer and System Sciences, 69(1):45–67, 2004.

[9] C. Gauss. Disquisitiones arithmeticae. Yale Univ. Pres,
1966. English translation by A. A. Clarke.

[10] R. Kannan. Improved algorithms for integer programming
and related lattice problems. InProceedings of the ACM
Symposium on the Theory of Computing, number 15, pages
193–206, 1983.

[11] S. Khot. Hardness results for coloring3-colorable3-uniform
hypergraphs. InAnnual Symposium on Foundations of Com-
puter Science, number 43, pages 23–32, 2002.

[12] J. Lagarias, H. Lenstra, and C. Schnorr. Korkine-Zolotarev
bases and successive minima of a lattice and its reciprocal
lattice. Combinatorica, 10:333–348, 1990.

[13] J. Lagarias and A. Odlyzko. Solving low-density subset sum
problems.Journal of the ACM, 32(1):229–246, 1985.

[14] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polyno-
mials with rational coefficients.Math. Ann., 261:513–534,
1982.

[15] H. Lenstra. Integer programming with a fixed number of
variables. Technical Report 81-03, Univ. of Amsterdam,
Amsterdam, 1981.

[16] D. Micciancio. The hardness of the closest vector problem
with preprocessing.IEEE Transactions on Information The-
ory, 47:1212–1215, 2001.

[17] D. Micciancio and S. Goldwasser. Complexity of lat-
tice problems: A cryptographic perspective, volume 671.
Kluwer Academic Publishers, 2002.

[18] R. Raz. A parallel repetition theorem.SIAM Journal of
Computing, 27(3):763–803, 1998.

[19] O. Regev. Improved inapproximability of lattice and coding
problems with preprocessing.IEEE Transactions on Infor-
mation Theory, 50(9):2031–2037, 2004.

[20] C. Schnorr. A hierarchy of polynomial-time basis reduction
algorithms. InProceedings of Conference on Algorithms,
pages 375–386, Ṕeecs, Hungary, 1985.

