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Abstract number of variables [14, 15, 10], factoring polynomials over
rationals [14], and breaking a knapsack based cryptosystem

We show that, unle$¢PCDTIME(2P° oe() the clos-  [13]. Interestingly, lattices are used in both ways in cryp-
est vector problem with pre-processing, féy norm for tography: As an algorithmic tool for breaking other crypto-
any p > 1, is hard to approximate within a factor of graphic systems, as well as for obtaining hard cryptographic
(logn)/P=< for anye > 0. This improves the previous best primitives. In particular, in a ground breaking work, [2] Aj-
factor of 31/? — ¢ due to Regev [19]. Our results also im- tai constructed an example of the worst-case to average-case
ply that under the same complexity assumption, the nearesteduction based on the shortest vector problem in a lattice.
codeword problem with pre-processing is hard to approxi- For a comprehensive introduction to the computational the-
mate within a factor oflogn)! < for anye > 0. ory of lattices we refer the reader to [17].

A central computational problem in the theory of lattices
is the so called closest vector proble@MP): Given an in-
teger lattice, represented by a bd8isand a target vectar,
the objective is to find a lattice poifdx that minimizes the
distance||Bx — t||. The best known approximation factor

An n-dimensional (integer) lattic€ is a set of vectors  for CVP achieved by a (randomized) polynomial time algo-
{31 aibi | a; € Z}, whereby,by,...,b, € Z"isa  yithmis20(nloslogn/logn) due to Ajtaiet al. [3]. The best
set of linearly independent vectors, called thasisof the  known deterministic polynomial time algorithm is due to
lattice. Equivalently, one may define a lattice as an arbitrary schnorr [20] and achieves a factorast(n(oglog )/ logn)
additive subgroup of the groufy. On the other hand, a result of Dinet al. [7] establishes

Lattices are important mathematical objects that havethat it isNP-hard to approximat€VP within a factor bet-
many applications in various fields of mathematics, includ- ter thannO(1/ loglogn)
ing convex analysis, number theory and computer science. | this paper, we investigate the complexity of the closest
They have been studied since the early 19th century byyector problem withpre-processingreferred to aVPP.
Gauss [9], who gave an algorithm to compute the short- | his setting, the basiB of the lattice depends only on
est vector in a two-dimensional lattice. Subsequently, 1at- the input length, and hence can be assumed to be known be-
tices have been studied in the works of Dirichlet, Hermite forghand. This allows the possibility of doing arbitrary pre-
and Minkowski. The original motivation came from num-  r9cessing with the basis, and using the pre-computed in-
ber theoretic problems such as solving Diophantine equa-formation to solveCVP on the input(B, t). Although there
tions and finding rational approximations for real numbers. g no computational restriction on the pre-processing step,
In recent times, lattices have had several important applica-gjven the input, which in this case is a target vedtothe
tions in computational mathematics. The discovery of the 5igorithm should run in time polynomial in the lengthtof
celebrated LLL algorithm of Lenstra, Lenstra and heg The motivation to study the complexity of such pre-
[14], that approximates th_e _shortest yector in a lattice, al- processing problems comes from cryptography and coding
lowed one to construct efficient algorithms for many com- teqry  |n this setting, typically, a publicly known lattice
putational tasks, such as solving integer programs in af|xed(or a linear error-correcting code) is being used to trans-

mit messages across a malicious/faulty channel. The de-
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lattice. For more details, refer to [8, 19].
The pre-processed version 6BVP seems to be easier

Notations. Vectors and matrices will be denoted by bold
letters such aB, v etc. Vectors will be assumed to be col-

than the original problem in some cases. For instance,umn vectors. For a matri€ € F3**, let C(C) denote the

using the so-called Korkine-Zolotarev basis, Lagagas
al. [12] constructed arO(n!-®) factor approximation al-
gorithm for CVPP, which is far better than the almost-
exponential approximation factor known 16 P. This was
further improved ton by Regev [19], and subsequently to
O(y/n/logn) by Aharonov and Regev [1].

In light of the fact that one can find much better ap-
proximation algorithms foEVPP when compared t€VP,
proving strong hardness of approximation resultsToiPP
is a more challenging task than that f6P. Bruck and
Naor [5] showed\NP-hardness for the analogue 6VPP

linear code{Cv : v € F5}. For a matrixB € Z"**, let
L(B) denote the lattic§ Bv : v € Z*}. For a code and
at € Fy, let A(C, v) := mineec d(c, v). Hered(-, ) is the
hamming distance.

For a positive integen, define[n] := {1,...,n}. For
two setsS, T' of the same cardinality, by abuse of notation,
S = T will mean that we have fixed a bijection between
S andT, and hence, us#, T interchangeably as is conve-
nient. Henceforth|| - || denotes the Euclidean norin ||».
However, the definitions in this paper hold for afpynorm,
for p > 1. When we want to make the norm explicit, we

in coding theory, the nearest codeword problem with pre- Will use the notatior - |[,..

processingNlCPP). In this problem, a binary error correct-
ing codeC is fixed in advance and the goal is, given a vec-
tor v, to find the closest (in the hamming metric) codeword
in C. Subsequently, Micciancio [16] established tHE-
hardness o€VPP. Both results hold only for the exact ver-
sion of the problems. The first inapproximability result was
due to Feige and Micciancio [8], who proved®3)/? — ¢
factor hardness fa€VPP for ¢,, norm, for anye > 0. They
proved this by showing &/3 — e factor hardness fadCPP.
Regev [19] improved these 8-¢ and3!/? —¢ respectively,
foranye > 0.

In this paper we show tha€VPP is NP-hard to ap-

Following is a list of problems that we consider in this pa-
per. We also presemformal descriptions of the problems
we consider before their actual formalizations.

Nearest Codeword Problem NCP). Given a code& C

F%, and a wordt € F%, the goal is to find a codeword
c € C which isclosesto t in the hamming metric. Here we
consider the case when the code is a linear subspde®. of

Problem 2.1 For a function f > 0, an instance of
GapNCP;(, is denoted by(C,t,d), whereC € Fy*¥,
t € Fy andd € Z*. Itisa YESinstance i (C(C), t) < d,

proximate within any constant factor. Under the stronger and a NO instance i (C(C), t) > f(n) - d.

assumption thaNPZDTIME(2r°yoe(n)) we show that
CVPP for 4, norm, for anyp > 1, is hard to approximate
within a factor of(log n)'/?=< for anye > 0. Further, our
results imply thalNCPP is hard to approximate to within a
factor of (logn)'~¢, unlesSNPCDTIME (2P0 log(n)),

Minimum Satisfiability in Linear Space (MINSAT).
Here, we are given a CNF formufa= C, Vv -- - vV C,,, over
the variableqz1, ..., z,}, and a linear subspad& C F%.
The goal is to find an assignment to the varialftes the

The paper is organized as follows: Section 2 presentSjinear spaceC which satisfies as few clauses @&s possi-
notations and problem definitions. The rest of the paper e This is a variant of the standard satisfiability problem:
contains two independent proofs of our results. Section 3(1) This is a minimization problem, rather than a maximiza-
contains our first (self-contained) result that establishes thejgn problem. (2) The space from which one is allowed to

NP-hardness of approximatir@/PP andNCPP to within

any constant factor. This result also implies that both prob-

lems are hard to approximate within a factor(lofg n)° (),
unlessNPCDTIME(2P°1os()) - |In Sections 4 and 5 we

choose an assignment is a part of the input, ratherjan

Problem 2.2 For a function f > 0, an instance of
GapMINSAT . is denoted byV, £, E, d), whereV ,E ¢

present another proof that gives stronger hardness results{0, 1}™*™ and correspond to a CNF formula with vari-
This proof requires a pre-processed version of the PCP Theables {1, ..., z,} as explained laterL is a linear sub-
orem which may be of independent interest. Due to spacespace off’;, andd € Z*. The CNF formulap correspond-
limitations, the proof of the pre-processed PCP theorem will ing to V, E is the following: LetV;;, E;; denote the, j-th
only appear in the full version of this paper. entry of V, E respectivelys has the fornCy A -+ A Gy,
where eacl; is the boolean OR (over=1,...,n) of the
literals a:f” for whichV;; = 1 (the notationz means that
the variablex; is negated if and only if = 0). Itis a YES
instance if there is & € £ which satisfies at-mogtclauses
This section presents formal descriptions of the prob- of ¢, and a NO instance if every € £ satisfies more than

lems, notions, and notations which are used in our reduc-f(n) - d clauses of. Let p(¢) denote the minimum, over
tions. the assignmente € L, of the clauses ap satisfied by .

2. Preliminaries



k-Hypergraph Vertex Cover (HVC(k)). Given a hyper-
graphH(V, E), where each edge @{ has cardinality, the
goal is to find a minimum size subsetWfwhich intersects
with (cover9 all the edges irf.

Problem 2.3 For f > 0, an instance ofGapHVC(K)y(.,

is denoted byH(V, E), d), where'H is a hypergraph with
vertex sel/ = [n], and edge sek consisting of edges C

V, with each edge of cardinality, whiled € Z™. Itis a

YES instance if there is a sét C V, with |C| < d, such
that|C' ne| > 1forall e € E. Itis a NO instance if for
everyC C V, with|C| < f(n,k)-d, thereis an edge € E

withCne=0.

Closest Vector Problem CVP). Given a latticel C Z",
and a vectot € Z", the goal is to find a lattice point € £
which isclosestto t in the ¢, distance. The lattice is typ-
ically generated by a (full-rank) basis matiix € Z"*":

L = {Bx : x € Z™}. This is a variant of the closest vec-

w € W, the mapr(, ., fixes the label that € V' should

be assigned in order &atisfythe edge(v, w). (4) Further,
for everyw € W, apartition P, of [R] is specified and a
permissibleset from the partitionP,, is provided. w can
only be assigned labels from the det C [R]. The goal

is to find an assignment of labels to vertices(tbko as to
maximize the number of satisfied edges.

The reason why we have a partitidn, for every vertex

w € W is technical and will become clear in subsequent
sections. It may be useful as of now to ignore the partition
and just think ofP,, C [R] as the only labels that one is
allowed to assign to vertices in. Thus, compared to the
vertices inV, each vertex ilV has its own (different) set of
labels, but each is a subset of a common grounfifget

Problem 2.6 For a function f > 0, an instance of
GapLCPf() is

u (G(MWE)v [R]v [S}vnvmv {WG}BEEv {’Pw;Pw}weW),

tor problem, but for our purposes, this turns out to be more whereG = (V, W, E) is a a bipartite graph, withV| = n,

convenient to work with instead @VP. Roughly, a hard-

ness result foMISP implies an equivalent hardness result

for CVP.

Problem 2.4 For a function f > 0, an instance of
GapCVPy . is denoted byB, t,d), whereB ¢ Z"*",

t € Z" andd € Z™*. ltis a YES instance if there exists a

x € Z" such that| Bx — t|| < d, and a NO instance if for
alx e zZ", |Bx —t|| > f(n)-d.

Minimum Integral Solution Problem (MISP). The in-
put to this problem consists of a set fofedlinear forms,
described byB; € Z*F1*" a set ofvariable linear forms
B, € ZF*" and a target vectar € Z*'. The goal is to
find anintegral solutionx € Z" to the systenB,x = t,

which is of least; norm with respect t@,,; or minimizes
IB.x].

Problem 2.5 For a function f > 0, an instance of
GapMISPy .y is denoted by By, B, t,d), whereB; ¢
Zkxn B, e ZFx" t ¢ 7ZF andd € Z7T. Itis a YES
instance if there exists & € Z" such thatB;x = t and
IB.x|| < d, and a NO instance if for atkk € Z" satisfy-
ing Byx = t, |B,x|| > f(n) - d. By will be referred to
as “fixed” linear forms on the variables, whilB, will be
referred to as “variable” linear forms.

Label Cover Problem (LCP). The input to this problem
consists of: (1) A bipartite grap&(V, W, E). (2) Two in-
tegersR and S; the intention being to assign verticeslin
labels from[S], and to assign vertices i labels from[R].
(3) The labeling has to satisfy certaionstraintsgiven by
functionsr,, .,y for each edgév, w) € E. Given a label for

|[W| = m, E is the set of edges$S] is the set of labels for
vertices inV, for everyw € W, P, = | |, R is a partition

of the sef{R], while P,, € {R,,;} is a set in the partition
that represents all “permissible” labels from which a label
can be assigned to € W, and forevery € E, 7. : [R] —

[S]. A “labeling” is a pair of mapsLw : W — [R], Ly :

V +— [S]. An edgee = (v, w) is “satisfied” by a labeling
(Ly, Lw) If Ly (w) € P, andw.(Lw (w)) = Ly (v). U

is a YES instance if there is a labeling that satisfies all its
edges. Itis a NO instance if every labeling satisfies at-most
f(n) fraction of the edges.

We note that in the standard definition of this problem,
the partition is trivial: P,, = {[R]} for all w € W, and
hence, the set of permissible labéls = [R] for all w €
w.

2.1. Pre-processing versions dbap problems

Let us formally define what pre-processing problems
are, and some specific pre-processing versions of problems.
We actually focus our attention amiform pre-processing
problems, whose hardness can be based on uniform as-
sumptions.

Pre-processing Problems. Consider a gap problem
GapXy(.y where inputs are tuplesdy, ..., A;) of a fixed
length, and have a size parametewhich is polynomially
related to the actual size of the input. In a pre-processing
version ofGapXy,.), we consider subproblems where part
of the input depends only on, and therefore can be as-
sumed to be known in advance.

Formally, a pre-processing instanceGdpX ;. is spec-
ified by an algorithm which, given the stringf, generates



in polynomial time a partial inputA,, ..., A;) for some
fixed k < [. We refer to this algorithm as @niform par-
tial input generator and we call( A4, ..., Ax) theuniform
input

An algorithm which solves GapXy., with pre-
processingn time T'(n), is actually an arbitrary function
P, which has no complexity constraints. Given a pre-
processing instance &apX ., (hamely the code of a uni-
form partial input generatorp, outputs an algorithm which
solves theGapX(.) problem in polynomial time on any in-
put (As,...,A;) with size parameter, on condition that
the partial tuple(A4, ..., A;) is the one obtained by the
partial input generator when run on the stririg

One can easily observe that in order to show hard-

ness of solvingsapX; .y with preprocessing, it suffices to
come up with the following ingredients: the first is a pre-
processing instance @apX;.), and the other is a reduc-
tion from a hard problem tGapX.), which generates in-
puts(Ay, ..., A;) of sizen, where(44, ..., Ax) is the out-
put of the partial instance generator on inptit

Note that once th&apX .y problem is defined, its pre-
processing version is defined by specifyingnamely the

entries of the partial inputs that are uniformly generated and

The uniform part consist af*(V, W, E), n, m, the set

of candidatelabels|R] for vertices inW¥, [S], and the
projection mapsr.. Further, for everyw € W, a par-
tition of [R], P, = |, Rw, is fixed, which also de-
pends just on the length of the input. The input to
GapLCPPy () now consists of a seP,, € {Ru i},

for everyw € W. Recall that this is the set of permis-
sible labels forw.

When we do not wish to talk about the gap, we will refer
to these problems adCP, MINSAT, CVP, MISP, LCP,
NCPP, MINSATP, CVPP, LCPP andMISPP.

The following proposition states th&ISPP can be re-
duced toCVPP.

Proposition 2.7 There exists a polynomial time reduction
from GapMISPP ., to GapCVPP,, ), where f'(n) :=
f(n©), for some constant > 0.

The proof of Proposition 2.7 can be obtained by a slight
modification of Lemma 10 in [7], where a reduction is
shown from the shortest integral solution problem, which
is a special case dflISP.

are allowed to be pre-processed. In the following list we 3. Reduction from Hypergraph Vertex Cover

define pre-processing versions of problems by specifying

what the uniform part of their input should be.

e Nearest Codeword Problem with Pre-processing
(GapNCPPy.))
From the input tupl€C, t, d) to GapNCP .y, (C) is
the uniform input tadGapNCPP ).

e Minimum Satisfiability in Linear Space with Pre-
processing GapMINSATP )
From the input toGapMINSAT (., which is a tu-
ple (V,L,E,d), (V,L£) is the uniform input to
GapMINSATP ..

e Closest Vector
From the input tuplé€B, t, d) to GapCVP; .y, (B) is
the uniform input taGapCVPPy (..

Problem with Pre-processing

e Minimum Integral Solution Problem with Pre-
processing GapMISPPy.))
From the input toGapMISP; ., which is a tu-
ple (By,B,,t,d), (By,B,) is the uniform input to
GapMISPP ..

e Label Cover
Recall that an input tGapLCP . is a tuplel/:

Problem with Pre-processing

(G(Vv W, E)a [R]’ [S]>n7m7 {71—6}87 {Pw7 Pw}weW) :

In this section we present a complete proof of the follow-
ing result:

Theorem 3.1 For every constantc > 0, GapNCPP,

is NP-complete. Further, under the assumption that
NPZDTIME (2P leg(®))  NCPP is hard to approximate
within a factor of(logn)?, for some constant > 0.

As an immediate corollary, via a reduction from
GapNCPP;, to GapCVPPm (see [8, 19] for detalils),

we obtain the following.

Corollary 3.2 For every constantt > 0, GapCVPP,.

is NP-complete. Further, under the assumption that
NPZDTIME (2P les(m)) - CVPP is hard to approximate
within a factor of(logn)?®, for some constant > 0.

The result relies on the following theorem about the hard-
ness of approximation ¢1VVC(k). (This problem is referred
to as E-Vertex-Cover in [6].)

Theorem 3.3 (Dinur et al. [6]) For everye > 0 and every
k > 3, GapHVC(k);_1_. is NP-complete.

The proof of Theorem 3.1 involves two steps: (1) Lemma
3.4 gives an approximation preserving reduction from
HVC(k) to MINSATP. The instance dfIINSATP produced
is of size polyg¥). (2) Lemma 3.5 shows that, assuming
that MINSATP is NP-hard,NCPP is hard to approximate



within some (fixed) constant factor. Hence, a direct applica-
tion of Theorem 3.3, with a large enough valuekgfroves
Theorem 3.1.

Lemma 3.4 For every odd integerk, there exists a
poly (n®*)) time reduction that maps an instant€V, E)
(with |V] = n) of HVC(k) to an instance(V, L,E) of
MINSATP, such that if¢,; denotes the CNF formula corre-
sponding toV, E)

1. The matriced/, E are of sizen x (7).
2. V and £ depend only om andk.

3. p(¢x) is equal to the size of a minimum vertex cover
of H.

Proof: We constructpy in the following way: The ma-
trices V and E can be read off from the description of
¢n. The variables ofpy, arey;;, for all I C [n] with
|I| = k, and alli € [n]. For eachi € [n], ¢ contains
a clauseC; := \/ o, (yr)' D, wherexy(I) = 1 if
and only ifH contains the edgé. (Recall that the notation
x¢ means thatr is negated if and only it = 0.) £ is de-
fined as the linear space oV spanned by the equations
{Dicrv1i = 0}1cin), 1=k Note that neither the under-
lying matrix V of ¢4, nor £ depend orf{. Only E de-
pends orf{. Now we prove(3). This is done in two parts:
1. p(¢3) is less than or equal to the size of a minimum ver-
tex cover ofH.

Let C C [n] be a vertex cover df{. For every edgé€ < E,
fix a vertex?; € I which belongs t@”'. Set the variablg; ;
tolifand onlyif I € F andi # {5, and to0 otherwise.

Then, y;,; satisfies exactly the clauses that correspond to

vertices inC'. Also, sincek is odd, this solution lies in the
linear space’.

2. p(¢1) is greater than or equal to the size of a minimum
vertex cover ofH.

Given an assignment fory;;, denote C
{i|C; is satisfied. We claim thatC is a vertex cover:
Indeed, consider some edgec E. Sincek is odd, and
{yr,:} lie in the linear space, y;; is 0 for at-least one
1 € I. This implies that € C. This completes the proof of
the lemma.

Lemma 3.5 There exists a constant > 0, such that for
every odd integek > 3, there exists a polynomial reduction
that maps an instancéV, £, E) (V,E € {0,1}"*"™ and
each row ofV has exactlyt 1s) of MINSATP to an instance
(C,v) of NCPP, such that, if¢ denotes the CNF formula
corresponding tq'V, E), then,

1. C depends only oV and L.
2. A(v,C(C)) < p(¢)h.

3. A(v,C(C)) = pup(¢)l.
Herel; := poly(n,1/u) andC c F4.

Proof: Let¢ = A.-, C;, whereC; are clauses over the
variable sef{z,...,z,}. First, we define a linear codg
(depending orE and£) that will be used in the reduction.
For an integer parametér = poly(n, 1/u), fix an assymp-
totically good linear error correcting cod® C {0,1}%
of dimensionn with a generating matriG: € {0, 1}1x"
such that for allv € C’, |wt(v)/l1| > p for some positive
constantu.

For a clause’; = V. _v_l}ac] ", define the matr>G;

in the following Way Thej-th Column of G; is the j-th
column of G if V;; = 1, and the all zeroes vectod, €
{0,1}!1, otherwise. Note thaﬂi depends only on the list of
variables inC;, which depends only o¥V. The generating
matrix C of C contains the produdk; - G~ for each clause
Cj, :

C=(Gi-Gg, - ,Gp-Gg)',

where G, is any generator matrix of (i.e. a matrix
such thaty € L iff there is anx such thaty = G/x).
We are ready to define the target vectorc {0,1}:™.
For each claus€’;, define thei-th block of v (the block
of co-ordinates from(i — 1)n + 1,...,in) as v;
D;.v.,—1,5,-0 Glil, whereG[j] is thej -th column ofG.
Now (2) and (3) follow from the following two statements:
1. If p(¢) < k, thenA(v,C(C)) < kiy.

Consider the vecton such thatu € £, andu satisfies
at-mostk clauses ofp, let u = Ggx Then, the ham-
ming distance from the codewofdx to v is A(v, Cx)
> A(Gyu, v;). Note that for alli, v; — Guis an el-
ement ofC’, becausev; € C’, and every column of3;
s in C’. Also, if the clauseC; is unsatisfied byu, then
v; = G;u. Thus,

= Z A(Giu, Vi)
D

¢, is satisfied by

2. If p(¢) > k, thenA(v,C(C)) > ukly

Assume on the contrary that there exists a vextauch that

A(v,Cx) < pkly, letu = Gzx. Then,u € £. Note that
— G;u is either0 (if and only if C; is not satisfied by),

or some non-zero codeword@. Thus, one may write

wt(Gu —v) < klj.

m

A(v,u) = ZA(G,;u, vi)
>

¢, is satisfied byu

wt(Gu — v) > pkls,



which contradicts our assumption thak(v,Cu) < whereV,E € {0,1}™*™ and corresponds to 3SAT for-
pukly. " mula¢ = Cy A --- A Cp, with variables{zy,...,x,}.
Further, each row oV has exactly3 1s. Since3SAT is
in NP, for everyn, there is a circuitC,, which takes as
input (V,E) and an assignment € {0,1}", such that,
Cn(a,V,E) = (1, V,E) if ais a satisfying assignment for
¢,and(0, V, E) otherwise.

] ) ) Now we present the reduction. LEV, E) be the input
4. PCPs for Constraint Satisfaction Problems,  corresponding to 8SAT instances. We may assume that

2-Prover Games and the Label Cover Prob-  every gate irC,, has fan-in 2 and fan-out 1. For every bit

The first part of Theorem 3.1 now follows from Theo-
rem 3.3, Lemma 3.4 and Lemma 3.5. The second part of
Theorem 3.1 follows similarly from a strengthening of The-
orem 3.3 when we chooge= (logn)°®,

lem in the input(a, V, E) to C,,, there is a variablex; is sup-
posed to be assigned th¢h bit of a. «; ; is supposed to be
A Quadratic Constraint Satisfaction Problem. The fol- assignedV;;, while z; ; is supposed to be assignkd,;.
lowing constraint satisfaction problem (CSP) will be the  Associated to the output of thieth internal gatéin C,, is
starting point for our result. a variablez,. Further, lety, be the variable corresponding

to the gate which outputs whether an assignnaesutisfies
Quadratic CSP over F, (QCSP(2)). Given a set ¢ Of not, and denote by; ; andy; ; the output of the gates
of quadratic polynomial equations ovét,[z1,...,zy,], outputting tha,j-th entry ofV andE respectively. We just
the goal is to find an assignment to the variables show the arithmetization (ovét,) for the AND gate (sim-

{z1,...,2,} € F? which satisfies as many equations as ilar arithmetizations hold for the NOT and the OR gate): If
pos’sible’. Each eéuation is of the fopties, ..., ) — c the input to an AND gate are variables:’, and the output
where the degree gfis 2 andc € F,. Further, each poly- % » then, one can write the equatiaff — 22" = 0 corre-
nomial is known to depend only on at-m@stariables. sponding to it.

We write such an equation for every gate, internal or out-
Problem 4.1 For a function f > 0, an instance put, inC,. Each equation is of degree at-masand has

of GapQCSP(2)y(. is denoted by({pj}gnzl, {cj}gn:l) , at-most3 variables. Note that every such equation depends
where eacly; is a quadratic polynomial iffy[z1, . .., z,] only on the description of,,. To see the connection with
which depends on at-most three variables, apd F,. Itis QCSPP(2), we think ofa, V, E as variables in this set of

a YES instance if there exists an assignnfent. .., a,) € polynomial equations and add the additional set of equa-
F3 to the variables such that;(a,,...,a,) = ¢;, for all tionsyo = 1, y; ; = V;; andy; ; = E;;. Hence, we get a

1 < j < m. Itis a NO instance if for every assignment QCSPP(2) instance over the set of variables

(a1,...,a,) € FZ to the variables, the fraction of equa-

tions which are satisfied, that is, the fractionjofor which {z;:1<i<n}U{m,;:1<4,j<n}

pj(ql2 .o, ap) = cjis less thanf(n)_. The corregponding U{el. i 1<ij<n}U{z:1<i<size(Cp)}Uyo
decision problem where the objective is to decide whether 7 o , o

there is an assignment which satisfies all the equations or Uy 1 <id,j<npUd{y;;:1<i,j<n}

not is referred to aQCSP(2).
< @ (Notice thatC,, can be generated by a polynomial time al-

_ _ _ gorithm which is given as input™. Hence, this reduction
Quadratic CSP over F, with Pre-processing QC- is a polynomial time reduction.) By definition, it follows
SPP(2), GapQCSPP(2);.) that this quadratic system has a solution if and only if
From the input ({p;}7.1,{c;}721) to QCSP(2) and  has a satisfying solution. This completes the proof of the
GapQCSP(2)y(.), ({p;}7~,) is the uniform input toQC- lemma. .
SPP(2) andGapQCSPP(2);(.) respectively.

A PCP Theorem for QCSPP(2). The main reduction of PCP Theorem for QCSPP(2). We start with an instance
this paper uses a PCP Theorem @CSPP(2). But first, U of QCSPP(2) and construct another instarigéof it in

we need to establiskP-completeness dQCSPP(2). which theunsatisfiability is amplifiedif Z/ is satisfiable, so
. isU’. However, ifi/ is not satisfiable, then no assignment
Theorem 4.2 QCSPP(2) is NP-complete. to the variables off’ satisfies more than@fraction of the

constraints iri/’. Here,0 > 0 is some fixed constant. The

Proof:  We reduce3SAT to QCSPP(2). For this proof, it reqyction is summarized in the following theorem:

is convenient to view the formulation f&SAT which has
been used in the definition IINSAT: The inputis(V, E), 1A gate is said to be internal if its output is not an output of the circuit.




Theorem 4.3 Let ({p;}7-,,{c;}7~,) be the input to
QCSP(2) over the set of variableéxy,...,z,}. There is

a polynomial time constructible mapping, and a constant
6 > 0, such that:

1. The mapping takes a paif{p;}/,,
({p] j= 1’{6 }] 1)

. The set of polynomial§p’}”", are quadratic over
Fy[z1, ..., 2, ] and depend only ofip; 7L

{ej}) to

. If the systen{p; = c;}2; has a satisfying solution,
so does the systefp); = ¢/} .

M {p; = ¢;}L, is not satisfiable, then for any as-
signment to its variable&e, . . ., x,,/ }, more than &
fraction of the equationgp’; = ¢;}7., are not satis-
fied. ' '

. Ifeachp; depends on at-mo8tvariables, so does each
/
pj-

. There is a fixed integet, such that each variable in
{z1,...,z, } appears in exactly, of the polynomials
{P;' ;n:/1

Hence, there is an absolute constaht> 0 such that
GapQCSPP(2)y is NP-hard.

The proof of this theorem, which is a laborious and an al-
most exact mimic of the proof of the PCP Theorem, is be-
yond the scope of this version of the paper.

2-Prover Games and the Label Cover Problem(s). Now

we explain the standard framework for outer PCPs. Albeit,
instead of starting with a gap instance IBAT, we start
with an instance ofcapQCSPP(2)s as in Theorem 4.3.

The first step is to construct a 2-Prover-1-Round Game from

the mstance({pj}] 1A

) of GapQCSPP(2),. In

Given an instance¢ ({p} 17{0 i 1) of

QCSPP(2), over the variable sefzy, ..., z, }, construct
an instance

Us(GV W, E), [8], 2], n',m/ {me}ee s {Puws Putwew)

as follows: The grapl*(V, W, E) hasV := {z1,...,zy },

W = {pi,...,p}, and(z;,p;) € E if and only if p/
depends orr;. Note that the degree of a vertex In is

3, while of that inW is ny. We identify the sef8] with
{0,1}3, and the sef2] with {0, 1}. For a vertex; € W, let
Py €0, 1}? = [8] be the set of solutions to the equation
p] = ¢;. The partitionP,, ISJUStP/ ([8]\ Py ). Now we
deflne the projection maps(m ) .’Since we have fixed a
bijection betweer{0, 1} and[2], and one betweef0, 1}3
and[8], it suffices to describe the map froff), to {0,1}.
For an edgee = (z;,p]), wherep; depends on variables
(x;,z;,21), and an assignmertt, b, ¢) in Py, the map-
ping is7.((a,b,c)) = a. Herea is the value assigned to
x;. Notice thatl/y is an instance 0GapLCPP;/3,4,3. By
Theorem 4.3 and the discussion preceding the reduction, it
follows thatGapLCPP; /34,3 is NP-complete.

Amplifying the gap. Starting with an instance
Up(G(V, W, E), [8], [2], 1, m, {Te tec 5 {Puw, Puw wew)

of GapLCPP;/3,4,3, for an integerk > 0, one can use
Raz's Parallel Repetition Theorem [18] to construct an
instance/;":

(G,(Vlv le El>7 [RIL [S,]7n/7m/7 {7‘—2}6’ {,P{uv P{u}wEW’)
with n/ = n*, m/ = mF and R, S’ are 2°%)_ It fol-

lows from Raz’s result that thdt{fk is an instance of
GapLCPP.:, wheref’ depends only oHf.

Smoothening the projection maps inLCPP. For our re-
duction we will need an additional property from the pro-

the 2-Prover Game, the first prover is supposed to providejection maps{r.}.: For ad > 0, for anyw € W, and any
the assignments to the variables in each equation, while theyair of distinct labels, i’ € [R],
second prover is supposed to provide an assignment to the

variables which would satisfy all the equations. The verifier
then picks an equation at random, gdyt1, 2, z3) = c,
reads the answer of the first provefa, as, a3), a sup-
posed assignment to the variables , 22, z3), checks if
p(a1,as,a3) = c. If so, she then picks a random variable
from among{z1, z2, 3}, sayxs, and accepts only if both
provers are consistent in their answersd}@r It is easy to

see that if the instance{p/ }7_ 1,{0 ,)isaYESin-

Pr
vERN(w)

<.

[0, (1) = T(o,0) ()] <
Here the probability is over picking a random neighbor of
w. We refer to this property assmoothness, and in general
is not guaranteed by the instanceSaipL.CPP)" produced
by parallel repetition. Khot [11] proposed a modification of
Raz’s parallel verifier with parametér. His construction
has parameters, & (think of T, k > 1, and can be chosen

stance, then there is a strategy for both the provers to sucindependently of each other) and allows one to construct in-

ceed with probability 1. While, if it is a NO instance, then

stances which have tllesmoothnesproperty foro = 1/7.

there is no strategy for the 2 provers to succeed with proba-More precisely, in our setting, starting with an instance

bility more than2/3 + 6/3.

Us(G(V, W, E), 8], [2], n,m, {me}e, Pu, { Pwtwew)  Of



GapLCPPy/3,¢/3, and integer parameters, k, Khot's
2-Prover Game can be used to construct an instblﬁc’é

(G/(Vlv leE/)’ [R/]’ [Sl]’n/’m/’ {7‘&'2}5, {'P{U,P;,}wewf)

with n/ = nPTk) m/ = mOTk) and R, S’ are20(Tk),
Using Raz’s result, he shows t *is an instance of
GapLCPP,—~x, where0 < v < 1 depends only ofl, and
hence, is fixed. Further, he shows tt@r”C has thel /T-
smoothness property.

Some explanation is in order regarding the partitidp,
and the set of permissible labeR. We obtain an in-
stance oLCPP by combining an instance promised by the
PCP Theorem foilQCSPP(2) with Khot's 2-Prover Game.
Hence, the set of satisfying assignments of a polynomial
change based on the right hand side of the equation it is in.
Hence, for ak-tuple of polynomials, based on t2é pos-

sible values of the right hand sides of the equations, there

are2* sets. These correspond to the candidate labels for
vertexw, which in turn corresponds to thetuple of poly-
nomials under consideration. From these candidate labels
based on the right hand side of the polynomial equations,
the input; the set of permissible labels for is specified.

a

PCP Theorem foilQCSPP(2) (Theorem 4.2) combined
with Khot's 2-Prover Game produces an instance©PP,
namelyid™* | of sizen®(T*) in which the constraint maps
arel/T-smooth. Further, it is also guaranteed that deciding
whether there is a labeling which satisfies all the constraints
or no labeling satisfies more thaa* fraction of the con-
straints iSNP-hard, for some fixed > 0.

The reduction takeld™** and, in time polynomial in the size

of ™%, converts it into avlISPP instance3(T,, k,n) such
that:

1. If there is a labeling which satisfies all the constraints
of UT"* thenB(T, k,n) hasshortintegral solutions of
cost at-most'(n).

2. If no labeling oft/™"* satisfies more tha@=7* frac-
tion of the constraints, then every integral solution to
B(T,k,n) is of cost at-lease = C(n).

hus, pickingk = Q(loglog N), T = 2%%*) whereN is
the size of3(T', k, n), we obtain about/log N hardness for
MISPP. Now we move on to the description of the precise

reduction and the choice of parameters.

T

This partition of candidate labels, of course, depends on theThe reduction. For parameter§’, k to be decided later,

right hand sides of the polynomials.

5. Reduction from Label Cover: (logn)'/?=¢
hardness

Theorem 5.1 For everye > 0, GapMISPP ,, ,,y1/2-« IS
NP-complete unlessiPCDTIME (2pely log(n)),

This implies, via Proposition 2.7, the hardness of approxi-
mation of CVPP.

Corollary 5.2 For everye > 0, GapCVPP j,, ,y1/2-« IS
NP-complete unlessiPCDTIME (2Pl log(n)),

Remark 5.3 The proof of Theorem 5.1 (and hence, of
Corollary 5.2) can be easily seen to imply a hardness of
(logn)'/P=< for MISPP and CVPP over/,, norm, for any
p=>1

Noticing that our reduction producesMISPP instance
with 0/1 values a la Aroraet al. [4], we infer the following
corollary:

Corollary 5.4 For everye > 0, GapNCPP 1,5 )1« IS
NP-complete unlessiPCDTIME(2pP0 log(n)),

Overview. The proof of Theorem 5.1 proceeds by re-
ducing asmoothenedabel cover instance to an instance
of MISPP. Recall that for arbitrary parametefs and &,
starting with aQCSPP(2) instance of sizeyoly(n), the

consider the following instancé/{-*) of GapLCPP,-
from Section 4:

(G(Vvv VVa E)v [R]a [S}vnﬂnv {We}eGEa {Pwa Pw}wGW)a

wheren = |V|,;m = |W| are n®T*) and R',S’ are
20(Tk) The only part of the input which is not uniform (or
does not depend om) is { P, }wew. Recall that for every
w € W, ||, R, a partition of[R], while the input is the
set of permissible labels for eaeh P, € {R,,,;};. Thein-
stance i$) := 1/T smooth. Recall that this means that for
anyw € W and any pair of distinct labelsi’ € [R],

Pr = M(v,w) (Z/)] <.

Ty w) (¢
1)€RN(U))[ (v, )()

Now we define the correspondi@apMISP instance. The
variables are:

Vwe W, Vie[R]
VoveV,Vjel[s]

Tw,i

Yu,j

Thefixedlinear forms are

Y wwi =1 VYweWw (1)
i€ P,
Z Twi =0  YweW, Ryi#Pu(2)
iER“,J
Zyv’j =1 VoveV 3)
Jjels]
Ve=(v,w)eE,
( > w ) —wy =0 Y™ )



Thevariablelinear forms are

\/ﬁ . xw,i
\/E *Yu,j

Since the partitior?,, = | |, R.,; depends only om, the
only part that depends ofP,, } ,ew is the r.h.s. of1) and
(2), and hence, this is an instance@apMISPP. Now we
analyze the gap of this reduction and its tradeoff with the
size of the instance produced.

Yw e W, Vi€ [R]
YoveV, VjelS]

Completeness

If 4T*is a YES instance dBapLCPP,_.., then there is
an assignment to the variables of the correspon@ag-
MISPP instance such that the objective is at-mo@mmn.
Consider a labeling which satisfies all the edge#/&f*.
Now we construct a solution to th@apMISPP with ob-
jective at-mosty/2mn as follows: If the labef is assigned
to the vertexw € W, then, assign to z,, ;, and assigr)

to all z,, 7, for ¢’ # 4. This makes sure that the constraints
(1) and(2) are satisfied. Similarly, if the labglis assigned
to the vertexv € V, then, assigr to y, ;, and assigm to
Y57, fOr j° # j. This makes sure that the constraif$s
are satisfied. Further, if labetsand j are assigned taw
andv respectively in this satisfying assignment, then for the
edge(v,w), T(,,.) (i) = j, and hence, the constraints)
are also satisfied.

Soundness

This is where we need the = 1/7-smoothness (.
We will establish factorh hardness, wheré, as well as

other parameters, are fixed in the end. Assume that there i?\/IISPP produced igvrolylos

a solution to theGapMISPP instance with objective equal
to hv/2mn. Then,
Z yij < 2nh?.

veV,jE[S]
(5)

weW,i€[R]
We define the block of variableB,, := {z,,; : 1 < i <
R}, for everyw € W, andA4, = {y,; : 1 < j < S},
for everyv € V. By (5), the average number of non-zero
variables in theB-blocks, as well as in thel-blocks, is at
most2h2. We throw away alv € V andw € W whose
respective blocks contain more th200h2 non-zero entries.

22 . < 2mh?® and

w,i

We do not care about satisfying the edges incident to such

vertices, as they make up for at-modi.a1-fraction of the
edges.

We can therefore assume that for each of the remaining

vertices, there are at-mo200k2 non-zero variables in its
block. LetA; (resp. B;)) denote the set of non-zero vari-

ables in the respective blocks. From (1), we have that there

is at-least one,, ; € P, which is non-zero, or in our no-
tation, B, N P, # (. We therefore arbitrarily assign, for

everyw € W, alabell,, from B} N P,,. Similarly, for every
v € V, there is at-least one non-zeyp ;. We assigr with
a label choseat randomfrom A}

Now using thed-smoothness property, and a union
bound, we have that for all the remaining verticess W
(that have not been thrown away)

[EI U'#1y,: W(v’qu)(l/) = 7T(U7w)(lw)}

< §|B;f| < 2006R%.

Pr
vEN (w)

Call an edge(v, w) good if for all I" # Ly, 7w (l') #
T(w,w)(lw). FOr everyw, there are at-least — 20085
fraction of edgeqv,w) which are good. For a vertex
neighbouringw on a good edge, the constraint (4) implies
thatywr(v’w)(lw) = Ty, SiNCEZy 1, IS NON-zEro, so is
Yo,7 () (L) and hence, with probability at-least| A} | >
1/200R2, the edg€v, w) is satisfied. Hence, the fraction of
edges satisfied is at-lealst(200n?) (1 — 0.01 — 200677) .
This has to be at-mo&~"*, asi/”"* is a NO instance of
GapLCPPy—s.

Choice of parameters. We choosed as a function of
h, such that2006h> < 0.01. Since this leaves the
fraction of edges satisfied by the above labeling at-least
0.981/(200h2), it must be thath = 23%~° for some
fixed constanta. This implies that§ = 2-7%=b for
some fixed constarit. Hence,T'(= 1/§) = 27+ The
size of the instanceV is n°T* for some fixed constant
c. Let k %loglogn. Hence,n 22wk, and N =
2’Ysk+’vk+b+logk+logc. Hence,h _ 2%k—a > (log N)I/Q_e.
This establishes that the size of the instanceGaip-
(N) and the hardness factor is
(log N)/2=¢ and hence, Theorem 5.1 follows.
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