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Abstract incrementally revealed as the learning proceeds. We thus
useonline learning as the learning apparatus and analyze
our algorithms within the mistake bound model. In online

learning we observe instances in a sequence of trials. After
each observation, we need to predict the class of the ob-
served instance. To do so, we maintain a hypothesis which

scores each of the candidate classes and the predicted label

We describe a general framework for online mul-
ticlass learning based on the notion of hypoth-
esis sharing. In our framework sets of classes
are associated with hypotheses. Thus, all classes
within a given set share the same hypothesis.

This framework includes as special cases com-
monly used constructions for multiclass catego-
rization such as allocating a unique hypothesis
for each class and allocating a single common
hypothesis for all classes. We generalize the mul-
ticlass Perceptron to our framework and derive a
unifying mistake bound analysis. Our construc-
tion naturally extends to settings where the num-
ber of classes is not known in advance but rather

is the one attaining the highest score. Once a prediction is
made, we receive the correct class label. Then, we may up-
date our hypothesis in order to improve the chance of mak-
ing an accurate prediction on subsequent trials. Our goal is
to minimize the number of online prediction mistakes.

Our solution builds on two commonly used constructions
for multiclass categorization problems. The first dedisate
an individual hypothesis for each target class (Duda & Hart,

1973; Vapnik, 1998) and is common in applications where
the input instance is class independent. We refer to this
construction as thenulti-vectormodel. The second con-
struction, abbreviated as trsingle-vectormodel, main-
tains a single hypothesis shared by all the classes while
the input is class dependent. The latter construction is
used in generalized additive models (Hastie & Tibshirani,
1995), boosting algorithms (Freund & Schapire, 1997), and
A Zoologist in a research expedition is required to identify structured multiclass problems (Collins, 2002). A common
beetle species. There are 00,000 different known thread of the single-vector and the multi-vector models is
beetle species and new species are being discovered all tHeat both were developed under the assumption that the set
time. In this paper we describe, analyze, and experimentf target classes is known in advance. One of the goals of
with a framework for multiclass learning aimed at address-this paper is to provide a unified framework which encom-
ing our Zoologist's classification task. In the multiclass passes these two models as special cases while lifting the
problem we discuss, the learner is required to make prerequirement that the set of classes is known before learning
dictions on-the-fly while the identity of the target clasies takes place.

is revealed along the online learning process. We
demonstrate the merits of our approach by com-
paring it to previous methods on both synthetic
and natural datasets.

1. Introduction

Appearing inProceedings of the3™ International Conference In the multiclass learning paradigm we study in this pa-

on Machine LearningPittsburgh, PA, 2006. Copyright 2006 by Per, sets of classes are associated with hypotheses. Thus,
the author(s)/owner(s). all classes within a given set share the same hypothe-
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sis. This framework naturally includes as special casesnechanism at the end of each trial.

the two models discussed above. - After introducing OUThe prediction of the algorithm at trialis determined by

new multiclass learning framework, we describe a gener- hypothesish, : R* x ¥ — R, which induces a score
alization of the Perceptron algorithm (Rosenblatt, 1958)for each of thef p;ossible classeéji?n The predicted label
to our framework and derive a unifying mistake boundis defined asi, — are max h.(x r) . To evaluate
analysis. Our construction naturally extends to settings Yo = argmaxrey, NelXe,”) -

where the number of classes is not known in advance bup e performance of a hypothesison the examplex;, y:)

) . we need to check whethér makes a prediction mistake,
rather revealed along the online learning process. The S :
namely determine ifj; # y;: € ;. To derive bounds on

analysis we present is applicable to both the single-vector = =~ . .
. rediction mistakes we use a second way for evaluating the
model and the multi-vector model and underscores a nat-

ural complexity-performance tradeoff. The complexity of performa_nce o .Wh'Ch is based on the multlclakmg_e-
the multi-vector model increases linearly with the numberlossfunctlon, defined as follows. If the current class is not
of classes while the model complexity of the single—vectornovel b € V1), then we set

approach is invariant to the number of classes. However,

the higher complexity of the multi-vector model is occa- ly(h) = (1 — h(x¢,y:) + max h(Xtﬂ")) ;

sionally necessary for achieving more accurate predistion reVeitved +

The generalized Perceptron algorithm we derive can bevhere(a), = max{a,0}. Since in our setting the algo-
viewed as an automatic mixing mechanism between the&ithm is not penalized for the first instance of each class,
single-vector and the multi-vector models, as well as anywe simply set/;(h) = 0 whenevery; ¢ );. The term
model that shares hypotheses between classes. The péfx;,y;) — max, h(x,r) in the definition of the hinge-
formance of the generalized Perceptron is competitive withoss is a generalization of the notion wfargin from bi-

any hypothesis sharing model and in particular the singlenary classification. The hinge-loss penalizes a hypothesis
and multi vector models. Our construction also allows tofor any margin less thaih. Additionally, if 4, # y; then
share features across classes via a feature mapping mectigch) > 1. Thus, thecumulative hinge-lossuffered over a
nism. For example, our dextrous Zoologist can share feasequence of examples upper bounds the number of predic-
ture mappings and hypotheses between groups of classéen mistakesj/.

such as desert dweller beetles or terrestrial beetles. Whil&

: . o . ecall that the prediction on each trial is based on a hy-
our framework is especially appealing in settings where the

. . pothesis which is a function froR™ x ) into the reals.
classes are revealed on-the-fly, it can be used verbatim ﬁ] this paper we focus on hvpotheses which are parameter-
standard multiclass problems. We illustrate the merits o hap yp P

our hypotheses sharing framework in a series of ex eri'—ZeOI by weight vectors. A common construction (Duda &
yPo 'arng P art, 1973; Vapnik, 1998; Crammer & Singer, 2003) of a
ments with synthetic and natural datasets. ; . . k
hypothesis space is the set of functions parameterized by

] | V| vectorsW = {w" : r € Y} where,
2. Problem Setting

Online learning is performed in a sequence of trials. At

.t“al t the algorlthm_ first receives an '”Staf"cﬁe R. and . That is, h associates a different weight vector with each
is required to predict a class label associated with that in-

stance. The set of all possible labels constitutes a finte seC lass and the prediction at triels,
denoted by)y. Most if not all online classification algo- L r

rithms assume tha is known in advance. In contrast, in % = ari@?x (Wi, xe) -

our setting the sey is incrementally revealed as the on-

line learning proceeds. We denote Pythe set of unique To obtain a concrete online learning algorithm we must de-
labels observed on roundsthrought — 1. After the on-  termine the initial value of each weight vector and the up-
line learning algorithm predicts the clags the true class date rule used to modify the weight vectors at the end of
y; € ) is revealed and the set of known classes is updategach trial. Following Kesler's construction (Duda & Hart,
accordingly,V;+1 = Y, U {y:}. We say that the algorithm 1973; Crammer & Singer, 2003), we address the multiclass
makes a prediction mistakegf # y, and the clasg, isnot ~ Setting using a Perceptron update. The multiclass Percep-
a novel classy; € );. We thus exclude from our mistake tron algorithm initializes all the weight vectors to be zero
analysis all the rounds on which a label is observed for théOn trial ¢, if the algorithm makes a prediction mistake,
first time. The goal of the algorithm is to minimize the total 7: # y: € V:, then the weight vectors are updated as fol-
number of prediction mistakes it makes, denotedbyTo  lows,

achieve this goal, the algorithm may update its prediction

h(x,r) = (w',x) .
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andw;, , = wy forall r € Y, \ {y:,9:}. Inwords, boosting (Freund & Schapire, 1997), and has been popu-
we add the instance; to the weight vector of the cor- larized lately due to its role in prediction with structured
rect class and subtrast, from the weight vector of the output where the number of classes is exponentially large
(wrongly) predicted class. We would like to note in passing(Collins, 2002; Taskar et al., 2003; Tsochantaridis et al.,
that other Perceptron-style updates can be devised for muR004; Shalev-Shwartz et al., 2004). Following a simple
ticlass problems (Crammer & Singer, 2003). Finally, if we Perceptron-based mechanism we initialieg = 0 and

do not make a prediction mistake then the weight vector®nly updatew if we have a prediction mistakg, # y; €

are kept intact. We refer to the above construction as th@;. The update takes the form,

multi-vector method.

Several mistake bounds have been derived for the multi- Wit = Wit $(xi90) = G0 G) -

vector method. In this paper we obtain the following mis-\yg refer to the above construction as the single-vector
take bound, which follows as a corollary from our anal- jathod.

ysis in Sec. 4. Le{x1,vy1),...,(xm,ym) be a sequence

of examples and defin® = 2max; ||x||2. Let h* be  The single-vector method is based on a class specific fea-
a fixed hypothesis defined by any set of weight vectorgure mappingp. Usually, this class specific mapping relies
U = {u”:r € Y}. We denote by on an a-priori knowledge of the set of possible clasges
This paper emphasizes the setting where the identity of the
target classes is incrementally revealed only during the on
line stream. Sinc® is not known a-priori, we apply a class
specific feature mapping whichdsta dependentor each

the cumulative hinge-loss &f over the sequence of exam- classr € ), letp” € R” be the first instance of classin

L=>Y ("), (1)
t=1

ples and by the sequence of examples. We defipgx,, ) to be the
C = R? Z lu" || , (2)  vector inR™ whosei'th element is,
rey
the complexityof 2*. Then the number of prediction mis- Gi(xt,7) = Teip; (4)

takes of the multi-vector method is at most, ) ) . )
That is, ¢(x;, ) is the coordinate-wise product between

M < L+C+vVLC . (3) x;andp”. In Sec. 5 we describe additional data-dependent

. . . constructions ot.
The mistake bound in Eg. (3) consists of three terms: the

loss of h*, the complexity ofh*, and a sub-linear term A relative mistake bound can also be derived for the
which is often negligible. We would like to underscore that Single-vector method. =~ Specifically, in Sec. 4 we show
the complexity term increases with the number of classethat the bound in Eg. (3) holds where noR =

since we have a different weight vector for each class.  2max . [|¢(x;,r)||2, the competing hypothesis* is pa-

) ) ) rameterized by angingleweight vectoru, and the com-
We now describe an alternative construction and an acﬁ)lexity of h* is

companying learning algorithm which maintainsiagle
vector. We show in the sequel that the second construction

entertains a mistake bound of the form given in Eq. (3)'Th lexi for the sinal hod d
However, the complexity term in this bound does not in- e complexity term for the single-vector method does not

crease with the number of classes, in contrast to the co|Créase with the number of classes, in contrast to the com-
plexity term for the multi-vector method given in Eqg. (2). plexity term for the multi-vector method given in Eq. (2).

The second multiclass construction usesiragle weight However, the vglue of the cumulative logs,in the !’““'“‘ .
vector, denoteds, for all the classes, paired with a class- vector method is upper bounded by the cumulative loss in

specific feature mapping) : R” x Y — R%. That is, the the single-vector method. This follows from the fact that
score given by a hypothesisfor classr is, _the_ hypotheses space employed by the multi-vector method
is richer than that of the single-vector method. To see this,
h(x,r) = (w,p(x,7)) . note that given any single weight vectar we can con-
] . ) struct the set of multiple weight vectois= {u” : r € Y}
We denote byw, the single weight vector of the algorithm  yhereyr = v;p7. Using this construction we observe that

C = R?|ul* . ®)

attrialt and its prediction is thus, (u, p(x¢,7)) = (u", x;) and therefore the cumulative loss
g = argmax (wy, ¢(x, 7)) . of u in the single-vector method equals to the cumulative
reVe B loss of U = {u” : r € Y} in the multi-vector method.

This construction is common in generalized additive mod-The prevailing question is which of the two approaches
els (Hastie & Tibshirani, 1995), multiclass versions of would perform better in practical applications. Indeed, ou
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the hybrid method outperforms both the single-vector and
multi-vector methods.
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£ oo The hypotheses of the hybrid method are parameterized by
___________________________ . a set of|Y| + 1 weight vectors. As in the single-vector
"""""""""""""""""""" = method we maintain one weight vector, denosed, which

is shared among all classesJh As in the multi-vector
Figure 1.The number of mistakes of the single-vector and theMethod the remainingy’| weight vectors are specific to

multi-vector methods described in Sec. 2, and a hybrid metho@ach of the classes. The scoreidbr classr is,
described in Sec. 3 on two synthetic datasets. y .
h(x,r) = (W, ¢(x,7)) + (W', x) .

Mistakes

8

g
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We denote by{wy'} U {w} : r € )} the weight vectors
experiments indicate that on certain datasets the singlesf the algorithm at triat and its prediction is thus,
vector method outperforms the multi-vector approach

while on other datasets an opposite effect is exhibited and  7; = argmax ((w,?’, d(xe, 7)) + (W, x4))
the richer model complexity of the multi-vector method is rEVe

necessary. One of the main contributions of this paper is §ve now describe a Perceptron-style update for the hybrid
mixing method, whose performance on any dataset is COMnethod. Initially, all the weight vectors are set to zero. On
petitive with the best of the aforementioned alternatives. {rig| ¢, the weight vectors are updated only if the algorithm

To illustrate the difference between the single-vector andn@de a prediction mistakg( # y. € J}) by using the
multi-vector methods we have constructed two synthetidiPdate rule,
datasets. Both datasets contain000 instances from

y o _ hY _ 0
{—1,1}5* and the set of classes)s= {0,...,15}. In the WZH - W; + o y) — DXt dn)
. . N t J— t
first dataset, the class of an instancés the value of the Wit1 = W +X,
binary number(z, x2, z3,24). In the second dataset, the ngl — Wgt —x
class of an instanceis r if 24,41 = ... = 24,14 = 1 (We

made sure that for each instance, only one class satisfiesid for allr € Y, \ {y, 9:}, Wi, = wi.

the above). We presented both datasets to the single—vectgr . . :
and multi-vector methods. The cumulative number of mis- relative mistake bound can be proven for the hybrid
' method as well. In particular, in Sec. 4 we show that a

takes of the two algorithms as a function of the trial numberbound of the same form given in Eq. (3) holds for the hy-

IS depicted in Fig. 1. As can be seen from the flg_ure, theorid method. That is, given a hypothesis parameterized
single-vector method clearly outperforms the multi-vecto any set of vector§’ — {u”} U {u" : r € YV}, the fol-

) . . b
method on the first dataset while the opposite phenomenofr . " .
is exhibited in the second dataset. This difference can-be aowmg bound holdsM < L + C'+ VL C, whereC'is

tributed to the interplay between the loss and the complex-
ity terms in our mistake bounds. Indeed, in the first dataset, , <
C=2R

efined to be,

the single-vector model is capable of achieving zero cumu-
lative loss by setting the first elements ofu to be% and
the rest to be zero. Our mistake bound for the smgle-yectogde is now the maximal value betweenmax, ||x,|| and
method reduces t® - 64 - 1 = 128. In contrast, the mis- 9 o 1l
take bound for the multi-vector method g times higher < ™"%t.r 191Xt T)ll2-
and equals t@048. In the second dataset, the single-vectorWe now compare the above mistake bound of the hybrid
model is not rich enough for perfectly predicting the cor- method to the mistake bounds of the single-vector and
rect labels. Therefore, the number of mistakes sustained byulti-vector methods. The cumulative loss of the hybrid
the single-vector method increases linearly with the num-method is bounded above by both the loss of the single-
ber of examples. In this dataset, the opulent complexity ofrector method and the loss of the multi-vector method.
the multi-vector method is beneficial. This follows directly from the fact that the hypothesis spac
of the hybrid method includes both the hypothesis space
3. Mixing the single and multi vector methods of the single-vector method and that of the multi-vector
method. To facilitate a clear comparison of the complexity
In this section we describelyybrid method whose perfor- term, let us assume thatax, ||x;|| = max; , ||¢(x¢, 7)||
mance on any dataset is competitive with the best of thend thus the value ak for all methods is identical. This
two alternative multiclass approaches described in the preequality indeed holds for the datasets described in Sec. 2.
vious section. Moreover, we show that on certain datasetdloreover, if the norm ofp is not restricted relatively to

e”)? + uTll2> ; (6)

rey
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of trials. The complexity term in the bound of the multi-
vector method is higher than the complexity term in the
bound of the single-vector method while an opposite trend
A — characterizes the loss term.

2000 2000 6000 8000
trial

4. A general mixing framework

Figure 2.The number of mistakes of the hybrid method, the |n the previous sections we described the single-vector
single-\{ector method, and the multi-vector method on the thirdmethod, the multi-vector method and the hybrid method.
synthetic dataset. In this section we propose a general mixing framework of
which the above three methods are special cases. We also
utilize this framework for deriving new mixing algorithms.
[x:|| and is allowed to grow with the number of classesFinally, we provide a unified analysis for our general mix-
then by concatenating class vectors we can reduce thigg framework and in particular obtain the mistake bounds

multi-vector method to the single-vector method. There-for the three methods described in previous sections.
fore, throughout the paper we focus on constructions in » .
which the norm ofp is of the same order of magnitude of Our general mixing framework assumes the existence of a

||| Equipped with this assumption we note that the Com_coIIection of indicator functions, denotefl, where each

plexity term of the hybrid method is at most twice the min- ", € T is a function fromy into {0, 1}. Thus, each func-

imum between the complexity of the single-vector methodiOn 7 corresponds to the sé" = {r € Y : 7(r) = 1},
and the multi-vector method. which includes all the classes ¥ for which 7(r) = 1.

The hypotheses of the general mixing framework are pa-
In Fig. 1 we compare the performance of the hybrid methodameterized by a set ¢ | weight vectors. For eache T
to the performance of the single-vector and the multi-vectowe maintain one weight vectos™, which is shared among
methods on the two synthetic datasets described in Sec. gl classes inS™. In addition, we assume that there exists
As expected, the performance of the hybrid method is coma feature mapping functiogp™ (x,r) for eachr € 7. The
parable to the best of the two alternatives. The two synscore given by a hypothesisfor classr is,
thetic datasets we constructed in Sec. 2 represent two ex-
tremes: the relevant components for each class are ei- h(x,r) = Z T(r) (w7, @7 (x,7)) . (7
ther common (first dataset) or completely disjoint (sec- reT
ond dataset). In practical situations, it might be the case
that while most of the classes share the same relevant dVe denote b{w7 : 7 € T} the weight vectors of the
mensions several of the classes might depend on other dlgorithm at trialt and its prediction is thus,
mensions. For example, if the task in hand is bird clas- R .
sification, the features used in recognizing most birds are Yyt = arﬁg;ax Z T(r)(w”, @7 (x,1)) .
common but are not applicable to penguins. To illus- toTeT

trate this point we have generated a third dataset as fol;, o1 peetle recognition example, a functiore 7 might

lows. As in our previous datasets, we chas®00 in- jngicate whether a beetle is a desert dweller. This infor-
stances from{+1, —1}** and the set of classes was set t0 a4ion is known before a zoologist might encounter a new

Y = {0,...,15}. Instances of the first5 classes have ghecies and is beneficial for transferring representationa
been generated as in the first dataset, that is, the class Iﬁ'ﬁowledge from previously learned distinctions.
bel was the value of the binary numbr,, ..., z4). In-

stances of the last class (= 15) were generated as in We now describe a Perceptron-style update for the general
the second dataset by setting; = ... = zg = 1. mixing framework. Initially, all the weight vectors are set
We have presented this dataset to the hybrid method ari@ zero. If there was a prediction mistake on triafj; #

to the single-vector and multi-vector methods. The pery: € Y, then we update each of the vectors(in™ : 7 €
formance of the different algorithms is depicted in Fig. 2.7 } as follows,

It is clear from the figure that the hybrid method outper- . . A

forms the two alternatives. It should also be noted that in = Wi+1 = Wi +7(y) @7 (xe, y2) = 7(Gs) 7 (X4, G) -

the first half of the input sequence the single-vector methogfithe algorithm does not err they, , = w7 forallr € 7.

pseudo-code summarizing the general mixing method is
Iglven in Fig. 3.

errs less than the multi-vector method while in the secon
half the multi-vector method outperforms the single-vecto
method. These effects can be explained in the light of ou
analysis. Our mistake bounds depend on a fixed complexFhe single-vector method is a special case of the general
ity term and on a loss term which depends on the numbemixing framework that can be derived by settiig =
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INPUT: Collection of indicator function§™ and pothesis defined by a set of vectdfs= {u” : 7 € 7}.
corresponding feature mappingg”™ : 7 € 7'} As in previous sections, our mistake bound takes the form

INITIALIZE: V1 =0 ; VT e T,w™ =0 M < L+C ++LC,whereL is the cumulative loss df*

Fort=1,2,... defined by Eq. (1) and' is the complexity of,* which we

now define. Lep be the maximal number of se$§ which

receive an instance; includer, that is,p = max,cy > ., 7(r). For example,

predict: §j; = argmax Z T(r) (W™, @7 (x¢,7)) in the single-vector and multi-vector methods the value of
_ SR p is one while in the hybrid method= 2. The complexity
receive correct labe); of h* is formally defined to be,
't o7 g andy € L C=pR Y |, ®)
forall 7 € T, er

W= W T(4) ¢ (X, ye) = T(G) T (X6, 90)  whereR = 2 maxy,., 7(r) |67 (Xe, )2 -
Ve = R0 {ue Theorem 1 Let ((x1,41),-- -, (X, ym)) € (R™ x V)™
be a sequence of examples and assume that this sequence
is presented to the general mixing algorithm given in Fig. 3.
Let h* be any competing hypothesis defined by a set of
weight vectord/ = {u” : 7 € T}. DefineL andC as
{rY} whererY(r) = 1 forallr € Y. Thus,S™ =Y  given by Eq. (1) and Eq. (8). Then, the number of predic-
and we obtain a single weight vecter which is shared tion mistakes the general mixing algorithm makes on the
by all the classes i). The multi-vector method can also sequence is upper bounded by,

Figure 3.The general mixing algorithm.

be derived from the general mixing framework by setting M < L+C+VLO .
T = {r" : r € Y}, wherer" (k) is one ifk = r and zero =
otherwise. We therefore associate a different weight vecpqof Let i, ... iy be the indices of trials in which the

tor with each label iny. In the multi-vector method, the - gjgorithm makes a prediction mistake. We prove the the-
value of@" (x, r) reduces tac. The hybrid method canbe  orem by constructing a sequence of vectdss, . . ., 4;,,
derived in a similar manner by a simple conjunction of thej, 4 Hilbert spacé, which satisfies the condition given in

above indicator functions. Lemma 1. For each € 7, the functiong” maps an in-

The algorithm from Fig. 3 can be adjusted to incorporateStancex; and a label- into a Hilbert space, denotefd™.
Mercer kernels. Note that each vectef can be repre- LetH =&, .+ H" be the product of these feature spaces.
sented as a sum of vectors of the forpi(x;,r) where LetVi = {vi € H" : 7 € T}andV, = {v; € H :
i < t. Furthermore, the inner-produé¢w™, ¢ (x¢,7)) T € 7T} be two vectors iri{. Then, the vector additiol;
can be rewritten as a sum of inner-products each takingndVz in H is defined ad’y + Vo = {vi + v} : 7 € T}
the form(¢” (x;, 7), ¢ (x',7')). We can replace the inner- and their inner-product 83’1, V2) = 3_ (v, v3). The
products in this sum with a general Mercer kernel operatorSetsW; = {.WtT T € T} andU = {u” : 7 € T}
K™ ((x¢,7),(x',7")), and leave the rest of the derivation aré Vectors irf{. For a trialt and a labelr € Y, de-
intact. The formal analysis presented in the sequel can bhe V" € H to be, V" = {7(r)¢"(x¢,7) : 7€ T}

extended verbatim and applied with Mercer kernels. Thus, the prediction of the algorithm can be rewritten as,
= argmax,cy, (W, V/") . Lett be atrial in which the

. - (1
We now t_urn to the analysis of f[he algorithm in Fig. 3. Ouralgorithm makes a prediction mistaki ¢ y: € V) and
analysis is based on the following lemma. defined, = V' — Vtyt_ From the definitions of, and 4,
and the fact that the algorithm makes a prediction mistake
on this trial we get thattW;, A;) < 0. In addition, the up-
date of the algorithm can be rewritten as a vector addition
in H, Wiy = Wy + A;. The definition of the hinge-loss
of h* gives that,

Lemmal Letay,...,ay be a sequence of vectors and

define R = max;|la;||2. Assume that for alli <

{1,...,M} we have that{w;,a;) < 0 wherew; =
‘_la;. Letu be an arbitrary vector and leC’ and

L be two scalars such that® = R?||u||?> and L >

M (1 (asu),. ThenM < L+C+VLC . G(h) = max(1-(U, VY=V,
The proof of this lemma can be derived from the analysis > (1 — (U, VY — Vﬁ‘))Jr =(1—(U,A)), -

of the Perceptron algorithm for binary classification given
in (Gentile, 2002), and is omitted due to the lack of space N€Xt, we upper bound the norm df as follows. For all,
Equipped with the above lemma we now prove a mistake Ivr|? = Z (1) |7 (xes ) |? < p(R/2)?.

bound for the algorithm. Leb* be any competing hy- B fer



Online Multiclass L earning by Interclass Hypothesis Sharing

Thus, dataset || m multi single hybrid
Enronl 101 1971 60.0 523 47.7
Al < [[V¥] + [ViP ]| < 2pR/2=\/pR . Enron2 25 3672 295 355 26.3
Enron3 41 4477  50.9 58.4 46.0
We can now apply Lemma 1 to the sequerge, . .., 4;,, Enrond 47 4015 484 53.6 42.5
in conjunction withU and obtain the mistake bound in the Enron5 11 2489 25.2 27.7 22.3
theorem. | Enron6 30 1188 30.2 23.7 21.8

Enron7 18 2769 4.84 354  3.35

Office 51 362 801 6.63 4.42

_ YaleB 30 1920 183 152 129

5. Experiments ISOLET 26 6238 12.7 852 908
LETTER 26 20000 11.8 167 11.4

In this section we present experimental results that demon-
Strate_ different aspects of our proposed framgwork. A"Table 1.The average number of online mistakes of the multi-
experiments Compare_ the multi-vector arld S|ngle—yect0(/ector method, the single-vector method, and the hybrid method
methods to the hybrid method. Our first experimentyp, various datasets. The datasets labeled Enron1-Enron?, corre-
was performed with the Enron email dataset (available agpond to email messages of the users beck-s, farmer-d, kaminski-
http://www.cs.umass.edufonb/datasets/enrditat.tar.gz). v, kitchen-l, lokay-m, sanders-r, and williams-w3 in the Enron
The task is to automatically classify email messages intalataset.
user defined folders. Thus, the instances in this dataset are
email messages while the set of classes is the email folders, . -
Note that the set of folders is not known in advance andsmgle—.vector ”.‘eth"d while for the remainingusers an

. te trend is apparent.
the user can define new folders on-the-fly. Therefore, our PPOS! P
online setting, in which the set of classes is revealed as th®ur second experiment was performed with a
online learning proceeds, naturally captures the essence dataset of office workspace images (available at
this email classification task. We represented each emafittp://www.cs.huji.ac.ik~fink/office.html). To moti-
message as a binary vectore {0,1}™ with a coordinate vate the learning task, imagine a robot that is required
for each word, so that; = 1 if the word corresponding to deliver packages in a large office building. Every day
to the indexi appears in the email message and zerahe robot must wander throughout the building and upon
otherwise. At each trial, we constructed class specificeaching a person’s desk, deliver the appropriate package.
mappingse(x;, r), for each class € )4, as follows. Let Here again the identity of the classes is not known in
IT = {i < t:y; = r} be the set of previous trials in which advance. An office complex withl different desks was
the class label is and defingp; to be the average instance selected for constructing the dataset. The dataset cantain

overlIy, 362 images of the different desks. Images were taken
1 4 9 while the camera was facing the desk typically away
br = |17 Z Xi - ©) from the target and at an approximate height 6in. The

el variation in the images due to changing pose and lighting

We defineg(x;, r) to be the vector irR™ whosei'th ele-  conditions suggests that a representation based on sets

ment is, of local descriptors might be suitable for our task. This
representation choice seems to be especially appropriate
2 xyy=1Ap;; >02 since the characteristic components of each workspace,

Gi(xe,r) =< —1 x4 =1A pg;i <0.02 . (10) e.g. a telephone, mug or briefcase, might appear in

0 otherwise any location within the image. We therefore chose a

representation of images which is based on SIFT key
That is,¢;(x:,7) = 2 if the word corresponding to index descriptors (Lowe, 2004). Similarly to email messages in
1 appears in the current email message and also appearstie Enron dataset, we represented each instance as a binary
at least fifth of the previously observed messages of clasgectorx € {0,1}" with a coordinate for each possible
r. If the word appears in the current message but is venSIFT key, wherer; = 1 if the SIFT key corresponding to
rare in previous messages of classheng; (x;,r) = —1. index: matches a SIFT key in the image As suggested
In all other casesg;(x,,t) = 0. We ran the various al- in the SIFT key literature, we declare a match between
gorithms on sequences of email messages ffousers. two SIFT keys if the Euclidean distance between them is
The results are summarized in Table 1. As can be seemignificantly lower than any other key extracted from the
the hybrid method consistently outperforms both the multi-image. The set of SIFT keys is incrementally constructed
vector and single-vector methods. It should also be notethy adding all the SIFT keys of each new image that were
that for 4 users the multi-vector method outperforms thenot matched with previous images in the sequence of
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examples. As in the Enron dataset, we used the classf class labels. Our analysis and experiments indicate that
specific mapping given in Eqg. (10). The performance ofthe proposed framework is a viable alternative to the com-
the various algorithms on the office dataset is given inmon multiclass learning approaches. The hypothesis shar-
Table 1. Here too the hybrid method outperforms the otheing approach relies heavily on the set of indicator function
two alternatives. It should be noted that similar resules ar defined by7 . In certain applications, it is natural to assume
obtained when averaging the performance of the algorithnthat these indicator functions are provided in advance. For
over different permutations of the examples in the datasetexample, in the beetle recognition task, a functioffinan
'%ndicate whether a beetle is a member of the set of desert
dwelling beetles. In the specific case where the set of indi-

. i S . ) cator functions? reflects a hierarchical structure, the gen-
various illumination conditions. Following (Hertz et al.,

2004), we automatically centered all images using opticaFral mixing model can be viewed as a generalization of the

) LS {nodel described in (Dekel et al., 2004). In general, the
flow and converted each image to a vector using its flrsmdicator functions might not be provided in advance and
60 PCA coefficients. We normalized the resulting vec- 9 ¥

tors so that the standard deviation of each coordinate ngs, leamingT is a worthwhile challenge which is dif-
an instance will bd. For the single-vector method we de- ered to future work.
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