
Online Multiclass Learning by Interclass Hypothesis Sharing

Michael Fink FINK@CS.HUJI.AC.IL

Center for Neural Computation, The Hebrew University, Israel

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

School of Computer Science & Engineering, The Hebrew University, Israel

Yoram Singer SINGER@CS.HUJI.AC.IL

Google Inc., USA

Shimon Ullman SHIMON.ULLMAN @WEIZMANN .AC.IL

Weizmann institute, Israel

Abstract

We describe a general framework for online mul-
ticlass learning based on the notion of hypoth-
esis sharing. In our framework sets of classes
are associated with hypotheses. Thus, all classes
within a given set share the same hypothesis.
This framework includes as special cases com-
monly used constructions for multiclass catego-
rization such as allocating a unique hypothesis
for each class and allocating a single common
hypothesis for all classes. We generalize the mul-
ticlass Perceptron to our framework and derive a
unifying mistake bound analysis. Our construc-
tion naturally extends to settings where the num-
ber of classes is not known in advance but rather
is revealed along the online learning process. We
demonstrate the merits of our approach by com-
paring it to previous methods on both synthetic
and natural datasets.

1. Introduction

A Zoologist in a research expedition is required to identify
beetle species. There are over350, 000 different known
beetle species and new species are being discovered all the
time. In this paper we describe, analyze, and experiment
with a framework for multiclass learning aimed at address-
ing our Zoologist’s classification task. In the multiclass
problem we discuss, the learner is required to make pre-
dictions on-the-fly while the identity of the target classesis

Appearing inProceedings of the23 rd International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

incrementally revealed as the learning proceeds. We thus
useonline learning as the learning apparatus and analyze
our algorithms within the mistake bound model. In online
learning we observe instances in a sequence of trials. After
each observation, we need to predict the class of the ob-
served instance. To do so, we maintain a hypothesis which
scores each of the candidate classes and the predicted label
is the one attaining the highest score. Once a prediction is
made, we receive the correct class label. Then, we may up-
date our hypothesis in order to improve the chance of mak-
ing an accurate prediction on subsequent trials. Our goal is
to minimize the number of online prediction mistakes.

Our solution builds on two commonly used constructions
for multiclass categorization problems. The first dedicates
an individual hypothesis for each target class (Duda & Hart,
1973; Vapnik, 1998) and is common in applications where
the input instance is class independent. We refer to this
construction as themulti-vectormodel. The second con-
struction, abbreviated as thesingle-vectormodel, main-
tains a single hypothesis shared by all the classes while
the input is class dependent. The latter construction is
used in generalized additive models (Hastie & Tibshirani,
1995), boosting algorithms (Freund & Schapire, 1997), and
structured multiclass problems (Collins, 2002). A common
thread of the single-vector and the multi-vector models is
that both were developed under the assumption that the set
of target classes is known in advance. One of the goals of
this paper is to provide a unified framework which encom-
passes these two models as special cases while lifting the
requirement that the set of classes is known before learning
takes place.

In the multiclass learning paradigm we study in this pa-
per, sets of classes are associated with hypotheses. Thus,
all classes within a given set share the same hypothe-

Online Multiclass Learning by Interclass Hypothesis Sharing

sis. This framework naturally includes as special cases
the two models discussed above. After introducing our
new multiclass learning framework, we describe a gener-
alization of the Perceptron algorithm (Rosenblatt, 1958)
to our framework and derive a unifying mistake bound
analysis. Our construction naturally extends to settings
where the number of classes is not known in advance but
rather revealed along the online learning process. The
analysis we present is applicable to both the single-vector
model and the multi-vector model and underscores a nat-
ural complexity-performance tradeoff. The complexity of
the multi-vector model increases linearly with the number
of classes while the model complexity of the single-vector
approach is invariant to the number of classes. However,
the higher complexity of the multi-vector model is occa-
sionally necessary for achieving more accurate predictions.

The generalized Perceptron algorithm we derive can be
viewed as an automatic mixing mechanism between the
single-vector and the multi-vector models, as well as any
model that shares hypotheses between classes. The per-
formance of the generalized Perceptron is competitive with
any hypothesis sharing model and in particular the single
and multi vector models. Our construction also allows to
share features across classes via a feature mapping mecha-
nism. For example, our dextrous Zoologist can share fea-
ture mappings and hypotheses between groups of classes
such as desert dweller beetles or terrestrial beetles. While
our framework is especially appealing in settings where the
classes are revealed on-the-fly, it can be used verbatim in
standard multiclass problems. We illustrate the merits of
our hypotheses sharing framework in a series of experi-
ments with synthetic and natural datasets.

2. Problem Setting

Online learning is performed in a sequence of trials. At
trial t the algorithm first receives an instancext ∈ R

n and
is required to predict a class label associated with that in-
stance. The set of all possible labels constitutes a finite set
denoted byY. Most if not all online classification algo-
rithms assume thatY is known in advance. In contrast, in
our setting the setY is incrementally revealed as the on-
line learning proceeds. We denote byYt the set of unique
labels observed on rounds1 throught − 1. After the on-
line learning algorithm predicts the classŷt, the true class
yt ∈ Y is revealed and the set of known classes is updated
accordingly,Yt+1 = Yt ∪ {yt}. We say that the algorithm
makes a prediction mistake if̂yt 6= yt and the classyt is not
a novel class,yt ∈ Yt. We thus exclude from our mistake
analysis all the rounds on which a label is observed for the
first time. The goal of the algorithm is to minimize the total
number of prediction mistakes it makes, denoted byM . To
achieve this goal, the algorithm may update its prediction

mechanism at the end of each trial.

The prediction of the algorithm at trialt is determined by
a hypothesis,ht : R

n × Y → R, which induces a score
for each of the possible classes inY. The predicted label
is defined as,̂yt = arg maxr∈Yt

ht(xt, r) . To evaluate
the performance of a hypothesish on the example(xt, yt)
we need to check whetherh makes a prediction mistake,
namely determine if̂yt 6= yt ∈ Yt. To derive bounds on
prediction mistakes we use a second way for evaluating the
performance ofh which is based on the multiclasshinge-
lossfunction, defined as follows. If the current class is not
novel (yt ∈ Yt), then we set

ℓt(h) =

(

1− h(xt, yt) + max
r∈Yt\{yt}

h(xt, r)

)

+

,

where(a)+ = max{a, 0}. Since in our setting the algo-
rithm is not penalized for the first instance of each class,
we simply setℓt(h) = 0 wheneveryt /∈ Yt. The term
h(xt, yt) − maxr h(xt, r) in the definition of the hinge-
loss is a generalization of the notion ofmargin from bi-
nary classification. The hinge-loss penalizes a hypothesis
for any margin less than1. Additionally, if ŷt 6= yt then
ℓt(h) ≥ 1. Thus, thecumulative hinge-losssuffered over a
sequence of examples upper bounds the number of predic-
tion mistakes,M .

Recall that the prediction on each trial is based on a hy-
pothesis which is a function fromRn × Y into the reals.
In this paper we focus on hypotheses which are parameter-
ized by weight vectors. A common construction (Duda &
Hart, 1973; Vapnik, 1998; Crammer & Singer, 2003) of a
hypothesis space is the set of functions parameterized by
|Y| vectorsW = {wr : r ∈ Y} where,

h(x, r) = 〈wr,x〉 .

That is, h associates a different weight vector with each
class and the prediction at trialt is,

ŷt = argmax
r∈Yt

〈wr
t ,xt〉 .

To obtain a concrete online learning algorithm we must de-
termine the initial value of each weight vector and the up-
date rule used to modify the weight vectors at the end of
each trial. Following Kesler’s construction (Duda & Hart,
1973; Crammer & Singer, 2003), we address the multiclass
setting using a Perceptron update. The multiclass Percep-
tron algorithm initializes all the weight vectors to be zero.
On trial t, if the algorithm makes a prediction mistake,
ŷt 6= yt ∈ Yt, then the weight vectors are updated as fol-
lows,

w
yt

t+1 = w
yt

t + xt , w
ŷt

t+1 = w
ŷt

t − xt ,

Online Multiclass Learning by Interclass Hypothesis Sharing

and wr
t+1 = wr

t for all r ∈ Yt \ {yt, ŷt}. In words,
we add the instancext to the weight vector of the cor-
rect class and subtractxt from the weight vector of the
(wrongly) predicted class. We would like to note in passing
that other Perceptron-style updates can be devised for mul-
ticlass problems (Crammer & Singer, 2003). Finally, if we
do not make a prediction mistake then the weight vectors
are kept intact. We refer to the above construction as the
multi-vector method.

Several mistake bounds have been derived for the multi-
vector method. In this paper we obtain the following mis-
take bound, which follows as a corollary from our anal-
ysis in Sec. 4. Let(x1, y1), . . . , (xm, ym) be a sequence
of examples and defineR = 2maxt ‖xt‖2. Let h⋆ be
a fixed hypothesis defined by any set of weight vectors
U = {ur : r ∈ Y}. We denote by

L =

m
∑

t=1

ℓt(h
⋆) , (1)

the cumulative hinge-loss ofh⋆ over the sequence of exam-
ples and by

C = R2
∑

r∈Y

‖ur‖2 , (2)

thecomplexityof h⋆. Then the number of prediction mis-
takes of the multi-vector method is at most,

M ≤ L + C +
√

LC . (3)

The mistake bound in Eq. (3) consists of three terms: the
loss of h⋆, the complexity ofh⋆, and a sub-linear term
which is often negligible. We would like to underscore that
the complexity term increases with the number of classes
since we have a different weight vector for each class.

We now describe an alternative construction and an ac-
companying learning algorithm which maintains asingle-
vector. We show in the sequel that the second construction
entertains a mistake bound of the form given in Eq. (3).
However, the complexity term in this bound does not in-
crease with the number of classes, in contrast to the com-
plexity term for the multi-vector method given in Eq. (2).
The second multiclass construction uses asingle weight
vector, denotedw, for all the classes, paired with a class-
specific feature mapping,φ : R

n × Y → R
d. That is, the

score given by a hypothesish for classr is,

h(x, r) = 〈w,φ(x, r)〉 .

We denote bywt the single weight vector of the algorithm
at trial t and its prediction is thus,

ŷt = argmax
r∈Yt

〈wt,φ(x, r)〉 .

This construction is common in generalized additive mod-
els (Hastie & Tibshirani, 1995), multiclass versions of

boosting (Freund & Schapire, 1997), and has been popu-
larized lately due to its role in prediction with structured
output where the number of classes is exponentially large
(Collins, 2002; Taskar et al., 2003; Tsochantaridis et al.,
2004; Shalev-Shwartz et al., 2004). Following a simple
Perceptron-based mechanism we initializew1 = 0 and
only updatew if we have a prediction mistake,̂yt 6= yt ∈
Yt. The update takes the form,

wt+1 = wt + φ(xt, yt)− φ(xt, ŷt) .

We refer to the above construction as the single-vector
method.

The single-vector method is based on a class specific fea-
ture mappingφ. Usually, this class specific mapping relies
on an a-priori knowledge of the set of possible classesY.
This paper emphasizes the setting where the identity of the
target classes is incrementally revealed only during the on-
line stream. SinceY is not known a-priori, we apply a class
specific feature mapping which isdata dependent. For each
classr ∈ Y, let pr ∈ R

n be the first instance of classr in
the sequence of examples. We defineφ(xt, r) to be the
vector inR

n whosei’th element is,

φi(xt, r) = xt,i pr
i . (4)

That is, φ(xt, r) is the coordinate-wise product between
xt andpr. In Sec. 5 we describe additional data-dependent
constructions ofφ.

A relative mistake bound can also be derived for the
single-vector method. Specifically, in Sec. 4 we show
that the bound in Eq. (3) holds where nowR =
2maxt,r ‖φ(xt, r)‖2, the competing hypothesish⋆ is pa-
rameterized by anysingleweight vectoru, and the com-
plexity of h⋆ is,

C = R2‖u‖2 . (5)

The complexity term for the single-vector method does not
increase with the number of classes, in contrast to the com-
plexity term for the multi-vector method given in Eq. (2).
However, the value of the cumulative loss,L, in the multi-
vector method is upper bounded by the cumulative loss in
the single-vector method. This follows from the fact that
the hypotheses space employed by the multi-vector method
is richer than that of the single-vector method. To see this,
note that given any single weight vectoru, we can con-
struct the set of multiple weight vectorsU = {ur : r ∈ Y}
whereur

i = uip
r
i . Using this construction we observe that

〈u,φ(xt, r)〉 = 〈ur,xt〉 and therefore the cumulative loss
of u in the single-vector method equals to the cumulative
loss ofU = {ur : r ∈ Y} in the multi-vector method.

The prevailing question is which of the two approaches
would perform better in practical applications. Indeed, our

Online Multiclass Learning by Interclass Hypothesis Sharing

0 2000 4000 6000 8000
0

200

400

600

800

1000

trial

M
is

ta
ke

s
Multi
Single
Hybrid

0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

trial

M
is

ta
ke

s

Multi
Single
Hybrid

Figure 1.The number of mistakes of the single-vector and the
multi-vector methods described in Sec. 2, and a hybrid method
described in Sec. 3 on two synthetic datasets.

experiments indicate that on certain datasets the single-
vector method outperforms the multi-vector approach
while on other datasets an opposite effect is exhibited and
the richer model complexity of the multi-vector method is
necessary. One of the main contributions of this paper is a
mixing method, whose performance on any dataset is com-
petitive with the best of the aforementioned alternatives.

To illustrate the difference between the single-vector and
multi-vector methods we have constructed two synthetic
datasets. Both datasets contain8, 000 instances from
{−1, 1}64 and the set of classes isY = {0, . . . , 15}. In the
first dataset, the class of an instancex is the value of the
binary number(x1, x2, x3, x4). In the second dataset, the
class of an instancex is r if x4r+1 = . . . = x4r+4 = 1 (we
made sure that for each instance, only one class satisfies
the above). We presented both datasets to the single-vector
and multi-vector methods. The cumulative number of mis-
takes of the two algorithms as a function of the trial number
is depicted in Fig. 1. As can be seen from the figure, the
single-vector method clearly outperforms the multi-vector
method on the first dataset while the opposite phenomenon
is exhibited in the second dataset. This difference can be at-
tributed to the interplay between the loss and the complex-
ity terms in our mistake bounds. Indeed, in the first dataset,
the single-vector model is capable of achieving zero cumu-
lative loss by setting the first4 elements ofu to be 1

2 and
the rest to be zero. Our mistake bound for the single-vector
method reduces to2 · 64 · 1 = 128. In contrast, the mis-
take bound for the multi-vector method is16 times higher
and equals to2048. In the second dataset, the single-vector
model is not rich enough for perfectly predicting the cor-
rect labels. Therefore, the number of mistakes sustained by
the single-vector method increases linearly with the num-
ber of examples. In this dataset, the opulent complexity of
the multi-vector method is beneficial.

3. Mixing the single and multi vector methods

In this section we describe ahybrid method whose perfor-
mance on any dataset is competitive with the best of the
two alternative multiclass approaches described in the pre-
vious section. Moreover, we show that on certain datasets

the hybrid method outperforms both the single-vector and
multi-vector methods.

The hypotheses of the hybrid method are parameterized by
a set of|Y| + 1 weight vectors. As in the single-vector
method we maintain one weight vector, denotedwY , which
is shared among all classes inY. As in the multi-vector
method the remaining|Y| weight vectors are specific to
each of the classes. The score ofh for classr is,

h(x, r) = 〈wY ,φ(x, r)〉+ 〈wr,x〉 .

We denote by{wY
t } ∪ {wr

t : r ∈ Yt} the weight vectors
of the algorithm at trialt and its prediction is thus,

ŷt = argmax
r∈Yt

(

〈wY
t ,φ(xt, r)〉 + 〈wr

t ,xt〉
)

.

We now describe a Perceptron-style update for the hybrid
method. Initially, all the weight vectors are set to zero. On
trial t, the weight vectors are updated only if the algorithm
made a prediction mistake (ŷt 6= yt ∈ Yt) by using the
update rule,

wY
t+1 = wY

t + φ(xt, yt) − φ(xt, ŷt) ,

w
yt

t+1 = w
yt

t + xt ,

w
ŷt

t+1 = w
ŷt

t − xt ,

and for allr ∈ Yt \ {yt, ŷt}, wr
t+1 = wr

t .

A relative mistake bound can be proven for the hybrid
method as well. In particular, in Sec. 4 we show that a
bound of the same form given in Eq. (3) holds for the hy-
brid method. That is, given a hypothesish⋆, parameterized
by any set of vectorsU = {uY} ∪ {ur : r ∈ Y}, the fol-
lowing bound holds,M ≤ L + C +

√
LC, whereC is

defined to be,

C = 2R2

(

‖uY‖2 +
∑

r∈Y

‖ur‖2
)

, (6)

andR is now the maximal value between2maxt ‖xt‖ and
2maxt,r ‖φ(xt, r)‖2.

We now compare the above mistake bound of the hybrid
method to the mistake bounds of the single-vector and
multi-vector methods. The cumulative loss of the hybrid
method is bounded above by both the loss of the single-
vector method and the loss of the multi-vector method.
This follows directly from the fact that the hypothesis space
of the hybrid method includes both the hypothesis space
of the single-vector method and that of the multi-vector
method. To facilitate a clear comparison of the complexity
term, let us assume thatmaxt ‖xt‖ = maxt,r ‖φ(xt, r)‖
and thus the value ofR for all methods is identical. This
equality indeed holds for the datasets described in Sec. 2.
Moreover, if the norm ofφ is not restricted relatively to

Online Multiclass Learning by Interclass Hypothesis Sharing

0 2000 4000 6000 8000
0

200

400

600

800

1000

1200

1400

1600

1800

trial

M
is

ta
ke

s

Multi
Single
Hybrid

Figure 2.The number of mistakes of the hybrid method, the
single-vector method, and the multi-vector method on the third
synthetic dataset.

‖xt‖ and is allowed to grow with the number of classes
then by concatenating class vectors we can reduce the
multi-vector method to the single-vector method. There-
fore, throughout the paper we focus on constructions in
which the norm ofφ is of the same order of magnitude of
‖xt‖. Equipped with this assumption we note that the com-
plexity term of the hybrid method is at most twice the min-
imum between the complexity of the single-vector method
and the multi-vector method.

In Fig. 1 we compare the performance of the hybrid method
to the performance of the single-vector and the multi-vector
methods on the two synthetic datasets described in Sec. 2.
As expected, the performance of the hybrid method is com-
parable to the best of the two alternatives. The two syn-
thetic datasets we constructed in Sec. 2 represent two ex-
tremes: the relevant components for each class are ei-
ther common (first dataset) or completely disjoint (sec-
ond dataset). In practical situations, it might be the case
that while most of the classes share the same relevant di-
mensions several of the classes might depend on other di-
mensions. For example, if the task in hand is bird clas-
sification, the features used in recognizing most birds are
common but are not applicable to penguins. To illus-
trate this point we have generated a third dataset as fol-
lows. As in our previous datasets, we chose8, 000 in-
stances from{+1,−1}64 and the set of classes was set to
Y = {0, . . . , 15}. Instances of the first15 classes have
been generated as in the first dataset, that is, the class la-
bel was the value of the binary number(x1, . . . , x4). In-
stances of the last class (r = 15) were generated as in
the second dataset by settingx61 = . . . = x64 = 1.
We have presented this dataset to the hybrid method and
to the single-vector and multi-vector methods. The per-
formance of the different algorithms is depicted in Fig. 2.
It is clear from the figure that the hybrid method outper-
forms the two alternatives. It should also be noted that in
the first half of the input sequence the single-vector method
errs less than the multi-vector method while in the second
half the multi-vector method outperforms the single-vector
method. These effects can be explained in the light of our
analysis. Our mistake bounds depend on a fixed complex-
ity term and on a loss term which depends on the number

of trials. The complexity term in the bound of the multi-
vector method is higher than the complexity term in the
bound of the single-vector method while an opposite trend
characterizes the loss term.

4. A general mixing framework

In the previous sections we described the single-vector
method, the multi-vector method and the hybrid method.
In this section we propose a general mixing framework of
which the above three methods are special cases. We also
utilize this framework for deriving new mixing algorithms.
Finally, we provide a unified analysis for our general mix-
ing framework and in particular obtain the mistake bounds
for the three methods described in previous sections.

Our general mixing framework assumes the existence of a
collection of indicator functions, denotedT , where each
τ ∈ T is a function fromY into {0, 1}. Thus, each func-
tion τ corresponds to the setSτ = {r ∈ Y : τ(r) = 1},
which includes all the classes inY for which τ(r) = 1.
The hypotheses of the general mixing framework are pa-
rameterized by a set of|T | weight vectors. For eachτ ∈ T
we maintain one weight vector,wτ , which is shared among
all classes inSτ . In addition, we assume that there exists
a feature mapping functionφτ (x, r) for eachτ ∈ T . The
score given by a hypothesish for classr is,

h(x, r) =
∑

τ∈T

τ(r) 〈wτ ,φτ (x, r)〉 . (7)

We denote by{wτ
t : τ ∈ T } the weight vectors of the

algorithm at trialt and its prediction is thus,

ŷt = argmax
r∈Yt

∑

τ∈T

τ(r) 〈wτ ,φτ (x, r)〉 .

In our beetle recognition example, a functionτ ∈ T might
indicate whether a beetle is a desert dweller. This infor-
mation is known before a zoologist might encounter a new
species and is beneficial for transferring representational
knowledge from previously learned distinctions.

We now describe a Perceptron-style update for the general
mixing framework. Initially, all the weight vectors are set
to zero. If there was a prediction mistake on trialt, ŷt 6=
yt ∈ Yt, then we update each of the vectors in{wτ : τ ∈
T } as follows,

wτ
t+1 = wτ

t + τ(yt)φτ (xt, yt)− τ(ŷt)φτ (xt, ŷt) .

If the algorithm does not err thenwτ
t+1 = wτ

t for all τ ∈ T .
A pseudo-code summarizing the general mixing method is
given in Fig. 3.

The single-vector method is a special case of the general
mixing framework that can be derived by settingT =

Online Multiclass Learning by Interclass Hypothesis Sharing

INPUT: Collection of indicator functionsT and
corresponding feature mappings{φτ : τ ∈ T }

INITIALIZE : Y1 = ∅ ; ∀τ ∈ T ,wτ = 0

For t = 1, 2, . . .

receive an instancext

predict: ŷt = argmax
r∈Yt

∑

τ∈T

τ(r) 〈wτ ,φτ (xt, r)〉

receive correct labelyt

If ŷt 6= yt andyt ∈ Yt

forall τ ∈ T ,

wτ ← wτ + τ(yt)φτ (xt, yt)− τ(ŷt)φτ (xt, ŷt)

Yt+1 = Yt ∪ {yt}

Figure 3.The general mixing algorithm.

{τY} whereτY(r) = 1 for all r ∈ Y. Thus,SτY

= Y
and we obtain a single weight vectorwτY

which is shared
by all the classes inY. The multi-vector method can also
be derived from the general mixing framework by setting
T = {τ r : r ∈ Y }, whereτ r(k) is one ifk = r and zero
otherwise. We therefore associate a different weight vec-
tor with each label inY. In the multi-vector method, the
value ofφτ (x, r) reduces tox. The hybrid method can be
derived in a similar manner by a simple conjunction of the
above indicator functions.

The algorithm from Fig. 3 can be adjusted to incorporate
Mercer kernels. Note that each vectorwτ can be repre-
sented as a sum of vectors of the formφτ (xi, r) where
i < t. Furthermore, the inner-product〈wτ ,φτ (xt, r)〉
can be rewritten as a sum of inner-products each taking
the form〈φτ (xt, r),φ

τ (x′, r′)〉. We can replace the inner-
products in this sum with a general Mercer kernel operator,
Kτ ((xt, r), (x

′, r′)), and leave the rest of the derivation
intact. The formal analysis presented in the sequel can be
extended verbatim and applied with Mercer kernels.

We now turn to the analysis of the algorithm in Fig. 3. Our
analysis is based on the following lemma.

Lemma 1 Let a1, . . . ,aM be a sequence of vectors and
define R = maxi ‖ai‖2. Assume that for alli ∈
{1, . . . ,M} we have that〈wi,ai〉 ≤ 0 where wi =
∑i−1

t=1 ai. Let u be an arbitrary vector and letC and
L be two scalars such thatC = R2‖u‖2 and L ≥
∑M

i=1 (1− 〈ai,u〉)+. Then,M ≤ L + C +
√

LC .

The proof of this lemma can be derived from the analysis
of the Perceptron algorithm for binary classification given
in (Gentile, 2002), and is omitted due to the lack of space.
Equipped with the above lemma we now prove a mistake
bound for the algorithm. Leth⋆ be any competing hy-

pothesis defined by a set of vectorsU = {uτ : τ ∈ T }.
As in previous sections, our mistake bound takes the form
M ≤ L+C +

√
LC, whereL is the cumulative loss ofh⋆

defined by Eq. (1) andC is the complexity ofh⋆ which we
now define. Letρ be the maximal number of setsSτ which
includer, that is,ρ = maxr∈Y

∑

τ∈T τ(r). For example,
in the single-vector and multi-vector methods the value of
ρ is one while in the hybrid methodρ = 2. The complexity
of h⋆ is formally defined to be,

C = ρR2
∑

τ∈T

‖uτ‖2 , (8)

whereR = 2 maxt,r,τ τ(r) ‖φτ (xt, r)‖2 .

Theorem 1 Let ((x1, y1), . . . , (xm, ym)) ∈ (Rn × Y)m

be a sequence of examples and assume that this sequence
is presented to the general mixing algorithm given in Fig. 3.
Let h⋆ be any competing hypothesis defined by a set of
weight vectorsU = {uτ : τ ∈ T }. DefineL and C as
given by Eq. (1) and Eq. (8). Then, the number of predic-
tion mistakes the general mixing algorithm makes on the
sequence is upper bounded by,

M ≤ L + C +
√

LC .

Proof Let i1, . . . , iM be the indices of trials in which the
algorithm makes a prediction mistake. We prove the the-
orem by constructing a sequence of vectorsAi1 , . . . , AiM

in a Hilbert spaceH, which satisfies the condition given in
Lemma 1. For eachτ ∈ T , the functionφτ maps an in-
stancext and a labelr into a Hilbert space, denotedHτ .
LetH =

⊗

τ∈T Hτ be the product of these feature spaces.
Let V1 = {vτ

1 ∈ Hτ : τ ∈ T } andV2 = {vτ
2 ∈ Hτ :

τ ∈ T } be two vectors inH. Then, the vector additionV1

andV2 in H is defined asV1 + V2 = {vτ
1 + vτ

2 : τ ∈ T }
and their inner-product as〈V1, V2〉 =

∑

τ∈T 〈vτ
1 ,vτ

2 〉. The
setsWt = {wτ

t : τ ∈ T } and U = {uτ : τ ∈ T }
are vectors inH. For a trial t and a labelr ∈ Y, de-
fine V r

t ∈ H to be, V r
t = {τ(r)φτ (xt, r) : τ ∈ T }.

Thus, the prediction of the algorithm can be rewritten as,
ŷt = arg maxr∈Yt

〈Wt, V
r
t 〉 . Let t be a trial in which the

algorithm makes a prediction mistake (ŷt 6= yt ∈ Yt) and
defineAt = V yt

t − V ŷt

t . From the definitions of̂yt andAt

and the fact that the algorithm makes a prediction mistake
on this trial we get that,〈Wt, At〉 ≤ 0. In addition, the up-
date of the algorithm can be rewritten as a vector addition
in H, Wt+1 = Wt + At. The definition of the hinge-loss
of h⋆ gives that,

ℓt(h
⋆) = max

r 6=yt

(1− 〈U, V yt

t − V r
t 〉)+

≥
(

1− 〈U, V yt

t − V ŷt

t 〉
)

+
= (1− 〈U,At〉)+ .

Next, we upper bound the norm ofAt as follows. For allr,

‖V r
t ‖2 =

∑

τ∈T

τ(r) ‖φτ (xt, r)‖2 ≤ ρ (R/2)2 .

Online Multiclass Learning by Interclass Hypothesis Sharing

Thus,

‖At‖ ≤ ‖V yt

t ‖+ ‖V ŷt

t ‖ ≤ 2
√

ρ R/2 =
√

ρ R .

We can now apply Lemma 1 to the sequenceAi1 , . . . , AiM

in conjunction withU and obtain the mistake bound in the
theorem.

5. Experiments

In this section we present experimental results that demon-
strate different aspects of our proposed framework. All
experiments compare the multi-vector and single-vector
methods to the hybrid method. Our first experiment
was performed with the Enron email dataset (available at
http://www.cs.umass.edu/∼ronb/datasets/enronflat.tar.gz).
The task is to automatically classify email messages into
user defined folders. Thus, the instances in this dataset are
email messages while the set of classes is the email folders.
Note that the set of folders is not known in advance and
the user can define new folders on-the-fly. Therefore, our
online setting, in which the set of classes is revealed as the
online learning proceeds, naturally captures the essence of
this email classification task. We represented each email
message as a binary vectorx ∈ {0, 1}n with a coordinate
for each word, so thatxi = 1 if the word corresponding
to the index i appears in the email message and zero
otherwise. At each trial, we constructed class specific
mappingsφ(xt, r), for each classr ∈ Yt, as follows. Let
Ir
t = {i < t : yi = r} be the set of previous trials in which

the class label isr and definepr
t to be the average instance

overIr
t ,

pr
t =

1

|Ir
t |
∑

i∈Ir
t

xi . (9)

We defineφ(xt, r) to be the vector inRn whosei’th ele-
ment is,

φi(xt, r) =







2 xt,i = 1 ∧ pr
t,i ≥ 0.2

−1 xt,i = 1 ∧ pr
t,i ≤ 0.02

0 otherwise
. (10)

That is,φi(xt, r) = 2 if the word corresponding to index
i appears in the current email message and also appears in
at least fifth of the previously observed messages of class
r. If the word appears in the current message but is very
rare in previous messages of classr, thenφi(xt, r) = −1.
In all other cases,φi(xr, t) = 0. We ran the various al-
gorithms on sequences of email messages from7 users.
The results are summarized in Table 1. As can be seen,
the hybrid method consistently outperforms both the multi-
vector and single-vector methods. It should also be noted
that for 4 users the multi-vector method outperforms the

dataset |Y| m multi single hybrid
Enron1 101 1971 60.0 52.3 47.7
Enron2 25 3672 29.5 35.5 26.3
Enron3 41 4477 50.9 58.4 46.0
Enron4 47 4015 48.4 53.6 42.5
Enron5 11 2489 25.2 27.7 22.3
Enron6 30 1188 30.2 23.7 21.8
Enron7 18 2769 4.84 3.54 3.35
Office 51 362 8.01 6.63 4.42
YaleB 30 1920 18.3 15.2 12.9

ISOLET 26 6238 12.7 8.52 9.08
LETTER 26 20000 11.8 16.7 11.4

Table 1.The average number of online mistakes of the multi-
vector method, the single-vector method, and the hybrid method
on various datasets. The datasets labeled Enron1-Enron7, corre-
spond to email messages of the users beck-s, farmer-d, kaminski-
v, kitchen-l, lokay-m, sanders-r, and williams-w3 in the Enron
dataset.

single-vector method while for the remaining3 users an
opposite trend is apparent.

Our second experiment was performed with a
dataset of office workspace images (available at
http://www.cs.huji.ac.il/∼fink/office.html). To moti-
vate the learning task, imagine a robot that is required
to deliver packages in a large office building. Every day
the robot must wander throughout the building and upon
reaching a person’s desk, deliver the appropriate package.
Here again the identity of the classes is not known in
advance. An office complex with51 different desks was
selected for constructing the dataset. The dataset contains
362 images of the different desks. Images were taken
while the camera was facing the desk typically1m away
from the target and at an approximate height of1.5m. The
variation in the images due to changing pose and lighting
conditions suggests that a representation based on sets
of local descriptors might be suitable for our task. This
representation choice seems to be especially appropriate
since the characteristic components of each workspace,
e.g. a telephone, mug or briefcase, might appear in
any location within the image. We therefore chose a
representation of images which is based on SIFT key
descriptors (Lowe, 2004). Similarly to email messages in
the Enron dataset, we represented each instance as a binary
vector x ∈ {0, 1}n with a coordinate for each possible
SIFT key, wherexi = 1 if the SIFT key corresponding to
index i matches a SIFT key in the imagex. As suggested
in the SIFT key literature, we declare a match between
two SIFT keys if the Euclidean distance between them is
significantly lower than any other key extracted from the
image. The set of SIFT keys is incrementally constructed
by adding all the SIFT keys of each new image that were
not matched with previous images in the sequence of

Online Multiclass Learning by Interclass Hypothesis Sharing

examples. As in the Enron dataset, we used the class
specific mapping given in Eq. (10). The performance of
the various algorithms on the office dataset is given in
Table 1. Here too the hybrid method outperforms the other
two alternatives. It should be noted that similar results are
obtained when averaging the performance of the algorithm
over different permutations of the examples in the dataset.

Our next experiment was performed with the YaleB dataset
containing1920 face images of30 different people under
various illumination conditions. Following (Hertz et al.,
2004), we automatically centered all images using optical
flow and converted each image to a vector using its first
60 PCA coefficients. We normalized the resulting vec-
tors so that the standard deviation of each coordinate of
an instance will be1. For the single-vector method we de-
fined φi(xt, r) = |xt,i − pr

t,i|, wherept
r is as defined in

Eq. (9). The performance of the three methods is given in
Table 1. The single-vector method outperforms the multi-
vector method while the hybrid method achieves the best
results.

Our last experiment was performed with two standard mul-
ticlass datasets: ISOLET and LETTER taken from the UCI
repository. Here, we implemented the various algorithms
using Mercer kernels. The classes in both datasets are the
26 English letters. However, the instances are represented
in two different modalities: the ISOLET instances encode
auditory recordings of subjects pronouncing the names of
the26 letters, while the LETTER instances encode features
derived from black and white images of the26 uppercase
letters. For the multi-vector method we used a Gaussian
kernel. The value ofσ was set to0.16 for the ISOLET
dataset and to0.07 for the LETTER dataset. In the single-
vector method we define the kernel,

K((xt, r), (xj , s)) = e−
1

2σ
‖(xt−p

r
t)−(xj−p

s
j)‖2

, (11)

wherepr
t is as defined in Eq. (9) andσ was again0.16

for ISOLET and0.07 for LETTER. As can be seen in
Table 1, the multi-vector method outperforms the single-
vector method on LETTER while an opposite trend is ap-
parent on ISOLET. This experiment emphasizes the fact
that although the classes are known a-priori, we cannot de-
termine in advance which of the two methods will be better.
The hybrid method is comparable to the best of the two al-
ternatives and thus relieves us from the necessity to make
an early choice between the multi-vector and single-vector
methods.

6. Discussion

In this paper we introduced a framework for online multi-
class learning by hypothesis sharing. We described the hy-
pothesis sharing model which, together with a feature map-
ping mechanism, enables learning without prior knowledge

of class labels. Our analysis and experiments indicate that
the proposed framework is a viable alternative to the com-
mon multiclass learning approaches. The hypothesis shar-
ing approach relies heavily on the set of indicator functions
defined byT . In certain applications, it is natural to assume
that these indicator functions are provided in advance. For
example, in the beetle recognition task, a function inT can
indicate whether a beetle is a member of the set of desert
dwelling beetles. In the specific case where the set of indi-
cator functionsT reflects a hierarchical structure, the gen-
eral mixing model can be viewed as a generalization of the
model described in (Dekel et al., 2004). In general, the
indicator functions might not be provided in advance and
thus, learningT is a worthwhile challenge which is dif-
fered to future work.
Acknowledgments This work was supported by Grant 7-0369
from the Israeli Science Foundation and by EU IST Grant FP6-
2005-015803

References
Collins, M. (2002). Discriminative training methods for hidden

markov models: Theory and experiments with perceptron al-
gorithms.EMLNP.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algo-
rithms for multiclass problems.JMLR, 3.

Dekel, O., Keshet, J., & Singer, Y. (2004). Large margin hierar-
chical classification.Proceedings of the Twenty-First Interna-
tional Conference on Machine Learning.

Duda, R. O., & Hart, P. E. (1973).Pattern classification and scene
analysis. Wiley.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55.

Gentile, C. (2002). The robustness of the p-norm algorithms.Ma-
chine Learning, 53.

Hastie, T., & Tibshirani, R. (1995).Generalized additive models.
Chapman & Hall.

Hertz, T., Bar-Hillel, A., & Weinshall, D. (2004). Learning dis-
tance functions for image retrieval.CVPR.

Lowe, D. (2004). Distinctive image features from scale-invariant
keypoints.IJCV.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain.Psychologi-
cal Review, 65.

Shalev-Shwartz, S., Keshet, J., & Singer, Y. (2004). Learning to
align polyphonic music.ISMIR.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin markov
networks.NIPS.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004).
Support vector machine learning for interdependent and struc-
tured output spaces.ICML.

Vapnik, V. N. (1998).Statistical learning theory. Wiley.

