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Abstract

We describe a framework for learning an object classifier from a single
example, by emphasizing relevant dimensions using available examples
of related classes. Learning to accurately classify objects from a single
training example is often unfeasible due to overfitting effects. However,
if the instance representation provides that the distance between each two
instances of the same class is smaller than the distance between any two
instances from different classes, then a nearest neighbor classifier could
achieve perfect performance with a single training example. We there-
fore suggest a two stage strategy. First, learn a metric over the instances
that achieves the distance criterion mentioned above, from available ex-
amples of other related classes. Then, using the single examples, define
a nearest neighbor classifier where distance is evaluated by the learned
class relevance metric. Finding a metric that emphasizes the relevant
dimensions for classification might not be possible when restricted to
linear projections. We therefore make use of a kernel based metric learn-
ing algorithm. Our setting encodes object instances as sets of locality
based descriptors and adopts an appropriate image kernel for the class
relevance metric learning. The proposed framework for learning from a
single example is demonstrated in a synthetic setting and on a character
classification task.

1 Introduction

We describe a framework for learning to accurately discriminate between two target classes
of objects (e.g. platypuses and opossums) using a single image of each class. In general,
learning to accurately classify object images from a single training example is unfeasible
due to overfitting effects of high dimensional data. However, if a certain distance function
over the instances guarantees that all within-class distances are smaller than any between-
class distance, then nearest neighbor classification could achieve perfect performance with
a single training example. We therefore suggest a two stage method. First, learn from
available examples of other related classes (like beavers, skunks and marmots), a metric
over the instance space that satisfies the distance criterion mentioned above. Then, define
a nearest neighbor classifier based on the single examples. This nearest neighbor classifier
calculates distance using the class relevance metric.



The difficulty in achieving robust object classification emerges from the instance variety of
object appearance. This variability results from both class relevant and class non-relevant
dimensions. For example, adding a stroke crossing the digit 7, adds variability due to a class
relevant dimension (better discriminating 7’s from 1’s), while italic writing adds variability
in a class irrelevant dimension. Often certain non-relevant dimensions could be avoided by
the designer’s method of representation (e.g. incorporating translation invariance). Since
such guiding heuristics may be absent or misleading, object classification systems often use
numerous positive examples for training, in an attempt to manage within class variability.
We are guided by the observation that in many settings providing an extended training set
of certain classes might be costly or impossible due to scarcity of examples, thus motivating
methods that suffice with few training examples.

Categories’ appearance variety seems to inherently entail severe overfitting effects when
only a small sample is available for training. In the extreme case of learning from a sin-
gle example it appears that the effects of overfitting might prevent any robust category
generalization. Overfitting effects tend to exacerbate as a function of the representation
dimensionality. A pixel based representations of objects, at a low

���������
pixel resolution,

contains � ���
individual dimensions. A projection of the image to a feature space might

lead to a substantially higher dimensional representation.

In the spirit of the learning to learn literature [15], we try to overcome the difficulties that
entail training from a single example by using available examples from several other related
objects. Recently it has been demonstrated that many objects share priors on shape and ap-
pearance [5] and that mundane objects could be detected by a common set of reusable
features [16]. We suggest that in many visual tasks it is natural to assume that one com-
mon set of constraints characterized a common set of relevant and non-relevant dimensions
shared by a specific family of related classes [9]. Our paper is organized as follows. In
Sec. 2 we start by formalizing the single trial training task. Sec. 3 describes a kernel over
sets of local features. We then describe in Sec. 4 a kernel based method for learning a
pseudo-metric that is capable of emphasizing the relevant dimensions and diminishing the
overfitting effects of non-relevant dimensions. By projecting the single examples using
this class relevance pseudo-metric, learning from a single example becomes feasible. Our
experimental implementation described in Sec. 5, adopts shape context descriptors [2] of
Latin letters to demonstrate the feasibility of learning from a single example. We conclude
with a discussion on the scope and limitation of the proposed method.

2 Problem Setting

Let � be our object instance space and let 	 and 
 indicate two classes defined over � .
Our goal is to generate a classifier �
���
� which discriminates between instances of the two
object classes 	 and 
 . Formally, ����������	���
�� so that ��� in class 	 , ��� �
��!"	 and��� in class 
 , ��� �
�#!$
 . We adopt a local features representation for encoding object
images. Thus, every � in our instance space is characterized by the set �&%(') ��*�') �&+)�,�- where%�') is a locality based descriptor calculated at location *.') of image / 1. We assume that %0') is
encoded as a vector of length 1 and that the same number of locations 2 are selected from
each image2. Thus any � in our instance space � is defined by an 1 � 2 matrix.

Our method uses a single instance from classes 	 and 
 as well as instances from other
related classes. We denote by 3 the total number of classes. An example is formally defined
as a pair ���4�657� where �98#� is an instance and 5:89��;��=<><=<?��3@� is the index of the instance’s
class. The proposed setting postulates that two sets are provided for training �
���
� :

1 ACBD might be selected from image E either randomly, or by a specialized interest point detector.
2This assumption could be relaxed as demonstrated in [14, 17]



F A single example of class 	 , � �4��	G� and a single example of class 
 , ���4�6
C�F An extended sample �@��� - ��5 - �H�><=<><>��� �JIK�65�IL�M� of N OPOQ; examples where� ' 8R� and 5 'TS8U��	���
�� for all ;WVX/YVZN .

We say that a set of classes is [\O �
separated with respect to a distance function ]

if for any pair of examples belonging to the same class �@��� - ��^>�H�=���J_- �`^>�M� , the distance]�� � - �6� _ - � is smaller than the distance between any pair of examples from different classes�@���Jab�`c&�H�=��� _a �6dC�?� by at least [ :]e��� - ��� _ - �fV�]e���Ja���� _a ��gh[i<
Recall that our goal is to generate a classifier �
���
� which discriminates between instances
of the two object classes 	 and 
 . In general, learning from a single example is prone to
overfitting, yet if a set of classes is [ separated, a single example is sufficient for a nearest
neighbor classifier to achieve perfect performance. Therefore our proposed framework is
composed of two stages:

1. Learn from the extended sample a distance function ] that achieves [ separation
on classes 5 S8U��	���
�� .

2. Learn a nearest neighbor classifier ��� �
� from the single examples, where the clas-
sifier employs ] for evaluating distances.

From the theory of large margin classifiers we know that if a classifier achieves a large
margin separation on an i.i.d. sample then it is likely to generalize well. We informally
state that analogously, if we find a distance function ] such that 3jglk classes that form the
extended sample are separated by a large [ with respect to ] , with high probability classes	 and 
 should exhibit the separation characteristic as well. If these assumptions hold and] indeed induces [ separation on classes 	 and 
 , then a nearest neighbor classifier would
generalize well from a single training example of the target classes. It should be noted that
when training from a single example nearest neighbor, max margin and naive Bayes algo-
rithms, all yield the same classification rule. For simplicity we choose to focus on a nearest
neighbor formulation. We will later show how the distance ] might be parameterized by
measuring Euclidian distance, after applying a linear projection m to the original instance
space. Classifying instances in the original instance space by comparing them to the target
classes’ single examples � and � _ , leads to overfitting. In contrast, our approach projects
the instance space by m and only then applies a nearest neighbor distance measurement
to the projected single examples mn� and mn� _ . Our method relies on the distance ] , pa-
rameterized by m , to achieve [ separation on classes 	 and 
 . In certain problems it is
not possible to achieve [ separation by using a distance function which is based on a linear
transformation of the instance space. We therefore propose to initially map the instance
space � into an implicit feature space defined by a Mercer kernel [18].

3 A Principal Angles Image Kernel

We dedicate this section to describe a Mercer kernel between sets of locality based im-
age features �&% ') �0* ') � +)�,o- encoded as 1 � 2 matrices. Although potentially advantageous in
many applications, one shortcoming in adopting locality based feature descriptors lays in
the vagueness of matching two sets of corresponding locations *J') , *e'qp) p selected from dif-
ferent object images / and / _ (see Fig. 1). Recently attempts have been made to tackle this
problem [17], we choose to follow [18] by adopting the principal angles kernel approach
that implicitly maps � of size 1 � 2 to a significantly higher rts + u

-dimensional feature spacev � �
�w8Rx . The principal angles kernel is formally defined as:y � � ' �6� ' p �Y! v � � ' � v � � ' p �z!{]@c�|H�0}�~' } ' p � a
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Figure 1: The ��� columns in each matrix encode ��� -dimentional descriptors (detailed in Sec. 5)
of three instances of the letter e. Although the objects are similar, the random sequence of sampling
locations A BD entails column permutation, leading to apparently different matrices. Ignoring selection
permutation by reshaping the matrices as vectors would further obscure the relevant similarity. A
kernel applied to matrices that is invariant to column permutation can circumvent this problem.

The columns of } ' and } ' p are each an orthonormal basis resulting from a QR decomposi-
tion of the instances � ' and � ' p respectively. One advantage of the principal angels kernel
emerges from its invariance to column permutations of the instance matrices � ' and � ' p ,thus circumventing the location matching problem stated above. Extensions of the princi-
pal angles kernel that have the additional capacity to incorporate knowledge on the accurate
location matching, might enhance the kernel’s descriptive power [14].

4 Learning a Class Relevance Pseudo-Metric

In this section we describe the two stage framework for learning from a single example to
accurately classify classes 	 and 
 . We focus on transferring information from the extended
sample of classes 5 S8U��	���
�� in the form of a learned pseudo-metric over � . For sake of
clarity we will start by temporarily referring to the instance space � as a vector space, but
later return to our original definition of instances in � as being matrices which columns
encode a selected set of locality based features �&%t') ��*�') �&+)�,�- .

A pseudo-metric is a function ]���� � ����� , which satisfies three requirements, (i)]�� �4�6� _ ��� �
, (ii) ]�� �4��� _ �L!�]e��� _ ���
� , and (iii) ]�� � - �6�Ja��4��]e���Ja����J������]e��� - �6�J�=� . Fol-

lowing [12], we restrict ourselves to learning pseudo-metrics of the form

]@�f���4�6� _ �z��� ���#gh� _ � ~z� � �#g9� _ �U�
where ��� �

is a symmetric positive semi-definite (PSD) matrix.

Since � is PSD, there exists a matrix m such that� �#g9� _ � ~ � � �Rg9� _ �z!��>mn�#g�mn� _ � aa <
Therefore, ]���� �4�6� _ � is the Euclidean distance between the image of � and � _ due to a
linear transformation m . We now restate our goal as that of using the extended sample
of classes 5 S89�=	o�6
e� in order to find a linear projection m that achieves a [ separation
by emphasizing the relevant dimensions for classification and diminishing the overfitting
effects of non-relevant dimensions.

Several linear methods exist for finding a class relevance projection [1, 8], some of which
have a kernel based variant [11]. Our method of choice, proposed by [12], is an online
algorithm characterized by its capacity to efficiently handle high dimensional input spaces.
In addition the method’s margin based approach is directly aimed at achieving our [ sepa-
ration goal. We convert the online algorithm for finding � to our batch setting by averaging
the resulting � over the algorithm’s � iterations [3].

Fig. 2 demonstrates how a class relevance pseudo-metric enables training a nearest neigh-
bor classifier from a single example of two classes in a synthetic two dimensional setting.



Figure 2: A synthetic sample of six obliquely oriented classes in a two dimensional space (left).
A class relevance metric is calculated from the ( �i���>��� ) examples of the four classes ��� �¡?¢�£¥¤�¦
marked in gray. The examples of the target classes ¢ and ¤ , indicated in black, are not used in calcu-
lating the metric. After learning the pseudo-metric, all the instances of the six classes are projected
to the class relevance space. Here distance measurements are performed between the four classes�R� §¡H¢e£¥¤�¦ . The results are displayed as a color coded distance matrix (center-top). Throughout the
paper distance matrix indices are ordered by class so ¨ separated classes should appear as block di-
agonal matrices. Although not participating in calculating the pseudo-metric, classes ¢ and ¤ exhibit¨ separation (center-bottom). After the class relevance projection, a nearest neighbor classifier will
generalize well from any single example of classes ¢ and ¤ (right).

In the primal setting of the pseudo-metric learning, we temporarily addressed our instances� as vectors, thus enabling subtraction and dot product operations. These operations have
no clear interpretation when applied to our representation of objects as sets of locality based
descriptors �&%0') �0*e') �&+)�,o- . However the adopted pseudo-metric learning algorithm has a dual
version, where interface to the data is limited to inner products. In the dual mode � is
implicitly represented by a set of support examples �=� ) ��©)�,�- and by learning two sets of

scalar coefficients ��ªG«C�­¬« ,�- and ��® )`¯ «���° © ¯ ¬=±° )�¯ « ± , ° -M¯ - ± . Thus, applying the dual representation
of the pseudo-metric, distances between instances � and � _ could be calculated by:

] � � �4��� _ � a ! ¬²« ,o- ª «h³´ ©²)�,�- ® )�¯ «¶µ y � � ) ���
��g y � � ) ��� _ �og y � � _) ���
�
� y � � _) ��� _ �J·q¸¹ a

] � ���4�6� _ � a in the above equation is therefore evaluated by calling upon the principal angles
kernel previously described in Sec. 3. Fig. 3 demonstrates how a class relevance pseudo-
metric enables training from a single example in a classification problem, where nonlinear
projection of the instance space is required for achieving a [ margin.

5 Experiments

Sets of six lowercase Latin letters (i.e. e, n, t, f, h and c) are selected as target classes for our
experiment (see examples in Fig. 4). The Latin character database [6] includes º �

examples
of each letter. Two representations are examined. The first is a pixel based representation
resulting from column-wise encoding the raw

� º �U� º pixel images as a vector of length;�k���º . Our second representation adopts the shape context descriptors for object encoding.
This representation relies on a set of » �

locations * ) randomly sampled from the raw binary
image. The descriptor of each location * ) is based on a º �

-bin histogram ( ¼ radiuses
�;�k orientations) summing the number of ”lit” pixels falling in each specific radius and

orientation bin (using * ) as the origin). Each example in our instance space is therefore
encoded as a º �L� » �

matrix. Three shape context descriptors are depicted in Fig. 4. Shape



Figure 3: A synthetic sample of six co-centric classes in a two dimensional space (left). Two class
relevance metrics are calculated from the examples ( ���½�=�=� ) of the four classes �¾� :¡?¢�£¥¤�¦ marked
in gray using either a linear or a second degree polynomial kernel. The examples of the target classes¢ and ¤ , indicated in black, are not used in calculating the metrics. After learning both metrics,
all the instances of the six classes are projected using both class relevance metrics. Then distance
measurements are performed between the four classes ��� ¿¡?¢�£¥¤�¦ . The resulting linear distance
matrix (center-top) and polynomial distance matrix (right-top) seem qualitatively different. Classes¢ and ¤ , not participating in calculating the pseudo-metric, exhibit ¨ separation only when using
an appropriate kernel (right-bottom). A linear kernel cannot accommodate ¨ separation between
co-centric classes (center-bottom).

context descriptors have proven to be robust in many classification tasks [2] and avoid the
common reliance on a detection of (the often elusive) interest points. In many writing
systems letters tend to share a common underlying set of class relevant and non-relevant
dimensions (Fig. 5-left). We therefore expect that letters should be a good candidate for
exhibiting that a class relevance pseudo-metric achieving a large margin [ , would induce
the distance separation characteristic on two additional letter classes in the same system.

We randomly select a single example of two letters (i.e. e and n) for training and save
the remaining examples for testing. A nearest neighbor classifier is defined by the two
examples, in order to assess baseline performance of training from a single example. A
linear kernel is applied for the pixel based representation while the principal angles kernel
is used for the shape context representation. Performance is assessed by averaging the
generalization accuracy (on the unseen testing examples) over � ���

repetitions of random
letter selection. Baseline results for the shape context and pixel representations are depicted
in Fig. 5 A and C, respectively (letter references to Fig. 5 appear on the right bar plot).

We now make use of the º �
examples of each of the remaining letters (i.e. t, f, h and c) in

order to learn a distance over letters. The dual formulation of the pseudo-metric learning
algorithm (described in Sec. 4) is implemented and run for ; �����

iterations over random
pairs selected from the k­» �

training examples ( NÀ!�» classes
� º �

examples). The same� ���
example pairs used in the baseline testing are now projected using the letter metric.

It is observed that the pseudo-metric matrix � (implicitly encoded as a set of training
examples and scalars ª and ® ) approximates the separation goal on the two unseen target
classes 	 and 
 (center plot of Fig. 5). A nearest neighbor classifier is then trained using
the projected examples ( mn� , mn� _ ) from class 	 and 
 . Performance is assessed as in the
baseline test. Results for the shape context based representation are presented in Fig. 5B
while performance of the pixel based representation is depicted in Fig. 5E.

When training from a single example the lower dimensional pixel representation (of size;�k���º ) displays less of an overfitting effect than the shape context representation paired
with a principal angles kernel (implicitly mapped by the kernel from size º �:� » �

to sizertÁ6ÂÃ Â u ). This effect could be seen when comparing Fig. 5D and Fig. 5A. It is not surprising
that although some dimensions in the high dimensional shape context feature represen-
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Figure 4: Examples of six character classes used in the letter classification experiment (left).
The context descriptor at location A is based on a ��� -bin histogram ( Ä radiuses ÅnÆH� orienta-
tions) of all surrounding pixels, using A as the origin. Three examples of the letter e, depicted
with the histogram bin boundaries (top) and three derived shape context histograms plotted asÇqÈHÉ7ÊÌË=ÍbÎ E ¢7ÏHÐ Å È>Ë E0Ñ?ÒCÓ Í ÓtE È Ò bins (bottom). Note the similarity of the two shape context descrip-
tors sampled from analogous locations on two different examples of the letter e (two bottom-center
plots). The shape context of a descriptor sampled from a distant location is evidently different (right).

A B C D E F
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5: Letters in many writing systems, like uppercase Latin, tend to share a common underly-
ing set of class relevant and non-relevant dimensions (left plot adopted from [4]). A class relevance
pseudo-metric was calculated from four letters (i.e. t, f, h and c). The central plot depicts the distance
matrix of the two target letters (i.e. e and n) after the class relevance pseudo-metric projection. The
right plot presents average accuracy of classifiers trained on a single example of lowercase letters (i.e.
e and n) in the following conditions: A. Shape Context Representation B. Shape Context Representa-
tion after class relevance projection C. Shape Context Representation after a projection derived from
uppercase letters D. Pixel Representation E. Pixel Representation after class relevance projection F.
Pixel Representation after a projection derived from uppercase letters.

tation might exhibit superior performance in classification, increasing the representation
dimensionality introduces numerous non-relevant dimensions, thus causing the substantial
overfitting effects displayed at Fig. 5A. However, it appears that by projecting the single
examples using the class relevance pseudo-metric, the class relevant dimensions are em-
phasized and hindering effects of the non-relevant dimensions are diminished (displayed at
Fig. 5B). It should be noted that a simple linear pseudo-metric projection cannot achieve the
desired margin on the extended sample, and therefore seems not to generalize well from the
single trial training stage. This phenomenon is manifested by the decrease in performance
when linearly projecting the pixel based representation (Fig. 5E).

Our second experiment is aimed at examining the underlying assumptions of the proposed
method. Following the same setting as in the first experiment we randomly selected two
lowercase Latin letters for the single trial training task, while applying a pseudo-metric
projection derived from uppercase Latin letters. It is observed that utilizing a less relevant
pseudo-metric attenuates the benefit in the setting based on the shape context represen-
tation paired with the principal angles kernel (Fig. 5C). In the linear pixel based setting
projecting lowercase letters to the uppercase relevance directions significantly deteriorates
performance (Fig. 5F), possibly due to deemphasizing the lowercase characterizing curves.



6 Discussion

We proposed a two stage method for classifying object images using a single example. Our
approach, first attempts to learn from available examples of other related classes, a class
relevance metric where all within class distances are smaller than between class distances.
We then, define a nearest neighbor classifier for the two target classes, by projecting the
single examples using the class relevance metric. Our high dimensional representation ap-
plied a principal angles kernel [18] to sets of local shape descriptors [2]. We demonstrated
that the increased representational dimension aggravates overfitting when learning from a
single example. However, by learning the class relevance pseudo-metric from available
examples of related objects, relevant dimensions for classification are emphasized and the
overfitting effects of irrelevant dimensions are diminished. Our technique thereby gener-
ates a highly accurate classifier from only a single example of the target classes. Varying
the choice of local feature descriptors [10, 13], and enhancing the image kernel [14] might
further improve the proposed method’s generalization capacity in other object classifica-
tion settings. We assume that our examples represent a set of classes that originate from
a common set of constraints, thus imposing that the classes tend to agree on the relevance
and non-relevance of different dimensions. Our assumption holds well for objects like tex-
tual characters [4]. It has been recently demonstrated that feature selection mechanisms
can enable real-world object detection by a common set of shared features [16, 7]. These
mechanisms are closely related to our framework when considering the common features
as a pruned subset of directions in our class relevance pseudo-metric. We therefore aim our
current research at learning to classify more challenging objects (like animal classes) by
utilizing an appropriate class relevance pseudo-metric.
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