
Presenter: Arie (Lev) Shterengartz

On: 2/6/2011 (my 24-th birthday)

by: Victor R. Basili and Marvin V. Zelkowitz

Comm. ACM 50(11), pp. 33-37, Nov 2007.

 Emeritus Professor at the Department of Computer Science and the

Institute for Advanced Computer Studies at University of Maryland.

 IEEE Fellow, elected 1990.

 NASA Group Achievement Award, 1996 . (and Many other awards).

 Worked in industry and government but mainly in the academy.

 Well known for his works on measuring, evaluating, and improving

the software development process and empirical studies.

 Emeritus Professor at the Department of

 Computer Science and the Institute

 for Advanced Computer Studies at University of Maryland.

 IEEE Fellow, elected 1997.

 Has many awards for researches in the field of empirical software

engineering and measurement.

 Many publications in this field.

 Mostly known for his academic work, rather than in the industry.

What is

empiricism?
What are empirical studies?

Empiricism asserts that knowledge comes (only or
primarily) via sensory experience.

Empirical research is a way of gaining knowledge by
means of direct observation or experience.

Empiricism in traditional

sciences

Not the case in CS…

Empirical studies is about:

Building models of the field that is in

our interests.

Encapsulation of our knowledge.

Checking that our knowledge is

correct.

Evolving the knowledge over time.

Experimentation in CS
The situation today:

Experiments are around:

 Algorithms evaluation

 Checking performance

 Workflow of a system

The problem: it ignores the fact
programming is made by humans…

Experimentation in CS should

involve human activity

Should evaluate data to understand and
improve the work of the development staff

Who will do the researches? Where will they be conducted?

Research – Development

synergy

Developers need researchers to:

Understand how to build systems better
by understanding their own
environments.
Predict cost & quality.

Researchers need developers for:

Evidence of what works and what doesn’t.
When it works? What will work better?
Be live models to check their hypothesis.

A good research must have a

good research question

Examples of questions that every software organization must be able
to reply:

 What is the right combination of technical and managerial solutions for

my problem and environment?

 What is the right set of processes for my business?

 How do we learn from our successes and failures?

 How do we demonstrate sustained, measurable improvement?

Results de-facto VS. Intuition

Two options:

I. The results are against our intuition. In this case we need to check
why is it, and change our hypotheses accordingly.

II. The evidence support the intuition. We may think the experiment
was unnecessary. It is not true!!! Experiments add lots of
information even if the conclusion is what we expected.

Example: NASA…
The study made in NASA Goddard Software Engineering Laboratory (SEL)
Between 1976-2002.

Goal: improve software development for ground-support system.

Used some methods and techniques for using knowledge to better
understand how to build systems. This was called the Quality
Improvement Paradigm (QIM).

Adjustments in models could be made in real time and
results deployed in future projects.

The process of building and testing models was encapsulated in a
model Called Experience Factory (EF).

Data was collected and interpreted with the Goal Question Metric
approach (GQM).

The studies were divided into two

major classes:

Controlled experiments: applied to new techniques to
mainly reduce the risks of applying it on live projects.

Case studies: applied for live projects to check the
scalability of the technique and its advantages and
disadvantages.

The results:

 Dramatic increase in code reuse

 Decrease in defects

 Decrease in costs

Conclusions:

 empiricism is needed to build knowledge.

 Experimentation focused on people is necessary.

Another example:

High-End computing (HEC)

The project:
many processors to achieve faster and more powerful computers
for various computation needs.
High Productivity Computing System (HPCS).

The formula:

“Time to solution = Development time + Execution time”

The innovation:
Instead of putting the emphasis on execution time –
Invest more time in the development!

The subject:
Defense Advanced Research Projects Agency (DARPA)

Same same but different

The research model in the HPCS is different than the one
in SEL:

Different personnel (pro. Programmers VS. comp. scientists &
physicists).

Different interests: answer “science” questions using a
computer VS. how well the computer program actually
work.

The research workflow:

Formalizing “folklore”

Throughout the research steps there were collected stories, notions and

sayings from developers and users in government, industry and academy.

This folklore is formalized with 4 sequential activities:

I. Identify terminology and relationships looking for consensus or

disagreement.

II. Identify “variables” that may affect validity of the first. (surveys etc.)

III. Develop hypotheses that can be specified and measured.

IV. Verify these hypotheses. (experimentation)

So, why experimenting?
There are many differences between users and programmers level.

New computers, processors and technologies are evolving

frequently.

Different characteristics, goals and needs of different organizations.

Computer scientists must understand the current state and identify

the relationships between variables in order to be able to have

progress.

Experimenting is the only way to do this right!

Summary & Conclusions

Interaction between theorists and experimentalists (academy &

industry).

The learning process is continuous and evolutionary.

Must involve users and developers.

CS Researchers must experiment, analyze, synthesize and package

the knowledge for future development.

Experimentation is crucial for any engineering or science discipline.

Summary & Conclusions

Interaction between theorists and experimentalists (academy &

industry).

The learning process is continuous and evolutionary.

Must involve users and developers.

CS Researchers must experiment, analyze, synthesize and package

the knowledge for future development.

Experimentation is crucial for any engineering or science discipline.

