
Communications of the ACM 52(5),
pp. 46-56, May 2009

BASIC SEMINAR ON SOFTWARE ENGINEERING

H E B RE W U N IVE RSIT Y | 5 M AY 2 0 1 1

•

 Good code is modular; each module has an API

•

•

•

•

•

 Intuitive
• Easy to learn
• Easy to use (even without documentation)

 Hard to misuse
• Forces you to do the right thing

 Easy to read and maintain code that uses it
 Sufficiently powerful to satisfy requirements
 Easy to evolve (to meet future requirements)
 Well documented
 Appropriate to audience

•

 APIs are provided once, but called many times

 Minor design flaws get magnified
• Problems show up at every point the API is called

 Isolated flaws can interact with each other in
surprisingly damaging ways

• Lead to a lot of collateral damage

• Select()

// API

public static void Select(List checkRead, List checkWrite,

List checkError, int microseconds);

•

// Server code

int timeout = ...;

ArrayList readList = ...; // Sockets to monitor for reading.

ArrayList writeList = ...; // Sockets to monitor for writing.

ArrayList errorList; // Sockets to monitor for errors.

// Server code

while (!done) {

SocketList readTmp = readList.Clone();

SocketList writeTmp = writeList.Clone();

SocketList errorTmp = readList.Clone();

Select(readTmp, writeTmp, errorTmp, timeout);

for (int i = 0; i < readTmp.Count; i++)

// Deal with each socket that is ready for reading...

for (int i = 0; i < writeTmp.Count; i++)

// Deal with each socket that is ready for writing...

for (int i = 0; i < errorTmp.Count; i++)

// Deal with each socket that encountered an error...

if (readTmp.Count == 0 && writeTmp.Count == 0 && errorTmp.Count == 0) {

// No sockets are ready...

}

}

•

1
•

•

•

2
•

The fewer types, functions, and parameters an API uses –

the easier it is to learn, remember, and use correctly

•

Minimize non-fundamental ‘convenience functions’ –

a function is worth adding only if it will be used frequently

•

You can always add later to an API, but you can never remove

3
•

 Consider a string map (string pairs of key-value)
 Lookup method behavior if mapping is not set:

• Throw a VariableNotSet exception
• Return null
• Return the empty string

4
•

 Dictates semantics, style

•

 Lookup() should return null

•

 Catches more compile-time errors

 Select() fails this

•

 Displease everyone equally

 Strategy design pattern is useful – caller-provided policies

e.g. Comparator, Templates

•

•

•

•

 makeTV(false, true);

 makeTV(Color, FlatScreen);

5

6
•

 A good API is clear about what it wants to achieve and what it doesn’t

 "I should not pay for what I don't use"

•

 It’s an illusion; caller does the dirty work instead of the API

 Select() fails this…

•

 If so, do I have valid reasons for not doing it?

7
•

•

 Implementer is mentally contaminated by the implementation

 Tends to write what he or she has done

 Too familiar with API, assumes some things are obvious

 Misses important use cases

•

 Neither caller nor implementation concerns are neglected

•

 Check how much of the API can be understood without documentation

char *strncpy(char *dst, char *src, size_t n);
void *bcopy (void *src, void *dst, size_t n);

8
•

•

 Use simple and uniform naming conventions for related tasks
 Easier to use and memorize
 Enables transference of learning

•
 Good APIs

read like prose

 Names are a good indication of how good your design is

if (car.speed() > 2 * SPEED_LIMIT)
speaker.generateAlert("Watch out for cops!");

•

•
 Recognition of the importance of the topic

•
 Retain experienced programmers

 Software designers should eat their own dog food

•
 There are APIs whose correct functioning is of immense importance;

any change in them incurs an enormous economic cost

 Find the right balance between legislation and open peer review

•

•

•

•

•

•

•

 A good API is a subjective term

 You have to know your audience

•

 Serious mistakes in APIs can cause
unprecedented damage

•

•

•

