

Formal Methods

Formalism vs. Verification

● Verification means proving the program correct
● Depends on formal and correct specifications

− How do you verify the specs?
− Applies mainly/only to algorithmic parts

● Verification implies formalism
● Formalism can be less than verification

example

“all lights in the room are controlled by a switch”

There exists a single
switch that controls all
lights

For each light, there
exists a unique switch
that controls it

Lesser Formal Methods

● Be precise
− Say exactly what you mean

● Reduce ambiguity
− Rely on agreed semantics

● Be comprehensive
− Use a checklist of attributes

● Be methodical
− e.g. the multiple charts of UML

David Parnas, Really rethinking “formal methods”,
Computer 41(3), pp. 28-34, Jan 2010

Formal methods are not really being used by
industry
● If they were, we wouldn't see papers about

success stories
● Claims don't stand up to scrutiny

− Heroic efforts needed
− Overselling of method or results

● Many successes are simple byproduct of smart
people scrutinizing the code

● Industry would use anything that gives benefits;
they don't use Z and other formalisms

Three alarming gaps:
● Research vs. practice

− Academics do mathematics unrelated to real
programs and large systems

− Programmers don't get math

● Software vs. other engineering disciplines
− We teach technology, not applicable science
− Speak different language from other engineers

● Computer science vs. mathematics
− We invent new mathematics and don't use enough

classical approaches

Rethinking state:
● In programs variables define the state
● In math they are placeholders
● This is not the same thing

− Are a[i] and a[2] the same or not?

● Need to find a good way to represent state

Rethinking termination:
● Normally we require programs to terminate to

be considered correct
● Extension: partial correctness, where if the

program terminates then the answer is correct
● But many programs are designed to run

indefinitely
− Specifically reactive systems

● Need to find a good way to represent normal
non-termination

● Similarly, nondeterminism is normal
− But most formalisms don't handle it

● Side effects are also normal
− But again most formalisms don't handle them

Rethinking time:
● Normally we don't consider time as part of

correctness
● In real-time systems this is crucial

− Can't be too slow or too quick

● Need to find a good way to represent time
without special handling

The role of mathematics
● In software, it is to prove correctness
● In engineering, it is to calculate quantities

− Engineering is typically about choosing among
alternative “correct” designs

− Use calculations to make comparisons

● Mathematical abstractions must still be true
− Simplification leading to untrue predictions are

harmful

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

