

Lifecycle Models:
Waterfall / Spiral / EVO

Dror Feitelson

Basic Seminar on Software Engineering
Hebrew University

2011

Lifecycle

● The sequence of actions that must be
performed in order to build a software system

● Ideally thought to be a linear sequence: plan,
design, build, test, deliverT

This is the waterfall model
● Realistically an iterative process

Including agile development and the Unified
Process

Royce 1970

Dr. Winston W. Royce, “Managing the
development of large software systems”.
Proc. IEEE WESCON, Aug 1970.
Reprinted 9th Intl. Conf. Softw. Eng., 1987.
● Universally cited as the reference for the

waterfall model
➔ But, the word “waterfall” is not mentioned
➔ And the model looks more like a cascade

● Moreover, the paper is actually against the
waterfall model

The Basic Waterfall Model

Problems
● Doing everything in a single sequence is

unrealistic
● A better model involves iteration between

successive steps
● However, testing comes too late and may

uncover problems in the initial design
● The solution: do it twice

(Same advice as Fred Brooks in The Mythical
Man-Month, but referring to a full-scale system)

Using a Prototype

Using a Prototype

Note that prototype
is actually used!

Additional Emphases
● Need to plan and control the testing
● Need to involve the client in key points
● Create multiple documents (requirements,

specification, design, test plan, manual) and
keep them up to date
➔ “Write an overview document that is

understandable, informative, and current. Each and
every worker must have an elemental
understanding of the system.”

➔ “If the documentation is in serious default my first
recommendation is simple: replace project
management.”

The Frustration

This paper is very insightful and foreshadows
several modern ideas.

So why is the waterfall model still being used?
(Or is it?)

Documentation and Design
● The waterfall is document heavy

➔ Including design documents
● Jack Reeves: the software is the design

➔ Meaning the document, not the process: still need
to think before you code

➔ But the code embodies the design better than any
other document

➔ Actually building from the design is trivial and
mechanized, unlike in other fields

➔ Programmers must be creative designers, they are
not assembly workers

Software as Design
● Software is incredibly cheap to build
● Software is incredibly expensive to design;

everything (planning, designing, coding, testing)
is part of the design process

● Creating a design or changing it is easy and
cheap, leading to highly complex designs

● Testing and debugging are actually design
validation

● Real advances depend on advances in
programming techniques

Barry Boehm
Barry W. Boehm, “A spiral model of
software development and enhancement”.
Computer 21(5), pp. 61-72 May 1988.
● Prof. Software engineering, Univ. Southern

California
● Worked at General Dynamics, Rand, TRW
● Director of DARPA Information Science and

Technology Office 1989-1992
● Fellow of ACM, IEEE
● COCOMO cost model, Spiral model, ...

The Basic Force
● Code-driven development

➔ “Code-and-fix” approach
➔ No design leads to poor code and frustrated clients

● Document-driven development
➔ Waterfall model
➔ Requirement for fully developed documents unrealistic

● Risk-driven development
➔ Support iterative development
➔ Decide how to proceed by reducing risk of failure

The Spiral Model
● Several rounds development: System concept,

Requirements, design
● In each round, mitigate risks

➔ Define objectives of part you are doing
➔ Map alternatives for implementation
➔ Recognize constraints on these alternatives
➔ Use prototyping, analysis, etc. to gain necessary

knowledge and reduce risk
➔ Plan the next step

● At the end, perform sequence of coding,
testing, and integration

The Spiral Model
● Several rounds development: System concept,

Requirements, design
● In each round, mitigate risks

➔ Define objectives of part you are doing
➔ Map alternatives for implementation
➔ Recognize constraints on these alternatives
➔ Use prototyping, analysis, etc. to gain necessary

knowledge and reduce risk
➔ Plan the next step

● At the end, perform sequence of coding,
testing, and integration

What you actually
do depends on

the biggest
remaining risk

Using the Spiral
● Start with hypothesis that something can be

done
● Round 1: concept and lifecycle plan
● Round 2: top level requirements
● Additional rounds: preliminary design, detailed

design
● May go back and redo previous round if needed
● If the evaluation at some stage shows that it

won't work then stop

Risks
● Developing software is fraught with uncertainty
● Uncertainty implies risk
● This needs to be quantified:

RiskExposure = Probability x Loss
● Can be used to chose between alternatives:

select the one where the expected loss is
smaller

Risk Management

Risk
management

assessment

control

identification

analysis

prioritization

planning

resolution

monitoring

Milestones

● In waterfall model there are many milestones
➔ This is too rigid and sequential

● But there are three really important ones:
➔ Life-cycle objectives
➔ Life-cycle architecture
➔ Initial operational capability
(these foreshadow the unified process)

Milestones

● In waterfall model there are many milestones
➔ This is too rigid and sequential

● But there are three really important ones:
➔ Life-cycle objectives
➔ Life-cycle architecture
➔ Initial operational capability
(these foreshadow the unified process)

Make sure we
know what we want

to do, and that it
can be done

Milestones

● In waterfall model there are many milestones
➔ This is too rigid and sequential

● But there are three really important ones:
➔ Life-cycle objectives
➔ Life-cycle architecture
➔ Initial operational capability
(these foreshadow the unified process)

Make sure we
know what we want

to do, and that it
can be done

Elaborate on
how things will

be built

Milestones

● In waterfall model there are many milestones
➔ This is too rigid and sequential

● But there are three really important ones:
➔ Life-cycle objectives
➔ Life-cycle architecture
➔ Initial operational capability
(these foreshadow the unified process)

Make sure we
know what we want

to do, and that it
can be done

Elaborate on
how things will

be built
Prepare for the
transition to the
client in terms of
site and training

Milestones

● Milestones are not (necessarily) documents!
➔ Not a fully specified spec or architecture, but a

framework that will evolve
➔ For example, important interfaces must be specified

precisely, but user interfaces can be a prototype
➔ Articulation of feasibility and rationale are important
➔ Agreement of stakeholders is crucial

Conceptual Development with Time
● Spiral model (1988): in an example round 0 is

about deciding that the project is worth doing
● Risk management (1991): one of the risks is

that the project is plain wrong
● Anchoring (1996): the first anchor point is

agreement among stakeholders that the project
can and should be done

Tom Gilb

Principles of Software Engineering
Management, Addison-Wesley, 1988
● Early work on iterative and

incremental development
● EVO: evolutionary software delivery
● Early work on software metrics
● Early work on inspections
● Independent consultant with his son

Requirements
● Building software is a learning process
● We don't know what the client wants
● Regrettably, the client doesn't know either
● But he'll know it when he sees it
● So we need to create something for him to see
● Hence iterative and incremental development

Engineering
● Requirements is not only what the system

should do
● It is also how well it should be done

➔ What resource expenses are acceptable
➔ What performance level is needed

● Skillful, knowledgeable professionals are
needed in order to design and architect a
solution
➔ satisfying use-cases is not enough

Methodology
● Identify critical stakeholders
● Find what value they are looking for
● Identify solutions
● Develop
● Deliver value early
● Iterate and learn

Evolutionary Delivery
● Lead time to first working and useful system is

short
● Real users doing real work brought into the loop

➔ Testing in realistic conditions
➔ Prioritization of subsequent development

● System and its environment co-evolve
● Respond to changes

➔ Can't freeze the world anyway, so make it a feature
● Exploit new technology as it becomes available

Main Comparison

Sequential plans:
● Freeze requirements
● Testing of complete

product
● Big bang delivery
● All-or-nothing risks

large-scale failures

Iterative / evolutionary:
● Incremental learning

of what is needed
● Experience in the

field with partial
solution

● Incremental delivery
● Hard to fail bigtime

Summary
● Royce: plan ahead and document
● Boehm: iterate and reduce biggest risk each time
● Gilb: iterate and deliver maximal value each time
● Agile: iterate to make progress each time
● Old school: requirement must be met, so

compromise schedule and overrun budget if
needed

● New school: do the most useful thing within time
and money constraints

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

