

Agile Development and
Software Evolution

Dror Feitelson

Basic Seminar on Software Engineering
Hebrew University

2011

Software Lifecycle

R
eq

's

A
na

ly
si

s

D
es

ig
n

C
on

st
ru

ct
io

n

Te
st

in
g

T
ra

ns
fe

r

M
ai

nt
e

na
nc

e

Textbook
view:

Software Lifecycle

R
eq

's

A
na

ly
si

s

D
es

ig
n

C
on

st
ru

ct
io

n

Te
st

in
g

T
ra

ns
fe

r

M
ai

nt
e

na
nc

e

Textbook
view:

More realistic view:

R
eq

's
A

na
ly

si
s

D
es

ig
n

C
o

ns
tr

uc
tio

n
Te

st
in

g
T

ra
ns

fe
r

EVOLUTION, MAINTENANCE,
AND ADDITIONAL RELEASES

David Lorge Parnas

“A sign that the
Software Engineering
profession has matured
will be that we lose our
preoccupation with the
first release and focus
on the long term health
of our products.”

● Major contributor to
information hiding and
modularization

● Advocate of software
development as an
engineering discipline

● Including good
documentation!

● Opponent of “star wars”

● Fellow of ACM, IEEE

Meir (Manny) Lehman
● Built first computers in Israel

in 1950s

● Worked at IBM studying
OS/360

● Professor at Imperial
College London

● Received Harlan Mills award

● Passed away 29.12.10 in
Jerusalem

● “Father of software
evolution”

● Lehman's 8 Laws
describe general
progress of projects

● Defined “E-type”
systems that are
ingrained with their
environment

Lehman's Laws

1) Continuing change (adaptation)

2) Increasing complexity (unless refactored)

3) Self regulation (of rate of change)

4) Invariant work rate

5) Conservation of familiarity (of users and
developers)

6) Continuing growth (more features)

7) Declining quality (unless maintained)

8) Feedback system (at multiple levels)

Lifecycle Models

● Waterfall
● Spiral
● Unified process
● Agile / extreme

Lifecycle Models

● Waterfall
● Spiral
● Unified process
● Agile / extreme

Essentially serial

Iterative and
incremental

Lifecycle Models

● Waterfall
● Spiral
● Unified process
● Agile / extreme

Formal and heavily
documented

Just do it

Evolution and Agile

All software projects

One-shot Evolutionary

Agile

Perpetual

Compromises

● Cost, quality, and schedule – pick any two
● Traditional: quality (aka requirements) are

paramount
● Heroic efforts to achieve them
● Often overrun budget and/or schedule

● Agile: schedule is paramount
● Continuously decide what you can do and what

your priorities are
● Keep sustainable work practices

Agile

● A well defined process
● Even if not strong on documents or formal planning

● Evolutionary approach
● “Embrace change” (as opposed to dreaded feature

creep)
● Steer project based on user priorities: commit to

user, not to predefined plan

● Not all evolutionary/perpetual projects are agile
● e.g. Linux and other open-source projects that have

little if any process

Coherent communication

Checklists

“Perpetual” Terminology

Maintenance ⇒ Evolution

Delivery ⇒ Release

 Requirements ⇒ Feature requests

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

Production use & maintenance

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

co
ntin

ued

deve
lopment

Production use & maintenance

feedback
& requests

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

release

co
ntin

ued

deve
lopment

Production use & maintenance

Production use & maintenance

feedback
& requests

users
upgrade

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

release

release

co
ntin

ued

deve
lopment

co
ntin

ued

deve
lopment

Production use & maintenance

Production use & maintenance

feedback
& requests

feedback
& requests

users
upgrade

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

release

release

co
ntin

ued

deve
lopment

co
ntin

ued

deve
lopment

Production use & maintenance

Production use & maintenance

Production & maint.

feedback
& requests

feedback
& requests

users
upgrade

users
upgrade

Perpetual Development Lifecycle

time

si
ze

initia
l

deve
lopment

release

release

release

co
ntin

ued

deve
lopment

co
ntin

ued

deve
lopment

co
ntin

ued

deve
lopment

Production use & maintenance

Production use & maintenance

Production & maint.

feedback
& requests

feedback
& requests

users
upgrade

users
upgrade

Linux Example

Software Growth

● Lehman:
● A system's complexity grows with time
● It is harder to modify a more complex system
● Ergo rate of growth will be reduced with time

(specifically inverse-square law due to having to
consider all possible interactions)

● Godfrey and Tu:
● Linux (and other systems) is growing at a super-

linear rate

Perpetual Development Benefits

● Lead time to first working version is short, and a
working version is always available

⇒ No danger of the project coming to nothing

● Real users doing real work are effectively
brought into the development cycle

⇒ Helps to test system functionality and find problems

⇒ Used to prioritize further development according to
what is really needed

● Ability to use new technology as it becomes
available

Continuous Deployment Variant

● New software released in timescales of
minutes, not days or weeks

● Each developer immediately deploys whatever
he works on

● Requires strong framework to control releases
and roll them back if needed

● Makes the whole notion of a “version”
meaningless

● Popular mainly in web-based companies and
applications

Implications for Development

● No fixed goal that has to be reached
● Goal is to continually improve the system and

maintain is usefulness

⇒ Monitor system usage to identify inadequacies

⇒ Prioritize according to user needs

⇒ Don't plan too far ahead (YAGNI protection)

● Use contracts that take longevity into account

⇒ Support for continued evolution

⇒ Access to code is company becomes insolvent

Implications for Architecture

● Can't decide on architecture based on analysis
of all the requirement

● Need architecture that accommodates change

⇒ Two tiers: stable core and evolving libraries

⇒ Open system like e-commerce site based on web
services

● Use refactoring
● May need to abandon project eventually

⇒ But may still salvage parts for a followup project

Conservation of Familiarity

● One of Lehman's laws of software evolution
● Limits the rate of progress that can be

sustained
● Need specialized tools to help new team

members to become familiar with the system

⇒ Newbies are at a disadvantage because they didn't
see how the system developed

⇒ Need to capture the history of design decisions

Explaining Monumental Failures

● Failures caused by "feature creep"

♦ Developers made elaborate and beautiful plans

♦ But these plans were obsolete by the time they
were completed

⇒ Do exactly what is most needed at each instant

● Failures caused by successful maintenance

♦ Delivered system was good for a very long time

♦ But when it is to be replaced, an attempt is made to
do too much at once

⇒ Make improvements continuously all the time

Experimental Evidence

● Conducted by the World Wide Consortium for
the Grid (W2COG)

● The goal: develop a secure service-oriented
architecture system

● Traditional approach: standard government
acquisition process

● Alternative: use a "Limited Technology
Experiment" based on evolutionary methods

● Both start with same government supplied
software baseline

18 Months Later...

Traditional:
● A concept document

with no functional
architecture

● Cost $1.5M
● No concrete

deployment plan or
timeline

Evolutionary:
● Delivered open

architecture prototype
addressing 80% of
requirements

● Cost of $100K
● Plan to complete in 6

months

Denning, Gunderson, & Hayes-Roth, CACM 12/2008

Bottom Line

● Expect to see many more projects using
evolutionary and agile methods

● Especially in environments challenged by rapid
technological progress and rapid change

● These ideas are actually not new
― However, not articulated well till recently

― Contradict traditional engineering approach

― Nevertheless work well in practice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

