

The Software Industry
and Software Engineering

Dror Feitelson

Basic Seminar on Software Engineering
Hebrew University

2011

What Software Did You Use Today?
● We are usually unaware of most software...

What Software Companies Do You
Know?

● Microsoft is not the only one...

Classification I
● Writing new software

➔ OpenOffice / Firefox / Linux drivers
➔ Computer games
➔ Oracle database / ERP (enterprise resource

planning)
● Integration of existing products

➔ Computerize a garage / law office / warehouse
● We will focus on software production, not

integration

Classification II
● Software contractors

➔ Special software for specific use
➔ Custom made for single client

● Corporate software products
➔ Generic software for business use
➔ Thousands of clients

● Mass market
➔ Software for end-users (office / home)
➔ Millions of clients

Classification III
● Program for self use
● Single programmer or small team, small project
● Medium size software project (20-30 people)
● Large software project (hundred+ people)

● We will focus on medium to large projects

Mary Shaw, “Prospects for an engineering
discipline of software”. IEEE Software 7(6), pp.

15-24, Nov.-Dec. 1990

CS professor at CMU since 1972
Chief scientist of SEI 1984-7
Co-director Sloan Software Industry Ctr. 2001-6
Fellow of the ACM, IEEE, AAAS

Software Engineering
● A label applied to a set of current practices for

software development
● Not really an engineering discipline
● But has a potential to become one
● Insights by comparing with other engineering

disciplines

So What Is Engineering?
● Creating cost-effective solutions
● To practical problems
● By applying scientific knowledge
● To build things
● In the service of mankind

So What Is Engineering?

“Engineering relies on codifying scientific
knowledge about a technological problem domain
in a form that is directly useful to the practitioner,
thereby providing answers for questions that
commonly occur in practice. Engineers of ordinary
talent can then apply this knowledge to solve
problems far faster than they otherwise could. In
this way, engineering shares prior solutions rather
than relying always on virtuoso problem solving.”

Development of Engineering

Technological progress

craft

commercialization

engineeringproduction

science

Development of Engineering

Technological progress

craft

commercialization

engineeringproduction

science

➔Amateurs and virtuosos
➔Knowledge does not propagate
➔Waste of materials
➔Small scale production
➔Little commercialization

Development of Engineering

Technological progress

craft

commercialization

engineeringproduction

science

➔Skilled craftsmen
➔Training in operational procedures
➔Concern for cost and materials
➔Large scale production
➔Manufacture for sale

Development of Engineering

Technological progress

craft

commercialization

engineeringproduction

science

➔Educated professionals
➔Use scientific analysis and theory
➔Enabling of new applications
➔Specialized market segments

The Situation with Software

Technological progress

craft

commercialization

engineeringproduction

science

rare cases

data structures
algorithms

early large systems (SABRE)
most startups

most software production

structured programming
Tools (IDE)

state machines

lifecycles

The Situation with Software

Technological progress

craft

commercialization

engineeringproduction

science

rare cases

data structures
algorithms

early large systems (SABRE)
most startups

most software production

structured programming
Tools (IDE)

state machines

lifecycles

typically called
“software engineering”

Path to True Engineering
● Define body of knowledge needed by experts

➔ 50,000 chunks of information
➔ 10 years of learning

Path to True Engineering
● Define body of knowledge needed by experts
● Make this knowledge accessible

➔ Finding it should be easier than deriving it anew
➔ Documentation of libraries etc.

Path to True Engineering
● Define body of knowledge needed by experts
● Make this knowledge accessible
● Repetition and reuse

➔ Design patterns
➔ Wikis and integrated environments

Path to True Engineering
● Define body of knowledge needed by experts
● Make this knowledge accessible
● Repetition and reuse
● Professional specialization

➔ Nobody can master everything
➔ Specialization in HCI, real-time, numerical

computing, ...

Path to True Engineering
● Define body of knowledge needed by experts
● Make this knowledge accessible
● Repetition and reuse
● Professional specialization
● Improve coupling between science and

commercial practice

Philippe Kruchten, “Putting the 'engineering' into
'software engineering'”. Australian Softw. Eng.

Conf., pp. 2-8, 2004

Developer of several large systems, e.g.
 Canadian air traffic control system
Professor of SE, Univ. British Columbia
Developer of the Rational Unified Process

Software Engineering definition

According to IEEE Standard 610.12: “the
application of a systematic, disciplined, quantifiable
approach to the development, operation and
maintenance of software”

● Science: unconstrained study of laws, trends,
and models, with emphasis on rigor and
formalism

● Engineering: perform trade-offs and compromises
to make products with given level of quality under
constraints of time, money, personnel, and legacy

Differentiating Characteristics

Software is different from other engineering
disciplines:
● No fundamental theory

➔ Computer science doesn't really help understand
software

➔ Compiled code is unstructured and brittle: a bug in
one place causes effects elswhere

➔ Software engineering limited to using best practices

Differentiating Characteristics

Software is different from other engineering
disciplines:
● No fundamental theory
● Ease of change

➔ Much more so than bridges etc.
➔ But hard to do rigorously and take all ramifications

into account

Differentiating Characteristics

Software is different from other engineering
disciplines:
● No fundamental theory
● Ease of change
● Rapidly evolving technology

➔ Can't consolidate body of knowledge
➔ Can't benefit from many years of experience
➔ Need to continuously retrain engineers

Differentiating Characteristics

Software is different from other engineering
disciplines:
● No fundamental theory
● Ease of change
● Rapidly evolving technology
● Negligible manufacturing cost

➔ Easy to re-deliver a fix, so no pressure to get it right
the first time

Differentiating Characteristics

Software is different from other engineering
disciplines:
● No fundamental theory
● Ease of change
● Rapidly evolving technology
● Negligible manufacturing cost
● No borders

➔ Easy to outsource: don't need to ship goods

Consequences I
● Waterfall model doesn't work

➔ It does in other fields where things don't change
● Need to use iteration and incrementation

➔ Accommodate change
➔ Validate by execution and use, because theory

doesn't exist

Consequences II
● Composability doesn't work

➔ Even if components are good, we don't know
whether their composition will be

➔ Again due to lack of theory
➔ And to the fact that technology changes rapidly

● Possibly alleviated by architecture and model-
driven design

A True Profession
● Define and teach the body of knowledge
● Professional certification programs
● Liability and responsibility for products
● Shift from an inner focus (playing with

technology) to an outer focus (satisfying user
needs)

David L. Parnas, “Risks of Undisciplined
Development”. Comm. ACM 53(10), pp. 25-27,

Oct 2010

Famous for idea of information hiding
Famous for criteria on dividing
 programs into modules
Famous for opposition to Star Wars
Professor at various universities
Fellow of ACM, IEEE

Discipline

Engineering specifies rules of action:
● Checks must be made
● Properties must be measured
● Documentation must be provided
● Test must be carried out
● Review procedures must be followed
● Inspection and maintenance routines must be

followed

Engineering Education
● Prepare students for a professional career
● Meet legal requirements of their profession
− Carry out required procedures
− Risk being guilty of negligence if not
− Also risk being disallowed to practice

● Fundamental principles of the field
● Not only rules but also the reasons behind them

Engineering Goals
● Produce products fit for the intended use
● Abide by applicable standards
● Be robust enough to survive foreseeable

circumstances (including wrong inputs)
● Use conservative design with appropriate

margins of error

Experience with Software
● Riddled with small petty problems
● Little if any documentation
● Meaningless error messages

The big problem:

We're so used to it we think this is how it
should be

Innovation vs. Discipline
● Too much emphasis on creativity and

innovation
● Too little emphasis on discipline and using

check-lists

Catch-22
● As long as there is no better software, we'll buy

sloppy software
● As long as we buy sloppy software, developers

have no incentive to become disciplined
● If developers do not become more disciplined,

they will continue to produce sloppy software

Melody M. Moore, “A License to practice software
engineering”. IEEE Software 20(3), pp. 112-113,

May/June 2003

Interview with Leonard Tripp, Boeing Technical
Fellow and past president of the IEEE Computer

Society

Definitions
● Certification: passing tests to ensure you have

studied a subject
● Licensing: a government service approving that

you are allowed to do a certain job, typically
with public safety and legal implications

Certification
● Being certified serves as testimony for

competence
● Some vendors/employers may look at this

favorably
● IEEE offers exam for “Certified Software

Development Professional”
➔ A relatively recent program
➔ Only a small number certified so far

Licensing
● Does not exist in most of the world
● Does not exist in the US except the state of

Texas
● In the future, expect 10-20% of software

engineers to be licensed and work in health and
safety related areas

Software Engineers in Israel
● As in many countries “software engineering” is

not a recognized engineering discipline
➔ Electrical engineering is recognized since 1960
➔ Information systems engineering is recognized

since 1992
➔ Computer engineering is recognized since 1992

● So claiming to be a software engineer is in
principle against the law

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

