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Abstract—WiFi-enabled buses and stops may form the back-
bone of a metropolitan delay tolerant network, that exploits
nearby communications, temporary storage at stops, and pre-
dictable bus mobility to deliver non-real time information.

This paper studies the problem of how to route data from
its source to its destination in order to maximize the delivery
probability by a given deadline. We assume to know the bus
schedule, but we take into account that randomness, due to road
traffic conditions or passengers boarding and alighting, affects
bus mobility. In this sense, this paper is one of the first to tackle
quasi-deterministic mobility scenarios.

We propose a simple stochastic model for bus arrivals at stops,
supported by a study of real-life traces collected in a large urban
network with 250 bus lines and about 7500 bus-stops. A succinct
graph representation of this model allows us to devise an optimal
(under our model) single-copy routing algorithm and then extend
it to cases where several copies of the same data are permitted.

Through an extensive simulation study, we compare the
optimal routing algorithm with three other approaches: mini-
mizing the expected traversal time over our graph, maximizing
the delivery probability over an infinite time-horizon, and a
recently-proposed heuristic based on bus frequencies. We show
that, in general, our optimal algorithm outperforms the three,
but it essentially reduces to either minimizing the expected
traversal time when transmissions are always successful, or
maximizing the delivery probability over an infinite time-horizon
when transmissions fail frequently. For reliable transmissions
and “reasonable” values of deadlines, the multi-copy extension
requires only 10 copies to reach almost the performance of costly
flooding approaches.

I. INTRODUCTION

We consider an opportunistic data network formed by

(some) buses and bus stops equipped with wireless devices,

e.g. based on WiFi technologies, like in DieselNet [9]. Most

of the stops act as disconnected relay nodes (the throwboxes

in [3]), and a few of them are also connected to the Internet.

Data are delivered across town following the store-carry-

forward network paradigm [29], based on multi-hop commu-

nication in which two nodes may exchange data messages

whenever they are within transmission range of each other.

A bus-based network is a convenient solution as wireless

backbone for delay tolerant applications in an urban scenario.

In fact, a public transportation system provide access to a

large set of users (e.g. the passengers themselves), and is

already designed to guarantee a coverage of the urban area,

taking into account human mobility patterns. Moreover, such

a wireless backbone is not significantly constrained by power

and/or memory limitations: a throwbox can be easily placed

on a bus and connected to its power supply, or be put in

an appropriate place in bus stops, which are usually already
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Fig. 1. High-level evaluation framework

connected to the power grid to provide lights and electronic

displays, but also in any other places where power supply

is available. Finally, travel times can be predicted from the

transportation system time-table; even if the actual times are

affected by varying road traffic conditions and passengers’

boarding and alighting times, such a backbone still provides

strong probabilistic guarantees on data delivery time that are

not common in opportunistic networks.

Indeed, this paper explores the basic question: “how to route

data over a bus-based network, from a given source to a

given destination, so that the delivery probability by a given

deadline is maximized?”. We rely on the knowledge of bus

schedule information and some stochastic characterization of

bus mobility, supported by real data traces.

We consider two classes of routing schemes over such a

network. The first class relies only on forwarding a single copy

of the data is propagated along a single path. The second class

takes advantage of multiple copies spread in the network to

increase delivery probability and reduce delivery time, albeit

with higher bandwidth usage.

Another architectural choice is between exploiting only bus-

bus contacts, only bus-stop contacts, or both types of contacts.

While the latter case should provide better performance, the

two kinds of transmission opportunities have very different

characteristics, making it hard to model both of them together

in a common framework. For example, a potential contact

between two buses traveling along orthogonal trajectories can

be completely avoided if there is even a slight delay of one

of them. On the other hand, in case of a bus-stop commu-

nication, the contact always happens eventually, but may be

delayed. Most prior art (see Sec. II) considered only bus-bus

communications. Our approach arises from considering rather

bus-stop communications (nevertheless, we briefly discuss a

bus-bus extension in Sec. VI).

Fig. 1 depicts the high-level framework used in the paper to

study routing in the proposed network. Our starting point is a

simple mobility model for buses (described in Sec. III-A), that
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is supported by the statistical analysis of a set of real traces of

the public transportation system of Turin in Italy, which serves

an area of about 200 km2 through about 7500 stops and 1500

vehicles distributed among 250 lines. These traces include the

complete schedule for a working day and the corresponding

GPS traces with the positions of all the vehicles during the

morning rush hour period (6 AM–10 AM).

This mobility model allows us to represent the transporta-

tion system appropriately in terms of a graph with independent

random weights, that we call the stop-line graph (Sec. IV).

Under this representation, our original optimization problem

to identify routes maximizing the delivery probability by a

given deadline (or maximizing the on-time delivery proba-

bility) becomes equivalent to a specific stochastic shortest

path problem on the stop-line graph. We are able to find

an optimal algorithm, called ON-TIME, for the single-copy

case (Sec. IV-A) and then to extend it for the multi-copy

case through a greedy approach (Sec. IV-C). We compare the

performance of these proposed algorithms with three other

heuristics (Sec. IV-B) that also operate on the stop-line graph:

an adaptation of the routing algorithm proposed in [28] for

bus-bus communications (we refer to it as MIN-HEADWAY),

and the two naı̈ve algorithms, MIN-DELAY, that determines

the path with the least expected weight, and MAX-PROB, that

maximizes the delivery probability on an infinite time-horizon.

Since the number of real-life traces we obtained is limited,

the comparison (Sec. V) is based on simulations carried on a

large set of synthetic traces generated on the basis of our bus

mobility model and the schedule of Turin bus system.

The paper has the following main contributions and con-

clusions. (1) Formulation of the original routing problem as a

specific stochastic shortest problem on a particular stochas-

tic graph, that is justified by a statistical analysis of real

transportation system traces. (2) Optimal (under our model)

routing scheme for the single copy case. While this offline

routing scheme has, in theory, an exponential worst-case time

complexity, in practice it is able to find the optimal route in

reasonable time, allowing each node to store an optimal pre-

selected routing plan. (3) Extensions to multi-copy case, based

on greedy approaches applied to the single-copy scheme. We

prove a tight bound of 1/k for the on-time delivery probability

in comparison to an optimal (non-greedy) k-copy scheme.

(4) Simulation analysis showing that the optimal algorithm

outperforms the MIN-HEADWAY heuristic, but it performs

as the MIN-DELAY algorithm when the there is no packet

loss, and as MAX-PROB when packet losses are significant

across the network. We provide some explanation for these

results. In this sense the conclusion is that naı̈ve heuristics

like MIN-DELAY or MAX-PROB algorithms may be very

good heuristics for routing over realistic bus transportation

networks. (5) Simulations showing that only 10 copies are

needed for a multi-copy greedy approach to reach performance

close to flooding routing policies; the latter requires at least

two order of magnitude more transmissions and copies for

each single piece of data.

II. RELATED WORK

Employing a bus network as a mobile backbone for dense

vehicular networks was first proposed in [30], using standard

routing protocols for mobile ad-hoc networks (e.g., DSR or

AODV). More recently, buses employment in a disconnected

scenario has been considered, e.g. in the seminal DieselNet

project [9]. Since our paper addresses routing in such a

network, in what follows we only mention work related to

routing issues.

Most of the research has focused on bus-bus communi-

cations [2], [8], [13], [14], [28] with the following routing

approach: Each vehicle learns at run time about its meeting

process; then, the vehicles exchange their local view with other

vehicles and use the information collected to decide how to

route data. The goals of the proposed algorithms were either to

reduce the expected delivery time or to maximize the delivery

probability. Unlike these studies, we mainly focus on bus to

stop data transfers and derive a single-copy routing algorithm

to maximize the delivery probability by a given deadline. We

then extend the algorithm to address settings where several

copies of the same data are permitted. On the other hand, we

do not consider buffer or bandwidth constraints, as they are

not a major concern in our settings: When the mobile devices

are buses (as opposed, for example, to cellular phones), it is

reasonable to assume that there is sufficient storage available;

in addition, since buses communicate with stops (as opposed

to other moving buses), the amount of data transferable during

a meeting is larger.

The use of fixed relay nodes was also considered in [3],

[4]. In [4] an architecture is proposed where bus passengers

may use the cellular network to require content that will

be delivered to access points along the bus trajectory. This

data can be replicated also on other buses, taking advantage

of possible data transfers between vehicles. Their analysis

considers only a simplistic single-street scenario and does not

address routing issues. [3] reports that the performance of a

vehicular network is improved by adding some infrastructure,

like base stations connected to the Internet, a mesh wireless

backbone, or fixed relays (which are similar to our stops) .

The most important results are (i) there are scenarios where

a mesh or relay hybrid network is a better choice over a

base station networks; (ii) deploying some infrastructure has a

much more significant effect on delivery delay than increasing

the number of mobile nodes. These findings, which were

verified both analytically and by experiments on DieselNet

testbed, support our proposed architecture that relies on an

opportunistic connectivity between vehicle nodes and fixed

relays.

In order to provide low cost Internet connectivity to fixed

kiosks in rural areas of developing counties, KioskNet archi-

tecture has been proposed [15]. In this architecture, buses carry

data between the kiosks and the gateways that are connected

to the Internet. Routing of such data is achieved by simple

flooding. On the other hand, gateways are delegated to a kiosk

via a scheduling mechanism that considers the schedule of the
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buses which serve the kiosk.

The routing algorithms proposed by [18]–[21] are intrinsi-

cally more suited for bus to bus data transfers. [19] and [21]

propose algorithms that take advantage of cyclic mobility pat-

terns, according to which nodes meet periodically, albeit with

some probability. Even if a given bus may meet multiple times

the same stop, this approach does not fit our scenario for three

reasons. First, the bus-stop contact process is not necessarily

periodic because vehicles may be assigned to different lines

during one operation day. Second, even if a vehicle operates

always on the same line, its frequency changes significantly

along the day. Third and more importantly, even when a period

may be defined, its time duration ranges from 30 minutes to

2 hours (depending mainly on the length of the bus trajectory

and on inactivity times at terminus), and it is then comparable

with the deadlines we are targeting, so that it is not possible to

take advantage of such long term periodicity. Other forms of

long-term regularities in the contact process of the different

nodes [20] are too general for our settings, since we have

significantly more information on the meetings that can be

exploited to improve the performance. Finally, [18] proposes

hierarchical routing for a deterministic network, whereas we

consider non-deterministic mobility.

Almost all the papers above have considered only small bus

networks (40 buses for DieselNet, 16 buses on a cyclic path for

MobTorrent [4]). Only [13] considers an urban setting with a

public transportation system comparable to ours (70 different

bus lines), but, differently from us, they do not use any real

mobility trace and simulate bus movement assuming that the

bus speed is chosen uniformly at random from a given interval.

From the theoretical point of view, our optimization goal

can be reformulated (under some assumptions) as a particular

stochastic shortest path problem that deals with a graph G
whose edge lengths (or equivalently, traversal times over the

edges) are random variables. Several optimality criteria were

considered in the past for routing in stochastic graphs. The

most common one is the least expected traversal time, which

can be generalized to any linear (or affine) utility function [27].

Other optimality criteria are deviance [5], monotonic quadratic

utility functions [7] and prospect-theory–based functions [16].

Recent and comprehensive surveys of the different utility

functions and corresponding solutions appear in [6], [26]. Our

paper deals with the reliability of the chosen path, namely,

finding a path which maximizes the probability of on-time

arrival (given some deadline). This problem was first studied

by Frank [12] and then was also investigated in [22]–[24] and

more recently in [10], [11], [25], [26]. Current state-of-the-art

algorithms still have exponential worst-case time complexity,

based on enumerating over some set of candidate paths [26].

Yet, our problem differs from Frank’s problem essentially in

three aspects. First, we have considered a real transportation

system and therefore we are not interested in the worst-case

complexity of some general graphs. Second, our transportation

model has two kinds of entities: stations and buses; we need

to take into account waiting time at the stops and not only

buses travel times, as explained in details in Sec. IV. Third,

all the previous work considered a single-copy model, while

our model deals also with multiple copies where the objective

is that at least one of the copies arrives at the destination before

the deadline. Finally, we observe that we use the bus network

for data transfer as it is used for passenger transfer. Thus, one

could expect that the same problem has already been addressed

in the transportation literature (see [1] for more details).

However, this is not the case: First, the possibility to exploit

multi-copy is clearly absent in the transportation of people

or merchandise. Second, the probability to miss a transfer

opportunity is also not considered in transportation, while data

transfer between two nodes may fail because of insufficient

contact duration, channel noise or collisions. Third, even for

single-copy routing, bus network passenger routes usually aim

to minimize the expected traversal time (possibly limiting the

maximum number of bus changes) and not to maximize the

delivery probability by a given deadline, as we are doing. The

fact that finally minimizing the expected traversal time may

provide almost optimal performance in some scenarios is an

a-priori unexpected finding of this research.

In conclusion, to the best of our knowledge, this is the first

paper that proposes an optimal routing algorithm that takes

advantage of bus schedule information as well as a stochastic

characterization of bus mobility, supported by real data traces.

III. MODEL DEFINITIONS AND ASSUMPTIONS

In this section, we formally define the terms and notations

we use to describe a transportation system, following the

terminology used in transportation literature.

A transportation system T has a set of stops, denoted

by S, and a set of vehicles (buses), denoted by V , which

travel between the stops according to a predetermined path

and a predetermined schedule. For each vehicle v ∈ V , the

schedule allows us to determine its trajectory, denoted traj(v),
which is the ordered sequence of stops the vehicle traverses:

traj(v) = (s0, s1, . . . sn). In addition, each vehicle v is

associated with a trip, denoted trip(v), which is a time-stamped

trajectory: trip(v) = ((s0, τ0), (s1, τ1), . . . (sn, τn)), such that

a vehicle v should arrive at stop si along its trajectory at time1

τi = τ(v, si). We distinguish between the scheduled time τi

and the actual time ti = t(v, si), which is a random variable

depending on road traffic fluctuations, passengers boarding and

alighting, etc. The difference between the actual arrival time

t(v, si) at a stop si and its corresponding scheduled arrival

time τ(v, si) is the lateness l(v, si) of the vehicle at stop si:

l(v, si) = t(v, si)− τ(v, si). Note that the lateness is negative

when the vehicle arrives earlier that its scheduled arrival. The

delay d(v, si, sj) between the stops si and sj is the change

in the lateness: d(v, si, sj) = l(v, sj) − l(v, si). The time

difference between the arrivals of a vehicle at two different

stops si and sj , is called the actual travel time between the two

1We do not introduce explicitly a departure time from the stop, because
in our paper we do not take into account bandwidth constraints so that it is
not important to specify the duration of the transmission opportunity between
a bus and a stop. Moreover from our traces it is possible to determine the
arrival time, but not the departure time.
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stops, tt(v, si, sj) = t(v, sj) − t(v, si). The scheduled travel

time is simply the difference between the scheduled arrivals

at the two stops.

A key concept in bus networks is the notion of lines, which

are basically different vehicles with the same trajectory (at

different times). Let L denotes the set of lines. For each vehicle

v ∈ V we denote its corresponding line by line(v) = {v′ ∈
V|traj(v) = traj(v′)}. Note that lines introduce an important

characteristic of a bus transportation system: if a passenger

misses a specific vehicle v, she can still catch another vehicle

v′ in line(v) and reach the same set of stops. The time between

two consecutive arrivals of vehicles belonging to the same line

at the same stop is called headway.

In the sequel, we will refer to the transportation system T
as the quintuple 〈S,V,L, τ(), t()〉, where the function τ() is a

way to represent the schedule and t() denotes a characteriza-

tion of the stochastic process of vehicle arrivals at the stops.

In the next section, we are going to start characterizing this

stochastic process.

A. Bus Mobility and Communication Models

The problem of maximizing the delivery probability by a

given deadline requires a realistic statistical characterization

of bus mobility patterns, which is also useful to generate a

large set of synthetic traces and evaluate the performance of

our routing algorithms.

Transportation literature does not provide a universally valid

model for bus movements in an urban environment, since

they are strongly affected by vehicular and passenger traffic

conditions, road organization (availability of separate lanes

for buses), traffic signal control management (priority may be

given to the approaching buses over the other traffic), company

policies (penalties to the bus drivers for delays), and so on;

details of our transportation literature survey are in [1]. Two

extreme cases can be considered: 1) buses that are late at

one stop can always recover their delay at the following stop

(speeding up and reducing their travel times), 2) buses move

almost in the same way, and they do not try to recover their

delay. The first case better describes lines with high headway,

while the second is probably more adapt for lines with short

headways, where buses try to respect a given frequency, rather

than an exact schedule2. In terms of the quantities we have

defined above, in the first case, latenesses at consecutive stops

are almost independent, while in the second case they are

highly correlated.

We have performed a statistical analysis of a one day trace

with actual bus arrivals at their stops provided to us by Turin’s

public transportation company. Due to lack of space, the

full details of this analysis appears only in the accompanied

technical report [1].

Here, we only present the following two consequences of

this analysis, and refer to them as Assumptions 1 and 2. These

hypotheses are going to be kept for granted in the rest of

2This distinction is expressly advertised by Turin public transportation
system, that label lines as frequency-based and schedule-based.

the paper and will be fundamental to develop our routing

algorithm.

Assumption 1: Bus travel times at consecutive stops are

independent (but not necessarily identically distributed; in

particular, their distribution will depend on the corresponding

scheduled value).

Assumption 2: The distribution of the waiting time at a stop

only depends on the stop and the characteristic of the departing

bus line, not on the line of the arriving bus.

We note that Assumption 2, which plays an important role

in enabling a graph representation with additive edge weights,

is partially a consequence of Assumption 1: Consider buses

moving according to the schedule, and transferring from line

ℓ1 to line ℓ2 at stop s. It is clear that the waiting time at the stop

can be evaluated a-priori on the basis of the scheduled arrival

time of the ℓ1 vehicle and the departure time of the following

ℓ2 vehicle. But under Assumption 1, arrival times of ℓ1 buses

at stop s are random variables and so are the corresponding

waiting times. Intuitively, if the variability of ℓ1 arrival times

is large in comparison to the headway3 of line ℓ2, the waiting

time will have almost the same distribution of the waiting

time seen by a Poisson observer, thus it is independent of ℓ1’s

schedule. This is also supported by our trace analysis [1].

Finally, in our scenario we assume that data transfer during a

transmission opportunity can fail. This can be due to different

causes: channel noise and collisions, but also nodes failing to

discover the communication opportunity, or contact duration

being insufficient to transfer the data. Our main assumption is

the following:

Assumption 3: The success probabilities for the message

transmissions are independent.

IV. ROUTING ALGORITHMS IN A BUS NETWORK

As mentioned before, our routing algorithms aim to define

an off-line routing for the transportation system that maxi-

mizes data delivery probability by a given deadline:

Definition 1: Given a transportation system

T = 〈S,V,L, τ(), t()〉, a source stop ss, a destination

stop sd, a start time tstart, and a deadline tstop, the on-time

delivery problem is to find a route between ss and sd that

starts after time tstart and maximizes the on-time delivery

probability, i.e. Pr{data is delivered before time tstop}.

We first discuss how we represent the transportation system

as a graph, considering the natural operation of a bus system

with transfers from buses to stops and then to buses (i.e.,

involving only bus-stop communications). The following four

issues lead to our final representation: computational com-

plexity, intrinsic properties of the bus transportation system

(namely, the existence of lines), characteristic of the stochastic

process t() (namely, waiting times in the stops depends on the

departing line), and an advantage coming from working with

additive edge weights.

Specifically, in our representation, which we call stop-line

graph Gsl = 〈Vsl, Esl〉, the nodes are (s, ℓ) pairs where s is

3According to our model the variance of the lateness increases along the
trajectory.
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Fig. 2. (a) Example of bus network with S = {A, B, C, D, E, F} and
L = {1, 2, 3, 4}: the node corresponds to a stop and the label on the edge
represents the line connecting the two stops. (b) The corresponding line-stop
graph Gsl. Dotted edges are travel edges, while dashed edges are travel-switch
edges.

a stop and ℓ is a line; (s, ℓ) ∈ Vsl if and only if line ℓ ∈ L
arrives (or depart) at stop s ∈ S. In addition, we add two nodes

ss and sd which are connected to all nodes that correspond to

the source and destination stops. The edges of Gsl are defined

as follows: An edge between (s, ℓ) and (s′, ℓ′) corresponds to

routes between stops s and s′ with line ℓ that continue from

stop s′ on line ℓ′. If ℓ = ℓ′ we call the edge a travel edge,

while if ℓ 6= ℓ′ we call it a travel-switch edge. An example of

Gsl appears in Fig. 2.

We now define the random variables associated to the edges

in Esl. The random variable of a travel edge describes the

corresponding travel time between two stops: formally, a travel

edge e = ((s, ℓ), (s′, ℓ)) is associated with the random variable

we = tt(ℓ, s, s′) describing the travel time of a line ℓ bus

from stop s to stop s′. The random variable of a travel-switch

edge includes the travel time between the corresponding stops

and the waiting time for the next line, taking into account

possible transmission failures. Formally, a travel-switch edge

e = ((s, ℓ), (s′, ℓ′)) is associated with the following random

variable we.

we =

{

+∞ with prob. pf

tt(ℓ, s, s′) + wt(ℓ′, s′, k) with prob. (1 − pf )2pk−1
f

for any k ≥ 1; here, pf is the transmission failure probability

and wt(ℓ′, s′, k) is the waiting time at stop s′ before the

arrival of the next kth bus of line ℓ′. Note that, to be able

to switch the data successfully from one bus to another, two

transmissions must succeed: the one from a bus of ℓ to s′ and

the one from s′ to a bus of ℓ′. We assume that all the random

variables defining we are known (they will be characterized

in Sec. IV-A); moreover, by Assumptions 1, 2 and 3, they are

all independent.

It is important to notice that the stop-line pair representation

provides a unified approach to deal with waiting times at

the stops, thus solving shortcoming in previous approaches

(e.g., temporal network [17], or graphs with stops as nodes

and lines as edges); further, although out of the scope of

this paper, Gsl is also usable in settings where Assumption

2 does not hold. Our model allows us to define simply the

overall traversal time of the data along a weighted path P
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traversal time; the variance of P2 is the smallest, while P3’s variance is the
largest. P1, P2 and P3 are respectively the optimal paths computed by ON-
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success probability obtained by a multi-copy approach exploiting all the three
paths.

as: tr(P) =
∑

e∈P
we. Now, given the graph Gsl, the on-

time delivery problem corresponds to finding a path P such

that Pr{tr(P) ≤ tstop−tstart} is maximized. Note that, under

this construction, our problem is similar to the problem defined

by Frank [12], with the differences highlighted at the end of

Sec. II.

A. Single-Copy Routing Algorithm and Implementation

We now turn to define our routing algorithm, called ON-

TIME, which aims at solving the on-time delivery problem.

ON-TIME finds, in general, different paths for different values

of (relative) deadline tstop − tstart. For example, Fig. 3

compares the Cumulative Distribution Functions (CDF) for

the delivery times of 3 different paths, for a given source-

destination pair and no transmission failures (pf = 0). In this

case, ON-TIME chooses one of the three paths depending on

the given deadline. Nevertheless, the larger the deadline, the

larger the resulting on-time delivery probability is.

ON-TIME works by first determining a potentially good path

between the source to the destination (for example, that with

the minimum expected traversal time), and evaluating its on-

time delivery probability. This can be done by performing a

(numerical) convolution of the different random variables dis-

tributions along the path, yielding the end-to-end traversal time

distribution. By this distribution, it is then easy to calculate

(using the corresponding CDF) the delivery probability by the

deadline.

Then, the algorithm proceeds by exploring the graph

through a breadth-first search, looking for paths with a higher

on-time delivery probability. A pruning mechanism avoids

the need to determine and evaluate all the paths. By the

associativity of the convolution operator and the fact that our

random variables are all non-negatives, for any path P and any

prefix P ′ of P , Pr{tr(P) ≤ t} ≤ Pr{tr(P ′) ≤ t}. Thus, we

can perform hop-by-hop convolution and compute, for each

resulting distribution, the probability that the weight (that is,

traversal time) of this path’s prefix is less than tstop − tstart;

if the probability is smaller than that of the current best path,

there is no need to consider the rest of the path. From a
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practical point of view, working with a real transportation

network, this simple pruning mechanism significantly reduces

the number of paths to be considered, even if theoretically we

may have a factorial number of paths to explore.

In our implementation, we have introduced some other

simplifications, which reduce the computation time, but, at

the same time, may lead to suboptimal paths. First, we have

introduced a limit h of the exploration depth during the search.

Given h as a constant, the algorithm is then guaranteed to run

in polynomial time. We observe that upon termination, we may

be able to say if the algorithm has selected the optimal path

or there may be a better one. In fact, when we stop, if there

is still some path prefix of length not larger than h such that

the pruning mechanism cannot discard it, then there could be

a longer path with higher on-time delivery probability. But if

this is not the case, then the current best candidate is actually

the optimal path. In our experiments on Turin transportation

network, h = 8 was enough to find all the best paths. Although

this value may change for other networks, we except that it

will remain a relatively small constant. Note that a suitable

h for each network can be found by conducting experiments

similar to ours.

A second simplification is that we restrict the set of eligible

paths such that each line can be used only in consecutive

edges. This prevents the algorithm to explore paths using line

ℓ1 then line ℓ2, and then again line ℓ1. We expect that these

paths have normally worse performance than those where data

message just remains on line ℓ1.

Finally, we have avoided the computation burden of per-

forming numerical convolution by assuming that the end-to-

end traversal time, which is a sum of independent random

variables, can be approximated by a normal distribution.

In this case, it is sufficient to take into account the mean

and the variance of each edge weight, conditioned on the

fact that it is finite (respectively, µe = E[we|we<∞] and

σ2
e = V ar[we|we<∞]), and the probability that the edge

weight is finite (denoted by pe). Then, the CDF of the traversal

time of path P is equal to the CDF of a normal distribution

with mean
∑

e∈P
µe and variance

∑

e∈P
σ2

e , multiplied by

a scaling factor
∏

e∈P pe. In the case of travel edges, av-

erage and variance of tt(l, s, s′) can be measured directly

on the traces. In the case of travel-switch edges, we have

to also to evaluate the average and variance of wt(ℓ, s, k)
using the first three moments of the interarrival times of

the line ℓ buses to stop s (which can be also measured

on the traces) and some basic Palm calculus. For example,

assuming perfect periodic bus arrivals with period δ and

failure probability pf , E[wt(ℓ, s, k)] = δ(1/2 + pf/(1 − pf ))
and E[wt(ℓ, s, k)2] = δ2(1/3 + 2pf/(1 − pf )2). Note that

these values can be computed for the specific arrival process

observed in bus traces.

In what follows, we evaluate the performance of ON-TIME

for different source-destination pairs under similar kind of

deadlines. If we had fixed a given deadline for all the pairs,

then this deadline could be unfeasible for some of them

(in the sense that there is no way to deliver the message

by this deadline, e.g. if the deadline is smaller than the

time a vehicle would take to move from the source to the

destination), and trivially satisfiable for other pairs (many

different paths would deliver with probability almost one).

For this reason, given a source ss, a destination sd and a real

value x ∈ [0, 100], let φ(x, ss, sd) be the deadline tstop for

which the on-time delivery probability of the path from ss to

sd with minimum expected traversal time is x% (assuming

pf = 0). We denote by ON-TIME(x) the on-time routing

algorithm where the deadline is set equal to φ(x, ss, sd) for

every source-destination pair (ss, sd). Intuitively, the smaller

x is, the “shorter” the deadlines are considered, where “short”

is in relation to the expected traversal time from ss to sd and

not in an absolute sense.

B. Other Routing Approaches

Although the algorithm we described is optimal under our

model assumptions, we also consider sub-optimal but simpler

heuristics.

The most intuitive approach (denoted as MIN-DELAY) is

to route in Gsl along the path whose expected traversal

time is minimal. Note that MIN-DELAY is equivalent to ON-

TIME(50) under the Gaussian assumption on the distribution

of the traversal time. Fig. 3 shows that path P1, found by

MIN-DELAY, does not always correspond to the highest on-

time delivery probability. On the other hand, MIN-DELAY

is computationally attractive, because the path with the least

expected traversal time can be easily computed with Dijkstra’s

algorithm (by linearity of expectation). In Sec. V, we compare

our optimal algorithm to this sub-optimal heuristic and show

that it often suffices to use this simple approach.

A second algorithm, MAX-PROB, selects the path that

maximizes the delivery probability on an infinite time-horizon.

Also this path can be determined running Dijkstra’s algorithm

on the line-stop graph with edge weights equal to − log(pe).
MAX-PROB and ON-TIME tend to select the same path, for

low transmission success probabilities, as shown at the end of

Sec. V.

Another approach, denoted MIN-HEADWAY, tries to min-

imize the sum of all lines headways along a path [28], thus

preferring frequent lines over infrequent ones; it was proposed

originally for bus-to-bus communications. In Sec. V, we show

that it has the worse performance in our settings among all

the different algorithms.

C. Extension to Multi-Copy Routing

As shown in the toy-case of Fig. 3, using a multi-copy

scheme (the curve labeled “P1 + P2 + P3”) to exploit several

paths simultaneously increases the on-time delivery probability

to deliver the data within the deadline. In this specific example,

path P2 becomes “useful” only for large deadlines, whereas

P3 is “useful” for any deadline.

For multi-copy scheme, we consider only non-flooding

algorithms, such that at most k copies of the packets are

made throughout the execution (otherwise, an optimal flooding

scheme can copy the data whenever there is a contact, namely
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in an epidemic manner, thus achieving the best possible

delivery probability).

We propose a greedy Multi-Copy algorithm for on-time

routing, denoted simply as MC-ONTIME. It computes the on-

time delivery probability of all paths in isolation and choose

the k best paths (without considering the interaction between

them). This can be easily implemented by saving the best k
paths while enumerating all possible paths as in ON-TIME.

Moreover, our pruning mechanism is changed accordingly to

consider the k-th best value discovered so far (rather the

maximum value as in the single-copy settings)4.

However, since our algorithm works in a greedy manner,

it does not consider the interaction between the paths, and

more specifically the gain in probability over previously-

selected paths (which can be very small in case the paths

overlaps). This leads to a theoretical performance degradation

with respect to an optimal, infeasible algorithm that considers

the joint-probability over all sets of paths. The following

theorem, whose proof is in [1], provides tight bounds on this

performance degradation:

Theorem 1: The MC-ONTIME algorithm always achieves

at least 1/k of the on-time delivery probability of an optimal k
multi-copy algorithm. In addition, there is a valid transporta-

tion graph for which MC-ONTIME achieves at most 1
(1−ε)k

of the on-time delivery probability of an optimal k multi-copy

algorithm, for arbitrarily small ε > 0.

The performance degradation is mainly due to path over-

lapping; consider two paths with high success probability that

differ only in one edge: MC-ONTIME will choose both paths,

while, in fact, the marginal gain in choosing the second path is

small. Thus, we consider also an algorithm that ensures that

the paths are disjoint. Namely, the MC-ONTIME-DISJOINT

algorithm iteratively chooses the path with the highest on-

time delivery probability, among all paths from source to

destination whose corresponding lines are not used by any

previously-selected path. However, we show that the worst-

case performance of MC-ONTIME-DISJOINT is the same as

MC-ONTIME. Our simulations clearly show that the MC-

ONTIME is superior in practice, and therefore this is the multi-

copy routing algorithm we consider in the sequel.5

V. PERFORMANCE EVALUATION

We consider a set of 180 source-destination (ss−sd) stop

pairs; in the first 90 pairs both the source and the destination

have been chosen uniformly at random in the entire metropoli-

tan area; in the second 90 pairs, the source ss is located in a

main transportation hub within the city center (close to the

main train station), and all the destinations sd are chosen

uniformly at random. We generate a set of 100 traces with

4When comparing to the heuristics of Sec. IV-B, we can similarly get the k
paths with minimal expected traversal time, total headway or maximal success
probability.

5MC-ONTIME-DISJOINT and MC-ONTIME are two extremes as for the
amount of overlapping between the paths. In our future research, we plan to
look also on hybrid heuristics with strict bounds on the number of overlapping
edges. While these variants yield the same 1

k
worst-case approximation, they

might be proved superior in real-life traces.
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Fig. 4. Complementary CDF of the critical time window W guaranteeing
on-time delivery probability ∈ [0.1, 0.9] for the minimum expected traversal-
time path.

the parameters obtained by the statistical analysis, covering

all 250 lines for the four hours available from the schedule.

In addition, we have developed a simulator that computes the

delivery probability of each path by averaging across these

100 traces; note that the one day real-life trace alone would

not be enough to compute this probability with any accuracy.

Data is assumed to be available at the source stop at 7 AM.

For these 180 ss−sd pairs, we start to evaluate the size of

the “critical” time window defined as W = φ(90) − φ(10):
this is the amplitude of the interval of “reasonable” deadlines

for which MIN-DELAY and ON-TIME(50) achieve delivery

probability in [0.1, 0.9]; intuitively, when considering any

deadline outside this critical time window, one is either likely

to fail or to succeed, and the randomness in the transportation

system does not play a major factor. Fig. 4 shows the inverse

CDF of W , considering the whole set of 180 pairs. For more

than 90% of ss−sd pairs, the windows is larger than ten

minutes and for more than 17% of them, it is even larger than

20 minutes. The maximum critical window size we observed

is 67 minutes. As a consequence, the time window for which

the deadline plays an important role on the delivery probability

cannot be neglected for most of these 180 ss−sd pairs.

Then, for all 180 pairs and for all 100 traces, we evaluate the

optimal paths found by the ON-TIME algorithm and compare

their theoretical on-time delivery probability with the empirical

one determined by simulations. We found a reasonable agree-

ment, even if not perfect in absolute values since in our model

we assumed that line frequency and headway distribution do

not change over time or between station along the same line;

in real-life, there are small fluctuations in these values. In

addition, while generating the synthetic traces, we introduce

some inhomogeneity in the travel time distribution to ensure

that buses maintain their order; our model, on the other hand,

considers homogeneous travel time distribution that depends

only on the scheduled travel time.

We start to compare the performance of the algorithms

defined in Sec. IV—namely, MIN-DELAY, ON-TIME, MAX-

PROB and MIN-HEADWAY—with the EPIDEMIC algorithm

that floods the network by taking advantage of all the possible

contacts (and therefore making very large number of copies).
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Fig. 5. Delivery probability (average and 90% confidence interval) for two
deadlines and different routing algorithms, for reliable transmission (pf = 0).
MIN-DELAY is the same as ON-TIME(50).

We first assume that transmissions are reliable, i.e. pf = 0.

We evaluate the actual on-time delivery probability of the

best path obtained by each algorithm; for each pair ss−sd,

we set the deadline to φ(x) for different values of x, and

we compute the 90% confidence interval of the delivery

probability considering all the possible 180 pairs. Due to the

lack of space, we will report the results only for x = 10 (“short

deadline”) and x = 50 (“average deadline”), since these cases

are representative.

Fig. 5 compares the delivery probability of the different

algorithms for the two deadlines. The gain on the delivery

probability of EPIDEMIC with respect to all the other single-

copy algorithms decreases as the deadline increases: the factor

of gain is more than 5 for deadline φ(10) and around 2-3 for

deadline φ(50). Indeed, when the deadline is large enough,

outside the critical time window, just one copy of the data

is enough, independently from the actual path found by the

specific routing algorithm; in such a case, EPIDEMIC does not

introduce any gain in terms of performance, and the cost in

terms of copies and transmissions is prohibitive (we observed

on average more than 600 copies for φ(10) and more than 900
copies for φ(50)) than the single-copy algorithms, for which

the number of transmissions for each data is on average 5.5,

and always less than 12.

ON-TIME(10) and ON-TIME(50) obtain the maximum de-

livery probability respectively, for deadline φ(10) and φ(50),
as expected. But comparing the corresponding confidence

intervals, they behave almost the same. A somewhat surprising

results is that in many cases (121 out of 180) ON-TIME(10)

performs exactly as ON-TIME(50) (or, equivalently, as MIN-

DELAY). In such cases, we verified by direct inspection

that ON-TIME(10) and ON-TIME(50) select exactly the same

optimal path.

These results have been confirmed also for other deadlines:

ON-TIME(50) usually selects the best path computed by ON-

TIME(x) for the deadline φ(x). Recall the example in Fig. 3,

showing that the best path may depend on the deadline. While

it is possible in a general setting, our experiments lead us to
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DELAY (i.e., ON-TIME(50)) and MAX-PROB for deadline φ(50) and for
different values of transmission failure probability pf .
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conclude that these cases are very rare in a real transportation

system. Thus, one can choose the path solely on the basis of

the minimum expected travel time (that is, the simple MIN-

DELAY algorithm), making it redundant to run the complex

optimal algorithm ON-TIME.

We now investigate the effect of transmission failures.

Fig. 6 shows the delivery probability for different values of

transmission failure probability pf . When pf increases, MIN-

DELAY behaves very similarly to MAX-PROB; we expect that

MAX-PROB becomes very efficient when the transmission

failures are high, since the best policy must minimize the

number of transmissions. Hence, both MIN-DELAY and MAX-

PROB appear to behave very efficiently for large pf .

We turn now to deal with multi-copy settings. Fig. 7

shows the performance of the MC-ONTIME policy, applied

to the first best pre-computed paths found by each routing

algorithm in all the considered 180 source-destination pairs,

assuming reliable transmissions (pf=0). For deadline φ(50),
ON-TIME with one copy reaches a delivery probability which

is slightly less than half (more precisely, 42% and 47%)

than the epidemic case, and few copies of MC-ONTIME

improve the performance significantly by a factor 1.7-1.9. Yet,
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after 10 copies we observe only a negligible improvement.

This is partially due to the fact that MC-ONTIME exploits a

given sequence of paths provided by the algorithms, whose

internal “diversity” among the paths is limited. Furthermore,

EPIDEMIC exploits low-probability paths that are efficient just

for the specific trace instance considered in each simulation

run; since the number of these low-probability paths can

be very large, due to the redundant connectivity of the bus

transportation system metropolitan area, there might be a high

probability that at least one of them will be used to deliver to

the destination. Note that the cost in terms of transmissions

and copies for EPIDEMIC (on average, more than 900) is two

order of magnitude larger than the multicopy approach using

a pre-selected subset of 10 paths.

VI. CONCLUSIONS

This paper lays the foundations for a framework to analyze

bus-based networks, where communication is between the

mobile buses and the stops along their trajectories. Through a

statistical analysis of traces, taken from a real transportation

system of a large urban area, we were able to obtain a succinct

stochastic graph representation of the system, and to devise

routing algorithms on this graph. In addition, we were able

to develop a synthetic trace generator, which in turn allowed

us to perform an extensive simulation study, verifying the

performance of our proposed algorithms.

An important outcome of this study is that, although differ-

ent from the optimal but computationally-intensive algorithm,

the simple MIN-DELAY algorithm achieves excellent results

in term of success probability for any reasonable deadline.

In addition, we show that increasing the number of data

copies beyond 10 does not provide any meaningful boost in

performance.

As final comment, we note that our model can be extended

to bus-bus communications by introducing some virtual stops,

located in correspondence to possible physical contact points

between two different lines. By appropriate choice of weights

on the corresponding edges (e.g., no waiting time and high

failure probability), one can capture the nature of this kind

of communication as well. The main challenge, left for future

research, is to locate the physical contact points and to bound

their number so that the running times of the algorithms remain

feasible.
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