
Simple Constrained Deformations for Geometric
Modeling and Interactive Design

Paul Borrel † Ari Rappoport ‡

† IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, borrel@waston.ibm.com
‡ Computer Science Department, The Hebrew University, Jerusalem 91904 Israel,

arir@cs.huji.ac.il

Abstract. Deformations are a powerful tool for shape modeling and design. We present
a new model for producing controlled spatial deformations, which we term Simple
Constrained Deformations (Scodef). The user defines a set of constraint points, giving a
desired displacement and radius of influence for each. Each constraint point determines
a local B-spline basis function centered at the constraint point, falling to zero for points
beyond the radius. The deformed image of any point in space is a blend of these
basis functions, using a projection matrix computed to satisfy the constraints. The
deformation operates on the whole space regardless of the representation of the objects
embedded inside the space. The constraints directly influence the final shape of the
deformed objects, and this shape can be fine-tuned by adjusting the radius of influence
of each constraint point. The computations required by the technique can be done
very efficiently, and real-time interactive deformation editing on current workstations
is possible.

Keywords. Geometric modeling, geometric design, deformation, spatial deformation,
constraints, B-splines, interpolation.

1

1 Introduction

One of the most important issues in geometric modeling is providing operations for
modifying an object’s shape. Deformations are powerful sculpting operations since
they allow high level shape modification, as opposed to manipulation of lower level
geometric entities. A particularly appealing type of deformation is the spatial defor-
mation, which operates on the whole space regardless of the representation of the de-
formed objects embedded inside the space.

Another approach to deformations is given in the context of physically-based mod-
eling [Barr89]. This approach uses physical simulation to obtain realistic shapes and
motions. The technique is very promising but has some drawbacks. Currently the ex-
pensive cost of the computations involved does not enable real-time interactive design.
In addition, the representation of objects must be one that supports such simulations
and therefore cannot be arbitrary. Finally, obtaining enough control over the final shape
of the deformed objects is difficult; using physics can limit the design space, and avoid-
ing this problem requires some sophistication [Platt88, Terzopoulos88, Celniker91].
For these reasons we chose to concentrate on purely geometric, spatial deformations.

One of the first uses of spatial deformations in the context of geometric modeling
was in [Barr84], where some specific types of deformations were introduced. However,
the general problems of arbitrarily shaped deformations and the way the user specifies
a deformation or achieves local control are not addressed.

A popular method to define spatial deformations is by using tri-variate parametric
volumes. Sederberg and Parry presented a free-form deformation (FFD) technique in
which a user manipulates control points of tri-variate Bézier volumes [Sederberg86].
The same approach, using B-spline volumes, was implemented in [Griessmair89]. Co-
quillart extended FFD to operate on volumes with a topology different from a cube
[Coquillart90]. Joy studied the applicability of tri-variate modeling, calling it paramet-
ric hyperpatch [Joy91] and providing some higher level editing operations. An inte-
gration of FFD with superquadrics for solid modeling is described in [Güdükbay90].
Chadwick et al used FFD for animation [Chadwick89].

These methods can express a very wide variety of deformations, but they force
the user to first define control points around the region of space to deform and then
manipulate these control points. This may be unnatural and tiring in case there are
many of them. In addition, tri-variate volumes are based on multiplication of three
basis functions, which may be too costly for interactive applications.

A general deformation model in which the deformation is defined by an arbitrary
number of user specified point displacement constraints is given in [Borrel92]. The sys-
tem lets the user select a solution obeying the constraints. As a result, user operations
are kept to a minimum and the resulting deformation is intuitive since its definition
only requires manipulating existing points, for example points on the surface of an
object. The technique can be used for directly manipulating free-form deformations
[Rappoport91, Hsu92].

However, the type of deformation (i.e., the nature of the mapping) is not related
to the fact that it is defined by constraints; these are only used to compute parameters

2

of a deformation function that could be computed by other means (e.g. control point
manipulation). Consequently, the shape of the deformation is not strongly correlated
with the constraints (except of the fact that they are satisfied).

In this paper we introduce a new type of deformation, which we term Simple Con-
strained Deformation (Scodef). The user defines a set of constraint points, giving a de-
sired displacement and radius of influence for each. Each constraint point determines a
local B-spline basis function centered at the constraint point, falling to zero for points
beyond the radius. The displacement of a point is a blend of these basis functions,
obtained by a linear combination that insures that all constraints are satisfied.

A Scodef deformation can be viewed as the deformation obtained by creating an
arbitrary number of possibly overlapping B-spline shaped “bumps” over the space.
The location and height of a bump are defined by a constraint and its width by the
constraints’ radius of influence. Scodef is a constraint based deformation in two senses:
first, it is defined using constraints; second, the constraints directly influence the final
shape of the deformed objects, and this shape can be fine-tuned by adjusting the radius
of influence of each constraint point.

The computations required by the technique can be done very efficiently, and real-
time interactive deformation editing on current workstations is possible.

The paper is organized as follows. Section 2 presents the Scodef deformation and
shows how to compute the deformed image of any point in space and the deformed
normal at a point on a surface. In Section 3 we study some properties of Scodef which
are important for interactive design, such as the inter-relationship between constraints.
Section 4 details some extensions to the basic Scodef model. In Section 5 we describe
our implementation of a real-time interactive deformation editor and give some exam-
ples.

2 Simple Constrained Deformation

In this section we define Scodef and show how to compute the deformed image of any
point in space and the deformed normal at a point on a surface. We also state Scodef’s
continuity properties.

2.1 The Deformation Model

Let n be the dimension of the space which is to be deformed. Scodef is defined by a
set of an arbitrary number r of constraints. Denote by Ci the position of the point in
the original space, and by Di its displacement in the deformed space. Each constraint
has a radius of influence Ri associated with it.

Let Q be a point of Rn. For conciseness, the letter Q also represents the column-
matrix of the point’s coordinates. Let d : Rn → Rn be the deformation function that
expresses the displacement d(Q) of Q. d is given by:

3

d(Q) =

r
∑

i=1

Mifi(Q) (1)

where Mi is an n dimensional column vector, and fi represents the contribution of
the i-th constraint and is a scalar function of the constraint point Ci and its radius Ri:

fi = Bi(
‖ Q − Ci ‖

Ri

)

Bi is a B-spline basis function centered at zero and dropping to zero at 1. fi is a
equal to 1 at Ci and scaled to drop to zero for all points whose distance from Ci is
greater than the radius Ri. We denote Ui(Q) = ‖Q−Ci‖

Ri
, so that fi = Bi(Ui(Q)). fi

is a function providing a local parameterization for Q with respect to the constraint Ci.
See Figure 1.

C1
C2

Q

1

Q

F1(Q)

C1−1 1

(a) (b)

Figure 1: Computing f1(U(Q)) for a constraint. f2 would be computed in the same
manner.

Equation 1 can be written concisely as d(Q) = Mf(Q) where M is an n × r

matrix whose columns are the Mi, and f(Q) is an r dimensional column vector whose
components are the fi. Each column Mi of M scales the contribution of the i-th
constraint.

2.2 Satisfying the Constraints

The deformation satisfies all the constraints by a proper choice of the matrix M . The
columns of M do not have any special meaning (such as control points in some space),
they are just computed to satisfy the constraints.

To satisfy each constraint Ci, M must be such that:

Di = d(Ci) = Mf(Ci),∀i = 1 . . . n

Let Dij be the j-th coordinate of Di. Let M j be the j-th row of M . M j is an
r-dimensional vector. Let the superscript T denote transposition. From the previous
equation, we can write:

Dij = M jf(Ci) = fT (Ci)M
jT .

4

Combining all constraints in a single equation, for the same j-th coordinate of
space, we have:

DJ (C) =





D1j

...

Drj



 =





fT (C1)

...

fT (Cr)



 M jT = XM jT (2)

where X is a r × r matrix built from the images under f of the constraint points.
Since X does not depend on j, we can build such a system of linear equations for each
space coordinate, and all these systems will contain the same matrix X . The solution
of each system is one of the rows M j of M .

Depending of the relative location of the constraint points Ci, solving these n sys-
tems may be trivial (e.g. when no Ci is within the influence zone of any other con-
straint), or may require special techniques (e.g. when two or more constraint points
Ci are coincident). This issue is discussed in detail in Section 3. For now, we simply
assume that a an inverse of X is available.

2.3 Continuity

The continuity nature of Scodef is easy to determine. Scodef maps Rn to itself using
a linear combination (defined by the matrix M) of blending functions fi. Every co-
ordinate of f is of the form fi = Bi(Ui(Q)), a composition of two functions. Ui is
infinitely differentiable everywhere except at the constraint point where it is only C1

(continuous first derivative). Bi is a B-spline basis function, hence infinitely differen-
tiable everywhere except at the knots where the continuity is at most the degree of the
B-spline minus one1. Naturally, by duplicating knots the continuity can be reduced.

If the fact that Scodef is not C2 at the constraint point is disturbing, other functions
Ui with better continuity behaviour can be used. The requirements from Ui are that it
should be zero at the constraint Ci, monotonely increasing, and larger than unity for
points at distance larger than Ri from Ci.

2.4 Deformed Normal at a Surface Point

In many applications the deformation will be applied to the surface of a 3D object.
In order to perform various calculations on the deformed surface we need a way to
compute the normal at a point d(Q). Assume that the surface is parameterized by two
parameters u, v so that Q = Q(u, v) and that we are able to compute the tangents
Tu(Q), Tv(Q) according to each parameter in the original space.

To compute the normal N(d(Q)) at a deformed point d(Q) we have to first com-
pute the tangents Tu(d(Q)), Tv(d(Q)) at this point and then take their normalized cross
product. We cannot perform the deformation on the original normal since local differ-
ential properties of the surface are not maintained under the deformation.

1We do not address the issue of geometric continuity here.

5

Computing the tangent at a surface point requires computing the Jacobian Jd(Q)

of the deformation function at that point. This is a simple consequence of the chain
rule for taking the derivative of a function:

∂

∂u
d(Q(u, v)) =

∂

∂Q
d(Q)

∂

∂u
Q(u, v) = Jd(Q)Tu(Q)

The matrix M is constant over the whole space. Recall that we denote Ui(Q) =
‖Q−Ci‖

Ri
. If we denote U(Q) = (U1(Q), · · · , Ur(Q)), Then we have

Jd(Q) =
∂

∂Q
d(Q) = M

∂f

∂Q
= M

∂f

∂U

∂U

∂Q

where ∂f
∂U

is the r× r Jacobian matrix of f(U) and ∂U
∂Q

is the r×n Jacobian matrix of
U(Q). It is easy to see that

∂fi

∂Uj

=

{

0 i 6= j
∂Bi(U)

∂U
|U=Ui

i = j

and
∂Ui

∂Qj

=

∂
∂Qj

‖ Q − Ci ‖

Ri

=
Qj − Cij

Ri ‖ Q − Ci ‖

where Cij is the j-th coordinate of the constraint point Ci. Given the derivative of a B-
spline basis function at a point, the above equations provide an easy way of computing
the Jacobian of the deformation function.

3 Scodef Properties

In this section we study some properties of Scodef which are important from the point
of view of interactive design.

3.1 Disjoint Constraints

We say that a constraint Ci influences a point Q if the distance between them is smaller
than the radius associated with the constraint: ‖ Ci − Q ‖< Ri. Two constraints are
said to be disjoint if neither one influences the other. A set of constraints is disjoint if
they are pairwise disjoint. A set of constraints is completely disjoint if their radii do
not overlap. See Figure 2.

Suppose that the constraint set C of a Scodef is disjoint. Then for every constraint
Ci we have

Uj(Ci) =
‖ Ci − Cj ‖

Rj

=

{

> 1 i 6= j

0 i = j

therefore fj(Ci) = δij , and f(Ci) = (0, · · · , 0, 1, 0, · · · , 0)T , zero at all coordinates
except of 1 at coordinate i. Recall that Mi denotes the i-th column of the projection
matrix M . We have

Di = d(Ci) = (M1, · · · ,Mr)f(Ci) = Mi.

6

(a) (b) (c)

.

Figure 2: Non disjoint (a), disjoint (b), and completely disjoint (c) constraint pairs.

The i-th column of the matrix M is equal to the displacement d(Ci) of the constraint
point Ci.

Let us now consider any point Q. We have

d(Q) =

r
∑

i=1

Bi(
‖ Ci − Q ‖

Ri

)Di

which can be phrased as follows: when the constraints are disjoint the displacement
of a point Q is a weighted average of the displacements of the constraints, the weight
being inversely proportional to the distance to a constraint.

3.2 Influence of One Constraint

Suppose there is only one constraint C1 defining the Scodef. The matrix M will have
one column, the displacement vector of the constraint, since this situation is a special
case of the analysis in the previous sub-section. For every point lying outside of the
radius of influence of the constraint, the f vector will be zero, and the point will not be
deformed, i.e. its displacement vector will be zero.

A point Q inside the radius of influence will have a non-zero f vector, which in
this case is simply a scalar s since r = 1. The displacement vector of Q is a vector in
the direction of d(C1) scaled by the scalar s. All points influenced by C1 will move
in the same direction, and the distance they move depends upon their distance to the
constraint. Note that no point will move a distance larger than the displacement of a
constraint, since s is monotonely decreasing and has its maximum on the constraint.

The above result is valid also when there are a number of constraints which are
completely disjoint. In this case the columns of M are again the displacement vectors
of the constraint, and every point in space is either influenced by one constraint or
by none of them. A Scodef defined by a set of r completely disjoint constraints can
therefore be regarded as separable into r independent Scodefs. See Figure 3 for an
example. The 2D space deformation is visualized in the figure by presenting its effect
on a regular 2D grid (this figure is a 2D figure even though it gives the impression of a
3D figure). Observe that the deformation created by the constraint on the right (marked
with an arrow) is not a one-to-one mapping.

7

Figure 3: A 2D Scodef separable into a set of three independent Scodefs, visualized by
its effect on a regular grid.

3.3 Control of the Mutual Influence of Constraints

In this sub-section we analyze the mutual influence of constraints on the deformation
and describe methods to control this influence.

3.3.1 Influence of Non Disjoint Constraints

When two constraints C1 and C2 are non disjoint, the deformation of points influenced
by both constraints is the weighted average of their contribution:

D(Q) = M1f1(Q) + M2f2(Q)

Using D1 and D2, this system is solved for M1 and M2 as explained earlier. Chang-
ing one constraint (e.g. changing D1) modifies the displacements of points that are
not within the radius of influence of that constraint because the solution of the above
system is modified, thus modifying the weight of the other constraint (i.e. M2). This
behavior may lead to non-intuitive results in the interactive editing of constraints since
changing one constraint may affect points that are far away from the constraints’ zone
of influence. See below for a solution to this problem.

3.3.2 Singularities

Assume a Scodef is defined by two constraints having the same radius of influence,
which is larger than the distance between them, and the same knot vector of their B-
splines. In this case we have f2(C1) = f1(C2) = a, so

(d(C1)d(C2)) = M

(

1 a

a 1

)

Solving this system for M yields

M1 =
1

1 − a2
d(C1) −

a

1 − a2
d(C2)

M2 =
−a

1 − a2
d(C1) +

1

1 − a2
d(C2)

Now assume that d(C1) = −d(C2), then M1 = −M2 = 1
1−a

d(C1), and

d(Q) =
d(C1)

1 − a
(B1(Q) − B2(Q))

We can draw some conclusions from the above equations.

8

• As the two constraints get closer to each other, a approaches 1 and the elements
of M get larger.

• If d(C1) 6= d(C2) and the two constraints coincide (a = 1) there is no M that
can satisfy the constraints (this is natural since it means that a single point should
have two different images under the deformation).

• Since the magnitude of d(C1) is independent of f1(Q) − f2(Q), a point Q in
the vicinity of the constraints can move very far away. Visually, space ‘tearing’
phenomena can occur when the distance between two constraints is much smaller
than the magnitude of their radii (Figure 4).

Figure 4: Space ‘tearing’ as a result of Scodef singularities. The deformation is visual-
ized here by its effect on a set of points lying on an horizontal line.

The space deformation in the neighbourhood of constraints which are close to each
other (relative to their radii) is not well behaved.

3.3.3 Improving the Control with Constraint Duplication

The two problems mentioned previously arise from the fact that the deformation is
unique given a set of constraints: the system of equations (2) is not redundant, and
the deformation is imposed by its unique solution. It would instead be more powerful
if the system had an infinity of solutions, and if the user had the ability to select one
according to his needs.

A very simple and efficient way of creating redundancy in the system, while con-
serving Scodef’s simplicity, is constraint duplication: the user has an option to declare
that a chosen constraint is duplicated. To the user, this means that this constraint now
possesses two radii instead of one. The user can manipulate both to gain finer control
over the deformation in the vicinity of that constraint.

The matrix X in equation (2) now becomes singular. In order to find a solution,
we use the pseudo-inverse of X [Bouillon71]. The pseudo-inverse is not expensive
to compute [Greville60] and gives by default the least squares solution of the system.
If needed, an optimization term could be added, as in [Borrel91], to find other solu-
tions. However, in our case we simply want to find other solutions to the initial set
of constraints, not to the system that contains the duplicated constraints. This can be
achieved by varying the radii of the duplicated constraints: every time new radii values
are provided, a new system of equations is created and solved using the standard least
square solution.

A duplicated constraint has two radii. The larger one determines the range of influ-
ence of the constraint. The smaller one intuitively determines to what extent the points

9

are influenced. Specifically, decreasing the smaller radius decreases the influence that
the constraint has on neighbouring constraints. As a result, better control is provided
on how non disjoint constraints influence each other, and the undesired oscillations of
space in the vicinity of a singularity are reduced. Figure 5 shows how the duplication
technique reduces the distortions of Figure 4.

Figure 5: The effect of a duplicated constraint.

4 Extensions

In this section we discuss two extensions to Scodef, whose goals are to enhance the
blending functions used in the deformation.

4.1 Choosing Other Interpolation Functions

The definition of Scodef given so far is based on the use of B-spline functions to inter-
polate between constraint points and undeformed regions. Although the B-spline en-
joys properties that facilitate design (e.g. continuity, local control), other interpolation
functions could be chosen as well. A useful modification of the basic B-spline function
we experimented with allows translating a whole (undeformed) chunk of space which
remains connected to the rest of the space by B-spline interpolation: the B-spline is
split into two parts which are connected around the origin by an horizontal segment.

The length of the horizontal segment is an additional parameter ri associated to
each constraint Ci. Observe that setting this parameter to zero achieves the normal
Scodef deformation. The functions fi are now replaced by:

fi(Q) =

{

1 ‖ Q − Ci ‖< ri

Bi(
‖Q−Ci‖−ri

Ri
) ‖ Q − Ci ‖> ri

4.2 Extended Radius of Influence

The definition of Scodef can be modified to accommodate even finer control of the
range of influence of a constraint. The new range treats each space coordinate differ-
ently so as to provide a-symmetric, non-isotropic deformation of space around con-
straints.

The extended radius of influence is a n dimensional column-matrix. In 3D, denote
Ri = [RixRiyRiz]

T the extended radius of influence of the i-th constraint. The new fi

function is now defined as follows:

fi =

√

(Qx − Cix)2

R2
ix

+
(Qy − Ciy)2

R2
iy

+
(Qz − Ciz)2

R2
iz

10

Changing the three components of Ri allows tuning the deformation independently
along the three space coordinates.

4.3 Local Parameterization of the Deformation

The extended radius of influence controls the shape of the deformation with respect
to the axes of a reference coordinate system. Because an object to deform may be
in arbitrary position and orientation in this coordinate system, it is more powerful to
define the shape of the deformation with respect to some coordinate system associated
to the constraint. This is called local parametrization of the deformation.

Associate to each constraint a local coordinate system, defined by n direction vec-
tors (they need not be orthogonal, although this would be the most natural case). Fur-
ther, associate a B-spline with each of these direction vectors. Together, these define a
box centered at the constraint, oriented according to the direction vectors, and whose
dimensions are the range of non-zero support of the B-splines.

The function Ui(Q,C) now computes the position of a point Q in a local coordinate
system of constraint Ci, i.e., the local coordinates of Q within the box. The function
fi(Q) is now the tensor product of the direction B-splines of Ci evaluated at the local
coordinate values.

This technique allows finer control over the deformation, but the number of B-
spline evaluations (the critical performance factor) is exactly n times as before since
fi now evaluates n B-splines instead of one. In addition, we also have the cost of
multiplying the B-spline values to obtain each coordinate of f(Q). These are n − 1

multiplications per coordinate where previously there were none.

5 Implementation

We implemented an experimental system to visualize the types of deformations achieved
by Scodef and to deform objects. The system is written in C and runs on IBM RS/6000
workstations under the AIX operating system. The user interface is implemented with
the SigVig user interface toolkit server [Emmerik91].

The system is meant to experiment with the usability of Scodef for computer-aided
design. The program is capable of importing existing object models (including models
created with the Catia2 solid modeler), interactively defining and editing constraints,
and visualizing the deformed object. Programming the Scodef required only pseudo-
inverse and B-spline evaluation routines; the rest was standard data structure manipu-
lation.

Recall that Scodef is a spatial deformation; the whole space is deformed, not only
an object embedded inside it. During interaction, an object is deformed by transform-
ing a set of points. The points are vertices of triangular meshes that approximate the
object’s surface. The user can control the accuracy of the approximation by modifying
the number of sample points on the object.

2Catia is a trademark of Dassault Systèmes.

11

It is possible to interactively modify the position and the radius of a constraint and
visualize the result in real time. This efficient performance is due to the small number
of computations that Scodef requires relative to other deformation techniques.

6 Discussion

We presented a new spatial deformation technique, termed simple constrained defor-
mation (Scodef). The deformation is defined by point displacement constraints. A
B-spline basis function is positioned at each constraint and scaled according to a radius
of influence associated with the constraint. The image of any point in space under the
deformation is a linear blend of these blending functions, computed such that the con-
straints are satisfied. The final shape of the deformation can be fine-tuned by adjusting
the radius of each constraint and the knot vectors of the B-splines. The computational
effort required by the technique is small enough to enable interactive deformation edit-
ing on current workstations.

The process of defining and obtaining the deformation is basically a process of
scattered data interpolation [Lancaster86]. Some techniques in interpolation theory,
especially the kriging method for reconstructing height fields from random samples,
resemble the Scodef model. However, they mostly emphasize mathematical properties
of the resulting interpolant which are not important for interactive design. For example,
the kriging method uses complex minimization of a functional via a covariance matrix,
and no mechanism is given for simple local control. We believe that the present paper
is the first application of such techniques for general shape design.

There are a number of issues which still have to be investigated. Currently in order
to compose two deformations of an object we apply the deformations in sequence to a
set of points lying on the object’s boundary. This amounts to a crude linear approxima-
tion of the deformations; to get closer to the real composition more accurate methods
are needed. A related issue is the visualization of the deformed object. A method such
as direct ray casting can be used to obtain visualization results which are better than
polygonal rendering.

Regarding deformations in general, a deformation model that enables curve and
area constraints (as opposed to only point constraints) should be developed. Our cur-
rent model cannot be generalized to deal with such constraints. In addition, different
deformation techniques should be compared to see which technique is applicable in
which setting. Clearly, there is a place for each of the techniques discussed in Sec-
tion 1, but their relative strengths and weaknesses for specific applications are not well
understood.

Acknowledgements

The work presented here has benefited from an earlier collaboration with Dominique
Bechmann and from insights by Jarek Rossignac. The comments of the referees have

12

greatly improved the quality of the paper.

References

[Barr84] Barr, A.H., Global and local deformations of solid primitives, Computer
Graphics 17(3):21-30, 1984, (Siggraph 84).

[Barr89] Barr, A., Witkin, A. (editors), Topics in Physically Based Modeling, ACM
Siggraph 89 course notes 30, 1989.

[Bechmann92] Bechmann, D., Dubreuil, N., Animation through space and time based
on a space deformation model, Eurographics Workshop on Animation and Sim-
ulation, 1992.

[Borrel91] Borrel, P., Bechmann, D., Deformation of n-dimensional objects, Intl.
Journal of Computational Geometry and Applications, 1(4), 1991. Also in ACM
Symposium on Solid Modeling, Austin, June 5-7, 1991, pp 351-370.

[Boullion71] Boullion, T.L., Odell, P.L., Generalized Inverse Matrices, Wiley, New-
York, 1971.

[Celniker91] Celniker, G., Gossard, D., Deformable curve and surface finite elements
for free form shape design, Computer Graphics 25(4):257-266, 1991 (Siggraph
91).

[Chadwick89] Chadwick, J.E., Haumann, D.R., Parent, R.E., Layered construction
for deformable animated characters, Computer Graphics 23(3):243-252, 1989
(Siggraph 89).

[Coquillart90] Coquillart, S., Extended free form deformation: a sculpturing tool
for 3D geometric modeling, Computer Graphics 24(4):187-193, 1990 (Siggraph
90).

[Emmerik91] Emmerik, M.J.G.M. van, Rappoport, A., SigVig: a concept for separa-
tion of application and user interface toolkit, IBM Research Report, submitted
for publication, 1991.

[Griessmair89] Griessmair, J., Purgathofer, W., Deformation of solids with trivariate
B-splines, Eurographics ’89, 137-148, 1989.

[Güdükbay90] Güdükbay, U., Özgüc, B., Free form solid modeling using deforma-
tions, Computers and Graphics, 14(3/4):491-500, 1990.

[Hsu92] Hsu, W.M., Hughes, J.F., Kaufman, H., Direct manipulation of free-form
deformations, Computer Graphics 26(2):177-184, 1992 (Siggraph 92).

13

[Joy91] Joy, K., Utilizing parametric hyperpatch methods for modeling and display
of free form solids, ACM Symposium on Solid Modeling, Austin, June 5-7, 1991,
pp. 245-254.

[Lancaster86] Lancaster, P., Salkauskas, K., Curve and Surface Fitting: an Introduc-
tion, Academic Press, 1986.

[Platt88] Platt, J., Barr., A.H., Constraints methods for flexible models, Computer
Graphics 22(4), 1988 (Siggraph 88).

[Rappoport91] Rappoport, A., About deformations, internal IBM manuscript, March
1991.

[Sederberg86] Sederberg, T.W., Parry, S.R., Free-form deformation of solid geometric
models, Computer Graphics 20(4):151-160, 1986 (SIGGRAPH ’86).

[Terzopoulos88] Terzopoulos, D., Witkin, A., Physically based methods with rigid
and deformable components, IEEE Computer Graphics and Applications 8:41-
51, 1988.

Figure 6: caption ...

14

