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Abstract

A method for computing the 3D camera motion
(the ego-motion) in a static scene is introduced, which
is based on computing the 2D image motion of a sin-
gle image region directly from image intensities. The
computed image motion of this image region is used to
register the images so that the detected image region
appears stationary. The resulting displacement �eld
for the entire scene between the registered frames is af-
fected only by the 3D translation of the camera. After
canceling the e�ects of the camera rotation by using
such 2D image registration, the 3D camera translation
is computed by �nding the focus-of-expansion in the
translation-only set of registered frames. This step is
followed by computing the camera rotation to com-
plete the computation of the ego-motion.

The presented method avoids the inherent prob-
lems in the computation of optical 
ow and of feature
matching, and does not assume any prior feature de-
tection or feature correspondence.

1 Introduction

The motion observed in an image sequence can be
caused by camera motion (ego-motion) and by mo-
tions of objects moving in the scene. In this paper we
address the case of a camera moving in a static scene.
Complete 3D motion estimation is di�cult since the
image motion at every pixel depends, in addition to
the six parameters of the camera motion, on the depth
at the corresponding scene point. To overcome this
di�culty, additional constraints are usually added to
the motion model or to the environment model.

3D motion is often estimated from the optical or
normal 
ow derived between two frames [1, 12, 22],
or from the correspondence of distinguished features
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(points, lines, contours) extracted from successive
frames [10, 13, 7]. Both approaches depend on the
accuracy of the feature detection, which can not al-
ways be assured. Methods for computing the ego-
motion directly from image intensities were also sug-
gested [11, 14].

Camera rotations and translations can induce sim-
ilar image motions [2, 8] causing ambiguities in their
interpretation. At depth discontinuities, however, it
is much easier to distinguish between the e�ects of
camera rotations and camera translations, as the im-
age motion of neighboring pixels at di�erent depths
will have similar rotational components, but di�er-
ent translational components. Motion parallax meth-
ods use this e�ect to obtain the 3D camera motion.
[18, 17, 7]. Other methods use motion parallax for
shape representation and analysis [23, 6, 9].

In this paper a method for computing the ego-
motion directly from image intensities is introduced.
At �rst only 2D image motion is extracted, and later
this 2D motion is used to simplify the computation of
the 3D ego-motion.

We use previously developed methods [15, 16] to
detect and track a single image region and to com-
pute its 2D parametric image motion. It is important
to emphasize that the 3D camera motion cannot be
recovered solely from the 2D parametric image mo-
tion of a single image region, as there are a couple of
such 3D interpretations [20]. It was shown that 3D
motion of a planar surface can be computed from its
2D a�ne motion in the image and from the motion
derivatives [21], but motion derivatives introduce sen-
sitivity to noise. Moreover, the problem of recovering
the 3D camera motion directly from the image motion
�eld is an ill-conditioned problem, since small errors in
the 2D 
ow �eld usually result in large perturbations
in the 3D motion [2].

To overcome the di�culties and ambiguities in the
computation of the ego-motion, we introduce the fol-



lowing scheme: The �rst frame is warped towards the
second frame using the computed 2D image motion at
the detected image region. This registration cancels
the e�ects of the camera rotation for the entire scene,
and the resulting image displacements between the
two registered frames are due only to the 3D transla-
tion of the camera. This translation is computed by lo-
cating the FOE (focus-of-expansion) between the two
registered frames. Once the 3D translation is known it
can be used, together with the 2D motion parameters
of the detected image region, to compute the 3D rota-
tion of the camera by solving a set of linear equations.

The 2D image region registration technique used in
this work allows easy decoupling of the translational
and rotational motions, as only motion parallax infor-
mation remains after the registration. As opposed to
other methods using motion parallax [18, 19, 17, 7],
our method does not rely on 2D motion information
computed near depth discontinuities, where it is inac-
curate, but on motion computed over an entire image.
The e�ect of motion parallax is obtained at all scene
points that are not located on the extension of the 3D
surface which corresponds to the registered image re-
gion. This gives dense parallax data, as these scene
points need not be adjacent to the registered 3D sur-
face.

The advantage of this technique is in its simplicity
and in its robustness. No prior detection and matching
are assumed, it requires solving only small sets of lin-
ear equations, and each computational step is stated
as an overdetermined problem which is numerically
stable.

2 Ego-Motion from 2D Image Motion

In this section we describe the technique for com-
puting the 3D ego-motion given the 2D parametric
motion of a single image region. The method for au-
tomatically computing the 2Dmotion of a single image
region is brie
y described in Sec. 4

2.1 Basic Model and Notations

Let (X;Y; Z) denote the Cartesian coordinates of
a scene point with respect to the camera (see Fig. 1),
and let (x; y) denote the corresponding coordinates in
the image plane. The image plane is located at the
focal length: Z = fc. The perspective projection of
a scene point P = (X;Y; Z)t on the image plane at a
point p = (x; y)t is expressed by:

p =
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The camera motion has two components: a translation
T = (TX ; TY ; TZ)

t and a rotation 
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Figure 1: The coordinate system.
The coordinate system (X;Y;Z) is attached to the cam-
era, and the corresponding image coordinates (x; y) on
the image plane are located at Z = fc. A point P =
(X;Y; Z)t in the world is projected onto an image point
p = (x; y)t. T = (TX ; TY ; TZ )

t and 
 = (
X;
Y ;
Z)
t

represent the relative translation and rotation of the
camera in the scene.

Due to the camera motion the scene point P =
(X;Y; Z)t appears to be moving relative to the camera
with rotation �
 and translation �T , and is therefore
observed at new world coordinates P

0
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)t,
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where M�
 is the matrix corresponding to a rotation
by �
.

When the �eld of view is not very large and the
camera motion has a relatively small rotation [1], the
2D displacement (u; v) of an image point (x; y) in the
image plane can be expressed by [20, 3]:
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The following is noted from Eq. (3):

� Since all translations are divided by the unknown
depth Z, only the direction of the translation can
be recovered, but not its magnitude.

� The contribution of the camera rotation to the
displacement of an image point is independent of
the depth Z of the corresponding scene point.

All points (X;Y; Z) of a planar surface in the 3D scene
satisfy a plane equation Z = A+B�X+C�Y , which can



be expressed in terms of image coordinates by using
Eq. (1) as:

1

Z
= �+ � � x+ 
 � y: (4)

In a similar manipulation to that in [1], substituting
Eq. (4) in Eq. (3) yields:�

u

v
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where:
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Eq. (5) describes the 2D parametric motion in
the image plane, expressed by eight parameters
(a; b; c; d; e; f; g; h), which corresponds to a general 3D
motion of a planar surface in the scene, assuming a
small �eld of view and a small rotation. We call
Eq. (5) a pseudo 2D projective transformation, since
under these assumptions, it is a good approximation
to the 2D projective transformation.

2.2 General Framework of the Algorithm

In this section we present a scheme which utilizes
the robustness of the 2D motion computation for com-
puting 3D motion between two consecutive frames:

1. A single image region is automatically detected,
and its 2D parametric image motion is computed
(Sec. 4).

2. The two frames are registered according to the
computed 2D parametric motion of the detected
image region. This image region stabilization can-
cels the rotational component of the camera mo-
tion for the entire scene (Sec. 2.3), and the camera
translation can now be computed from the focus-
of-expansion between the two registered frames
(Sec. 2.4).

3. The 3D rotation of the camera is now computed
(Sec. 2.5) given the 2D motion parameters of the
detected image region and the 3D translation of
the camera.

2.3 Eliminating Camera Rotation

At this stage we assume that a single image region
with a parametric 2D imagemotion has been detected,
and that the 2D image motion of that region has been
computed. The automatic detection and computation
of the 2D image motion for planar 3D surfaces is de-
scribed in Sec. 4.

Let (u(x; y); v(x; y)) denote the 2D image motion
of the entire scene from frame f1 to frame f2, and
let (us(x; y); vs(x; y)) denote the 2D image motion of
a single image region (the detected image region) be-
tween the two frames. It was mentioned in Sec. 2.1
that (us; vs) can be expressed by a 2D parametric
transformation in the image plane if the image re-
gion is an image of a planar surface in the 3D scene
(Eq. (5)). Let s denote the 3D surface of the detected
image region, with depths Zs(x; y). Note that only
the 2D motion parameters (us(x; y); vs(x; y)) of the
planar surface are known. The 3D position or motion
parameters of the planar surface are still unknown.
Let fR1 denote the frame obtained by warping the en-
tire frame f1 towards frame f2 according to the 2D
parametric transformation (us; vs) extended to the en-
tire frame. This warping will cause the image region
of the detected planar surface, as well as scene parts
which are coplanar with it, to be stationary between
fR1 and f2. In the warping process, each pixel (x; y)
in f1 is displaced by (us(x; y); vs(x; y)) to form fR1 .
3D points that are not located on the surface s (i.e.,
Z(x; y) 6= Zs(x; y)) will not be in registration between
fR1 and f2.

We will now show that the 2D image motion be-
tween the registered frames, (fR1 and f2) is a�ected
only by the camera translation T .

Let P1 = (X1; Y1; Z1)t denote the 3D scene point
projected onto p1 = (x1; y1)t in f1. According to
Eq. (1): P1 = (x1

Z1

fc
; y1

Z1

fc
; Z1)t. Due to the camera

motion (
,T ) from frame f1 to frame f2, the point P1

will be observed in frame f2 at p2 = (x2; y2)t, which
corresponds to the 3D scene point P2 = (X2; Y2; Z2)t.
According to Eq. (2):

P2 =

2
4 X2

Y2
Z2

3
5 = M�
 � P1 � T: (7)

The warping of f1 by (us; vs) to form fR1 is equivalent
to applying the camera motion (
,T ) to the 3D points
as though they are all located on the surface s (i.e.,
with depths Zs(x; y)). Let Ps denote the 3D point
on the surface s which corresponds to the pixel (x; y)
with depth Zs(x; y). Then:

Ps =

2
4 x1

Zs
fc

y1
Zs
fc

Zs

3
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Zs

Z1
�

2
4 X1

Y1
Z1

3
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Zs

Z1
� P1 : (8)

After the image warping, Ps is observed in fR1 at pR =
(xR; yR)t, which corresponds to a 3D scene point PR.



Therefore, according to Eq. (2) and Eq. (8):
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and therefore:
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Using Eq. (7) we get:
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and therefore:
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� P2 + (1�

Zs

Z1
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Eq. (9) shows that the 3D motion between PR and P2

is not a�ected by the camera rotation 
, but only by
its translation T . Moreover, it shows that PR is on
the straight line going through P2 and �T . Therefore,
the projection of PR on the image plane (pR) is on the
straight line going through the projection of P2 on the
image plane (i.e., p2) and the projection of �T on the
image plane (which is the FOE). This means that pR

is found on the radial line emerging from the FOE
towards p2. In other words, the motion between the
registered frames fR1 and f2 (i.e., pR � p2) is directed
towards, or away from, the FOE, and is therefore in-
duced by the camera translation T .

In Fig. 2, the optical 
ow is displayed before and
after registration of two frames according to the com-
puted 2D motion parameters of the image region
which corresponds to the wall at the back of the scene.
The optical 
ow is given for display purposes only, and
was not used in the registration. After registration,
the rotational component of the optical 
ow was can-
celed for the entire scene, and all 
ow vectors point
towards the real FOE (Fig. 2.c). Before registration
(Fig. 2.b) the FOE mistakenly appears to be located
elsewhere (in the middle of the frame). This is due
to the ambiguity caused by the rotation around the
Y-axis, which visually appears as a translation along
the X-axis. This ambiguity is resolved by the 2D reg-
istration.

2.4 Computing Camera Translation

Once the rotation is canceled by the registration
of the detected image region, the ambiguity between

a) b)

c) d)

Figure 2: The e�ect of region registration. The real
FOE is marked by +.
a) One of the frames.
b) The optical 
ow between two adjacent frames (be-
fore registration), overlayed on Fig. 2.a.
c) The optical 
ow after 2D registration of the wall.
The 
ow is induced by pure camera translation (after
the camera rotation was canceled), and points now to
the correct FOE.
d) The computed depth map. Bright regions corre-
spond to close objects.

image motion caused by 3D rotation and that caused
by 3D translation no longer exists. Having only cam-
era translation, the 
ow �eld is directed to, or away
from, the FOE. The computation of the 3D transla-
tion therefore becomes overdetermined and numeri-
cally stable, as the only two unknowns indicate the
location of the FOE in the image plane.

To locate the FOE, the optical 
ow between the
registered frames is computed, and the FOE is located
using a search method similar to that described in [18].
Candidates for the FOE are sampled over a half sphere
and projected onto the image plane. For each such
candidate, a global error measure is computed from
local deviations of the 
ow �eld from the radial lines
emerging from the candidate FOE. The search process
is repeated by re�ning the sampling (on the sphere)
around good FOE candidates. After a few re�nement
iterations, the FOE is taken to be the candidate with
the smallest error.

Since the problem of locating the FOE in a purely

translational 
ow �eld is a highly overdetermined
problem, the computed 
ow �eld need not be accurate.
This is opposed to most methods which try to com-
pute the ego-motion from the 
ow �eld, and require



an accurate 
ow �eld in order to resolve the rotation-
translation ambiguity.

2.5 Computing Camera Rotation

Let (a; b; c; d; e; f; g; h) be the 2D motion param-
eters of the 3D planar surface corresponding to the
detected image region, as expressed by Eq. (5). Given
these 2D motion parameters and the 3D translation
parameters of the camera (TX ; TY ; TZ), the 3D rota-
tion parameters of the camera (
X ;
Y ;
Z) (as well
as the planar surface parameters (�; �; 
)) can be ob-
tained by solving Eq. (6), which is a set of eight linear
equations in six unknowns.

>From our experience, the parameters g and h in
the pseudo 2D projective transformation, computed
by the method described in Sec. 4, are not as reliable
as the other six parameters (a; b; c; d; e; f), as g and h

are second order terms in Eq. (5). Therefore, when-
ever possible (when the set of Eq. (6) is numerically
overdetermined), we avoid using the last two equations
(for g and h), and use only the �rst six. This yields
more accurate results.

As a matter of fact, the only case in which all eight
equations of (6) must be used to recover the camera
rotation is the case when the camera translation is
parallel to the image plane (i.e., ~T 6= 0 and TZ = 0).
This is the only con�guration of camera motion in
which the �rst six equations of (6) do not su�ce for
retrieving the rotation parameters. However, if only
the �rst six equations of (6) are used (i.e., using only
the reliable parameters a; b; c; d; e; f , and disregarding
the unreliable ones, g and h), then only 
Z can be re-
covered in this case. In order to recover the two other
rotation parameters, 
X and 
Y , the second order
terms g and h must be used. This means that for the
case of an existing translation with TZ = 0, only the
translation parameters (TX ; TY ; TZ) and one rotation
parameter, 
Z (the rotation around the optical axis),
can be recovered accurately. The other two rotation
parameters, 
X and 
Y , can only be approximated.

In all other con�gurations of camera motion the
camera rotation can be reliably recovered.

2.6 Experimental Results

The camera motion (In cm) between the two
frames in Fig. 2 was: (TX ; TY ; TZ) = (1:7; 0:4; 12) and
(
X ;
Y ;
Z) = (0�;�1:8�;�3�). The computation of
the 3D motion parameters of the camera (after setting
TZ = 12) yielded: (TX ; TY ; TZ) = (1:68; 0:16; 12) and
(
X ;
Y ;
Z) = (�0:05�;�1:7�;�3:25�).

Once the 3D motion parameters of the camera
are computed, the 3D scene structure can be recon-
structed using a scheme similar to that suggested in

[11]. Correspondences between small image patches
(currently 5 � 5 pixels) are computed only along the
radial lines emerging from the FOE (taking the rota-
tions into account). The depth map is computed from
the magnitude of these displacements. In Fig. 2.d, the
computed inverse depth map of the scene ( 1

Z(x;y)) is

displayed.

3 Camera Stabilization

Once the ego-motion of the camera is determined,
this information can be used for post-imaging stabi-
lization of the sequence, as if the camera has been
mounted on a gyroscopic stabilizer.

For example, to make perfect stabilization, the im-
ages can be warped back to the original position of the
�rst image to cancel the computed 3D rotations. Since
rotation is depth-independent, such image warping is
easy to perform, resulting in a new sequence which
contains only 3D translations, and looks as if taken
from a stabilized platform. An example of such sta-
bilization is shown in Fig. 3.d . Alternatively, the ro-
tations can be �ltered by a low-pass �lter so that the
resulting sequence will appear to have only smooth
rotations, but no jitter.

4 Computing 2D Motion of a Planar
Surface

We use previously developed methods [15, 16] in
order to detect an image region corresponding to a
planar surface in the scene with its pseudo 2D projec-
tive transformation. These methods treated dynamic
scenes, in which there were assumed to be multiple
moving planar objects. The image plane was seg-
mented into the di�erently moving objects, and their
2D image motion parameters were computed.

In this work we use the 2D detection algorithm in
order to detect a single planar surface and its 2D image
motion parameters. Due to camera translation, planes
at di�erent depths or orientations will have di�erent
2D motions in the image plane, and will therefore be
identi�ed as di�erently moving planar objects. When
the scene is not piecewise planar, but contains planar
surfaces, the 2D detection algorithm still detects the
image motion of its planar regions.

In this section we describe very brie
y how the tech-
nique for detecting multiple moving planar objects
locks onto the one planar object and its 2D motion
parameters. More details appear in [15, 16].

The projected 2D image motion (u(x; y); v(x; y) of
a planar moving object in the scene can be approxi-
mated by the 2D parametric transformation of Eq. (5).
If the support R of this planar object were known in



a) b)

c) d)

Figure 3: Camera Stabilization.
a) One of the frames in the sequence.
b) The average of two frames, having both rotation and
translation. The white lines display the image motion.
c) The average of the two frames after registration of
the shirt. Only e�ects of camera translation remain.
d) The average of the two frames after recovering the
ego-motion, and canceling the camera rotation. This
results in a stabilized pair of images.

the image plane, then it would be simple to estimate
its 2D parametric image motion (u; v) between two
successive frames, I(x; y; t) and I(x; y; t + 1). This
could be done by computing the eight parameters
(a; b; c; d; e; f; g; h) of the transformation (u; v) (see
Eq. (5)) which minimize the following error function
over the region of support R [16]:

Err(t)(a; b; c; d; e; f; g; h) =
X

(x;y)2R

(uIx + vIy + It)
2:

(10)
The error minimization is performed iteratively using
a Gaussian pyramid [4, 15, 16].

Unfortunately, the region of support R of a pla-
nar object is not known in advance. Applying the er-
ror minimization technique to the entire image would
usually yield a meaningless result.

This, however, is not true for simple 2D trans-

lations, where the 2D motion can be expressed by
(u(x; y); v(x; y)) = (a; d). It was shown in [5] that
the motion parameters of a single translating image
region can be recovered accurately by minimizing the

error function Err(t)(a; d) =
P

(x;y)(uIx + vIy + It)
2

with respect to a and d over the entire image (again,
using iterations on a multiresolution data structure).
This can be done even in the presence of other mov-
ing objects in the region of analysis, and with no prior
knowledge of their regions of support. This object
is called the dominant translating object, and its 2D
translation the dominant 2D translation.

In [15, 16] this method was extended to compute
higher order 2D motions (2D a�ne, 2D projective) of
a single planar object among di�erently moving ob-
jects. A segmentation step, which marks the region
corresponding to the computed dominant 2D motion,
was added. This is the region of the dominant planar
object in the image.

The scheme for locking onto a single planar object
and its 2D image motion is gradual, where the com-
plexity of the 2D motion model is increased in each
computation step, and the segmentation of the pla-
nar object is re�ned accordingly. More details can
be found in [16] The 2D motion models used in the
gradual locking on a planar object are listed below in
increasing complexity:

1. Translation: 2 parameters, u(x; y) = a,
v(x; y) = d. This model is applied to the entire

image to get an initial motion estimation. This
computation is followed by segmentation to ob-
tain a rough estimate of the object's location.

2. A�ne: 6 parameters, u(x; y) = a + bx + cy,
v(x; y) = d+ ex+ fy. This model is applied only
to the segmented region obtained in the transla-
tion computation step, to get an a�ne approxi-
mation of the object's motion. The previous seg-
mentation is re�ned accordingly.

3. A Moving planar surface (a pseudo 2D pro-
jective transformation): 8 parameters [1, 3] (see
Eq. (5)), u(x; y) = a + bx + cy + gx2 + hxy,
v(x; y) = d+ ex+ fy + gxy + hy2. This model is
applied to the previously segmented region to fur-
ther re�ne the 2D motion estimation of the planar
object, and its segmentation.

5 Concluding Remarks

A method is for computing ego-motion in static
scenes was introduced. At �rst, an image region cor-
responding to a planar surface in the scene is de-
tected, and its 2D motion parameters between suc-
cessive frames are computed. The 2D transformation
is then used for image warping, which cancels the rota-
tional component of the 3D camera motion for the en-
tire scene, and reduces the problem to pure 3D trans-
lation. The 3D translation (the FOE) is computed



from the registered frames, and then the 3D rotation
is computed by solving a small set of linear equations.

It was shown that the ego-motion can be recovered
reliably in all cases, except for two: The case of an
entirely planar scene, and the case of an ego-motion
with a translation in the x-y plane only. The �rst case
cannot be uniquely resolved by humans either, due to
a visual ambiguity. In the second case it was shown
that only the translation parameters of the camera and
the rotation around its optical axis can be recovered
accurately. The panning parameters (rotation around
the x and y axes) can only be roughly estimated in
this special case. In all other con�gurations of camera
motion the ego-motion can be reliably recovered.

The advantage of the presented technique is in its
simplicity, and in the robustness and stability of each
computational step. The choice of an initial 2D mo-
tion model enables e�cient motion computation and
numerical stability. There are no severe restrictions
on the ego-motion or on the structure of the environ-
ment. Most steps use only image intensities, and the
optical 
ow is used only for extracting the FOE in the
case of pure 3D translation, which does not require ac-
curate optical 
ow. The inherent problems of optical

ow and of feature matching are therefore avoided.
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