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Abstract

Software quality has a significant impact, so we are interested in improving it. This

leads to two challenges - the definition of quality and identification of ways to improve

it. Therefore, we developed a methodology for the representation of ill-defined concepts

and identification of relations between them. We began with a definition of quality

and in providing metrics that quantify it. First, we explored technical aspects of software

development. We discovered large performance gaps between software projects. We found

that many code properties affect performance, but only moderately. We noticed gaps

similar to those in projects only when we studied developers. Therefore, we chose to focus

on developers and their motivation as a leading factor. We found recommendations for

increasing motivation and quantified the effect of motivation on performance in software

development. Thus, we provide a way to improve performance in the software through

improving motivation.

Now we will explain the work in more detail. Software quality has many aspects but

is difficult to quantify due to its complexity and subjective nature (e.g., user satisfaction,

giving due weight to different aspects). Sometimes software quality is assessed indirectly

through other patterns that are generally accepted as indicating low quality, such as

code smells or Self Admitted Technical Debt. It is also agreed that bugs are indicative

of low quality, as evidenced by the extensive research on defect prediction. Bugs have

been used as an indicator of quality in the past, in different variations. We developed

the Corrective Commit Probability metric, the number of corrections normalized by the

number of changes, so it is size agnostic and useful as a probability. The difference in

CCP between projects is hundreds of percents.

During the search for factors that explain the quality differences between projects, we

investigated the effect of feedback (e.g., code review) and the software structure (e.g., file

length, coupling). We then investigated which types of refactoring reduce the probability

of bug fixes. We also investigated over 170 types of static alerts.

We found that many best practices are not helpful, and that even the effect of the

helpful ones among them was only moderate. To evaluate these effects, we used a re-

duction to supervised learning, which allowed us to leverage the work done in this area.

We built models that use co-change, predicting the change in the target metric accord-
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ing to changes in the object variables. We also used monotonicity, controls, and twin

experiments in order to reduce the threat that the results are due to other factors.

Only when we examined developers we found large performance gaps, as in projects.

Thus, a simple way to achieve better performance is by better developers. However, good

developers are hard to find. An indication of this is the close levels of performance of

all programmers, of graduates of prestigious universities, and of employees of prestigious

companies. At the same time, performance is strongly influenced by motivation. Thus,

our method to improve performance goes through improving motivation.

A survey of motivation research over seventy-five years indicates that the primary

research tool is questionnaires, which suffer from many potential problems. The answers

are subjective and not necessarily related to actual behavior. The questionnaire is relevant

to a single point in time. The cost of finding respondents leads to limited scope and

therefore limited reliability and resolution.

Contrary to the use of questionnaires, we wanted to investigate motivation using

computer science methods — in a quantitative way, on the actual behavior, and based

on large data, covering a long period of time. To do this we conducted a large survey,

where we asked developers questions about motivation but also asked for their GitHub

profile. The profile allowed us to link the answers to actual behavior.

In the survey we investigated eleven motivators from the literature. We identified

validity problems such as moderate correlation between answers to related questions,

moderate correlation in answers to the same question in the original and follow-up surveys,

as well as self-promotion and errors in answers. Despite this, we found that the different

motivators do predict high motivation. Comparing the original and follow-up surveys

allowed us to discover that improvement in most motivators predicts improvement in

motivation.

To explore motivation in GitHub’s behavioral database, we need to differentiate mo-

tivated developers from others. We identify motivated developers using several labeling

functions, such as working diverse hours and writing long commit messages. We veri-

fied that the labeling functions are weak classifiers for motivation by comparing them to

answers about motivation in the survey. We did another verification using the GitHub

database, where we tested the agreement between the labeling functions in general and

the agreement in the co-change analysis.

After verifying that the functions are weak classifiers for motivation, we used them

to investigate and quantify the relationship between motivation and performance. The

difference in performance between motivated and unmotivated developers can reach hun-

dreds of percents. This gap suggests that it is very beneficial to increase motivation. We

also built a model predicting retention, identifying current developers that will stay in the

project next year. The model had higher predictive power than the model using only our
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control variables, indicating that the labeling functions have their own predictive power.

The performance of the model was high, which makes the model valuable for itself.

The methodology we developed in this research is flexible and can be applied in

many domains. It provides a way to measure fuzzy concepts that lack precise definition,

such as quality and motivation. It also allows us to leverage different definitions of the

same concept, compensating for the limitations of each individual definition. Given the

definitions of the concepts, we can explore the relationships between them beyond the

correlation, attribute changes to a person or a project, and predict the change in the

target concept (for example, performance) given a change in the source concept (for

example, motivation).
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Chapter 1

Introduction

Today, one no longer needs to establish the importance of software. Due to the importance

of software, the importance of high-quality software is derived. The impact of low quality

is usually demonstrated by catastrophes, leading to immediate large loss. In our work,

we point out that the every-day state of software development is also bad. The median

software project spends 20% of the commits on bug fixes, the equivalent of dedicating a

day in each week for rework.

However, quality is hard to define. A main contribution of our work is the ability

to represent ill-defined concepts, like quality, yet we first review existing definitions.

A common approach is using white-box code metrics like code length [51], McCabe’s

Cyclomatic Complexity (MCC) [54], Chidamber and Kemerer’s metrics (CK metrics)

[17], and others [38, 8, 61, 36]. While they tend to provide precise measurements, they

need a justification of why and how they reflect quality. Some patterns are accepted by

the community as bad: Self Admitted Technical Debt [60], code smells [25, 71], and static

analysis alerts [57, 7]. An important advantage of the code level metrics is that they are

usually actionable, and one can intervene and modify the unwanted pattern.

Another approach is product metrics, looking at the software as a black-box. Exam-

ples are software quality standards [42, 41] and properties like user satisfaction [43, 44].

Their benefit is that they represent the requirements from the software. Their downside

is that the metrics might be subjective, hard to measure, and not applicable for white-box

actionable insights.

The software development process is another source of valuable metrics. Typical

metrics are the number of commits, the commit size, the number of contributors, etc.

[35, 61, 55]. Process metrics have the advantage of showing where effort is being invested

[55, 61]. Another advantage that is important to us is that process metrics provide a point

of view that is external to the code. This facilitates an investigation of code patterns

without the threat of circular referencing.

We wanted metrics that have a desired value associated with them, as in product
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2 CHAPTER 1. INTRODUCTION

metrics, yet can be attributed to specific entities, as in code metrics. This is beneficial

since even if we cannot identify the cause of the symptom, we can limit the area to

investigate. We chose to use mainly process metrics. The application of these metrics is

versatile, and they can be measured at the project, developer, and file level, in general or

in a specific period. We developed some black-box metrics, like the Corrective Commit

Probability (CCP), which measures the effort invested in bugs, and commit duration,

measuring ease of modification. They are more related to the goal (e.g., less bugs),

yet leave the way to reach the goal unknown. Other metrics are white-box and more

actionable, like commit size, that measures coupling. As an example of the use of coupling,

consider a pair of files where one provides a function and the other uses it. Assuming that

the function should have been in the using file, the files will appear together in commits,

indicating their coupling. Moving the function to the using file will reduce the coupling,

and possibly the tendency for bugs resulting from the more complex structure.

Another contribution is development of a method for identifying beneficial recom-

mendations. Assume that high coupling is a good predictor of high CCP. However, the

predictive power might not be due to a causal relation, and the reason for the high CCP

may not be the high coupling but a different one. In order to reduce this threat, we

extended the analysis from mere predictive power. We used monotonicity to investigate

if the concept increases with the classifier (e.g., the higher the coupling, the higher the

CCP). We used controls to validate that the results are not due to confounders (e.g.,

coupling predicts CCP for different programming languages). We developed the method

of co-change analysis to model the influence of changes (An increase in coupling from the

previous year, predicts an increase in CCP).

Using this analysis, we found practical justified recommendations for quality improve-

ment [5, 4, 3, 1]. An early model based on some of the patterns predicted the project

CCP being above all projects’ median CCP with an accuracy of 68%. Hence, while there

is still a lot of uncertainty, our factors explain a significant part of CCP.

Different projects may have different CCP with a gap of hundreds of percents, which

should be explained. However, each of the factors that we investigated improves CCP in

only dozens of percents. We observed gaps of hundreds of percents in performance only

when investigating developers (Chapter 3). Hence, instead of chasing technical features

one might focus on well-performing developers. Though many talented developers exist,

we choose to focus on motivation and not on talent. This is since we expected that

motivation will be easier to influence.

Our goal was to develop a method that will allow us to leverage supervised learning

tools for motivation research. Supervised learning requires labels of the concept, which

are hard to obtain for motivation. This constraint puts us in the framework of weak

supervision, where one is required to perform supervised learning, yet the labels are
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limited in some way, from non existing, to few, noisy, etc. In order to cope with the

problem, we built labeling functions, predictors of motivation, that are only required

to be better than a guess. The labeling functions serve as a proxy for the motivation,

allowing its investigation. In order to validate that the labeling functions indeed predict

motivation we used a small set of labels that we collected in a survey.

In order to obtain labels about motivation, the survey contained questions about

it. We also asked for the GitHub profile, a key that allowed us to match developers

that answered the survey with the records describing their activity on GitHub. Our

labeling functions are defined on the GitHub dataset, hence we could match them with

the answers on motivation. We found dozens of developers in the matching of the survey

and GitHub datasets, enough to validate functions yet not to learn them. We used the

labeling functions as predictors of motivation and found that their accuracy and precision

are better than a guess, above the level required from labeling functions. This allowed

us to measure the influence of motivation on a large scale in natural activity.

After this small-scale initial validation, we used the labeling functions to validate

each other on the large scale of the GitHub dataset. We validated that they co-change

together, predict each other when the developer is factored out in twin experiments, etc.

We evaluated performance using the metrics that we developed in relation to software

quality above. We evaluate motivation using our labeling functions. When examining the

relation between motivation and performance, we investigated each metric with respect

to all four labeling functions. This reduced the threat of an accidental result due to an

artifact of one of the functions.

The survey that we conducted served us not only as a source of labels but also to

investigate motivation itself. We asked about eleven known motivators and used them

as predictors of high motivation. We did a follow up survey, asking the same developer

the same questions on the same project, a year after. This allowed us to do co-change

analysis and model how motivator improvement predicts motivation improvement. We

also examined the validity of the answers, comparing related questions, the same ques-

tion in both surveys, and answers and actual behavior. We found many amusing ways

in which answers might be wrong. However, although the validity was moderate, the

data was reliable enough to gain insights on motivation. We found out that the moti-

vators predict motivation, and improvement in most of them predicts improvement in

motivation. This led to recommendations about increasing motivation. Since motivation

tends to increase performance, the motivation increasing recommendations are expected

to increase performance too.
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1.1 Positioning Relative to Related Work

Machine learning is widely used in software engineering. Here we position our work and

explain the main difference between our approach and the common approaches. The

related work of the specific investigations that we conducted appear in the section of

each paper.

We will use defect prediction [75] as a working example of a typical use of machine

learning in software engineering. The goal of defect prediction is to identify defective

objects. The classified objects are simple (e.g., file, commit) and in typical research

only one is used. The classification is usually binary, defective or not. Defects are

identified using historical data, after they are fixed. The defect fixes themselves are

usually identified by textual analysis of commit messages [63, 21, 37]. This data is used

for training. The features used for modeling are usually code metrics. The framework is

supervised learning and the goal is merely to predict whether a defect exists. The defect

prediction use case assumes that the code owner who becomes aware of the prediction

will modify the code in order to improve it — a causality framework.

Our work differs from defect prediction in several aspects. We use continuous and not

binary metrics. This allows us to investigate stability, correlations, monotonicity, etc. We

are interested in multiple concepts, such as effort invested in bugs, productivity, and bug

detection efficiency. We examined multiple objects appearing in software development:

not only commit and file, but also project, developer, and even a developer’s activity in

a project in a given year. Even when we were interested in a single concept (e.g., moti-

vation), we used multiple metrics representing it, allowing us to investigate the relations

between them.

There is a general agreement on the importance of software quality, yet disagreement

about its essence, definition, and evaluation. In practice, it seems that the community

agrees that low quality is indicated by bugs, code smells, static analysis alerts, and Self

Admitted Technical Debt (SATD). They serve as a reference to other artifacts, though

without exact quantification and estimation of reliability and validity. An alternative

approach that was popular in early days was the quantitative evaluation of quality [12, 43],

a path that we continue. The main difference between the early work and ours is that

they considered the ability to automate metric computation as an advantage, while for

us, who mine software repositories, this is a necessity. As agreed in the community, we

use bugs as indicators of low quality. Our leading metric, Corrective Commit Probability,

is essentially normalized bug count.

Software engineering deals in construction and ways to construct better. Some of

the concepts that we consider are from the user point of view, seeing the software as a

black-box, like requiring reliability. Others are from the developer point of view, looking

for ways to improve the software structure. Works on technical debt, code smells, defect
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prediction and more suggest a framework in which an indicator is found, intervention

is done, and the situation is improved. This framework assumes causality. However,

predictive analysis often just mentions the good old “correlation is not causality” and

leaves the reader to decide whether to act upon the recommendations.

We aim to build stepping stones leading from mere correlation to causality. We

would like to reduce the likelihood of providing a recommendation whose implementation

does not lead to a benefit. But until we conduct intervention experiments, there is

still a threat of attributing the benefit of other factors to the false recommendation.

We reduce this threat by requiring additional properties beyond predictive power, like

controls, monotinicity, and predictive power in co-change.

When we moved to the domain of motivation, the major difference between us and

prior work was the methodology that we developed and used. Motivation has been inves-

tigated for years using questionnaires [53], interviews, and case studies. These methods

allow direct input from the people involved, yet rely on self-reporting which is known as

problematic, in a single point in time, and on a very small scale. An additional method-

ology is experiments which are exact yet usually investigate motivation in an artificial

setting, and on an even smaller scale due to their cost.

Mining large datasets was found to be a powerful method in many domains. But inves-

tigating motivation by mining datasets such as GitHub requires the ability to represent it

there. We provided a way to represent motivation on GitHub, adding a new research tool

that facilitates scalable, long term, high resolution, quantitative, reliable, and reproducible

research at low cost. Our motivation research was focused on OSS developers, differing

from most work that investigated the general population. However, our method can be

applied just as well to other populations, given datasets that represent their behavior.

This is a significant contribution of our work that might benefit fields besides software

engineering.

1.2 Goals and Research Questions

The attempt to improve software quality (e.g., pointing out harmful patterns [24]) is

continuous and extensive. Our work is part of this effort. One can claim that a large

portion of the work on software engineering is related to this effort. Different definitions

for quality are discussed mainly in Sections 1.1 and 4.2.

Our specific goal was to answer “Which methods help to develop high quality soft-

ware?”. To answer it, we should first answer “What is software quality?” After that,

we should investigate methods and answer “Does method X help to develop high quality

software?”.

We approached the question on a meta-level. Different people might desire different
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properties of software (e.g., good running time performance, robustness to security vul-

nerabilities). We developed a methodology enabling defining metrics of such properties

which are reliable and valid. We applied the methodology to define black-box properties

such as low CCP, and white-box ones such as low coupling. This allowed us to answer

the question “What is the quality of this software?” with respect to various properties.

People interested in a property of software are usually also interested in improving

it. Being able to answer “Does method X cause an improvement in the property?”

would be especially valuable for this need. But there is no canonical and comprehensive

definition of causality. However, one can suggest partial models of causality, evaluated

by the existence of certain attributes. We choose the following attributes, with examples

using coupling improvement as the method and CCP improvement as the software quality

metric:

• Single feature predictive power [65, 68, 46]: the ability to identify the desired con-

cept. For example, high coupling predicts high CCP.

• Monotonicity [40, 70]: An increase in the concept (or its probability), given an

increase in classifier. For example, the higher the coupling, the higher the CCP.

• Controlling [59]: have predictive power (regular or in co-change), even when con-

trolling different variables, hence validate that the influence is not due to them.

A special type of control is twins experiments, factoring out an entity (e.g., the

developer). For example, high coupling predicts high CCP, for Java, Python, etc.

• Co-change [5]: an improvement in one metric is predictive of an improvement in

another. For example, if the coupling in a project improved from the previous year,

so is the CCP.

• Full reduction to supervised learning. Using many features and controls when

building the model, both leveraging all features and considering many controls

matching. For example, a model including coupling, programming language, and

more code features predicts CCP change well, and better than a model without the

coupling.

Monotonicity was suggested in Hill’s seminal work [40]. Predictive power and controls

only partially support causality (e.g., a relation that is due to two confounders might be

misclassified). However, they are strong enough to filter out many non-causal relations

[3]. Co-change allows to identify the direction of influence between variables: A causes

B, B causes A, or A and B cause each other as in the case of multiple representations

of motivation. A reduction to a full model allows us to consider relations between all

factors. If we reach a minimal model with perfect accuracy (a very high bar), we are
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assured that no other factor influences changes and that all variables are relevant (see

Section 4.3).

This allowed us to answer questions like “Is method X likely to improve Y?” Setting Y

to be “software quality” (as measured by our chosen metric) allows us to answer questions

of the type “Is method X likely to improve software quality?”, as we wanted.

When we applied our methodology, we found many methods that had a positive yet

moderate influence. Hence, the gap in performance is large, yet there is no single silver-

bullet method that can close it. But we noticed that developers and their motivation do

exhibit large performance gaps (see Chapter 3). This led us to focus on the developer

and motivation as a powerful factor in performance improvement. Hence, we used the

same methodology to answer “Does improving motivation improve performance?” and

“How can we improve motivation?”.

Our methodology enables the use of machine learning in software engineering. In

Section 4.1 enabling finding beneficial refactoring types instead of hypothesis testing. In

Section 4.2 we provide metrics for quality, productivity, etc. that can serve as labels for

machine learning, and a way to validate new metrics. In Section 4.3 we provide a way

to predict co-change and show its relation to causality. In Section 4.4, we enable the

representation of ill-defined concepts and the investigation of relations between them.
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Chapter 2

Methodology and Research

Infrastructure

We base our methodology on the reduction of problems to supervised learning. Most of

the analysis was done on data from the BigQuery GitHub dataset. We defined metrics,

such as CCP, and used them as the concepts in supervised learning in order to model

which project properties predict them.

2.1 The BigQuery GitHub Schema

Our main dataset was GitHub data provided by Google BigQuery’s GitHub schema [33].

The schema provides the commit history and latest code version of millions of repositories.

Therefore, the domain of our work is mining software repositories (MSR).

It is important to note the dramatic influence of the use of this dataset on our work.

For years, software engineering research analyzed the same few projects. This was not

done due to laziness or indifference to the implications but since the cost of collecting the

data was huge. Effort needed to access projects is lower today but finding a proper set of

projects and collecting the relevant ones is still hard [45, 56]. We dedicated a lot of effort

to filter out irrelevant projects — forks, non software, tiny, or not up-to-date [5]. After

the filtering we ended with thousands of suitable unique large active software projects.

BigQuery is a relational database, enabling complex analysis in a few lines of SQL.

It is trivial to group metrics by various dimensions, perform twin experiments by finding

developers working in several projects and comparing them, and investigate metrics’

change over time. Not only that implementing the analysis was easy, it was based on

thousands of projects and their developers over multiple years, making the results very

robust. While other relational databases could be used too, BigQuery already has the

large dataset, provides the database as a service, and has high performance.

We also used the GitHub dataset to represent motivation and its influence. We used

9
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surveys in order to collect developers’ attitudes on motivation and build an auxiliary

dataset. We matched the survey data with the GitHub data, based on the developers’

GitHub profiles, allowing us to validate labeling functions for motivation. The labeling

functions represented motivation on the GitHub dataset, allowing us to examine the

performance metrics with respect to them.

2.2 Metrics and Labeling Functions

We wanted to base our analysis on big datasets of raw activities (e.g., a commit). Since

in most cases the specific activity and the relations between them were not the areas we

were interested in, we chose to aggregate them into metrics. A metric is a measurement

quantification into a numeric value. Examples are the average number of files in a commit

and the probability of a commit being a bug fix. On its own, if the metric is computed

correctly, it is correct. However, metrics are usually computed to represent some property.

In this case we should show that the metric indeed represents the property (e.g., the

average number of files in a commit represents coupling).

In order to benefit from a metric, we should verify that it is valid and reliable enough

for our needs. Reliability means being stable, returning similar results in similar condi-

tions. We compared the measurements of an object (e.g., a repository) in close periods

(e.g., adjacent years) [5]. We noticed that the various metrics are rather stable in a year

gap, indicating reliability.

We verify validity by comparing the metric to an indication of the concept that the

metric should measure. For example, we validated CCP, the ratio of commits that fix

bugs, by comparing it with references to “low quality” in the commit messages, Self

Admitted Technical Debt (SATD), and code smells. We also reproduced results (e.g., the

longer the code, the more bugs), to validate that CCP agrees with prior work.

We would like to reduce the investigation of motivation to supervised learning. Su-

pervised learning requires labeling of samples with the concept. In our case, we need to

label the developers in the GitHub behavior dataset according to their motivation level.

In principle, we could survey all GitHub developers and investigate their performance

given their answers about their motivation. However, using our survey we could match

the answers and behavior for only dozens of developers. Therefore, instead of limiting

the data to only these labels, we looked for labeling functions, validated heuristics that

are computable on the GitHub data and enable the labeling of additional developers.

For example, we took the distinct working hours metric. The hypothesis is that

developers who work many diverse hours are more motivated than those who work 9 to

5. We turned this metric into a binary function by setting a threshold of working in at

least 18 distinct hours of day during a year. We validated that this heuristic is a weak
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classifier (a good predictor of motivation performing better than a guess [67, 10, 62, 6])

using the matched developers from the survey. We repeated this for three additional

heuristics. Then we moved to represent the motivation of all developers using these four

validated heuristics. We further used them to validate each other for predictive power,

twins, and co-change analyses (Section 4.4). Given the validated heuristics, we moved to

investigate the performance given motivation.

2.3 Relation Identification

Once we have ways to measure concepts, we are interested in finding relations between

the concepts. Two relations are of special interest. The first relation is causal, like

showing that reduction in coupling reduces CCP. Note that while it is hard to validate

such relations, in many use cases causality is assumed. For example, the use case of static

alerts is to find an alert, fix its reason, and by that cause an improvement in the code [3].

The second relation is showing that several metrics measure the same concept, as we did

with the labeling functions for motivation. If they measure the same concept, we expect

a change in the concept to lead to a change in all metrics. Therefore, a change in one of

the metrics should be predictive of a change in the others.

Causality is not well defined so there are no exact requirements from causal relations.

For example, the intuitive definition of Lewis [50] “An event E causally depends on C

if, and only if, (i) if C had occurred, then E would have occurred, and (ii) if C had not

occurred, then E would not have occurred.” fails when (C1 or C2) causes E. Probabilistic

frameworks, like ours, require probabilistic assumptions. Different causal models might

lead to the same observational data, preventing a distinction between them. Some choose

a model by adding structural constraints and preferences.

We cope with this by using a set of properties that we expect a causal relation to have,

allowing us to filter out non-causal relations. The properties that we require are predictive

ability, additional predictive ability given controls, monotonicity, and co-change.

We start examining correlative relations using predictive ability measures (e.g., ac-

curacy, precision) [65, 68, 46]. Causality implies predictive ability (possibly in specific

contexts), hence not having predictive ability filters out non-causal relations.

It is possible that a predictive ability will exist not due to the investigated variable

but due to the influence of additional variables, confounders influencing both variables

of interest. The simplest way to detect such influence is to use control variables. For

example, if we suspect that the programming language influences the relation between

coupling and CCP, we can evaluate the relation separately for Java, Python, etc. However,

controlling a single variable cannot assure lack of a more complex influence (e.g., in new

single-developer Java projects). Since the number of options increases exponentially
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in the number of controls used simultaneously, this is not a feasible option. The VC

dimension theory [74, 73] also warns us from false results when using too many tests

on limited data. Instead, we use supervised learning trying to predict the target using

the influencing variable and controls (Section 4.4). This allows us to verify that the

influencing variable has additional predictive power and in which context the controls

change the relation between the variables.

Attributing the property to the correct object is another aspect that we are concerned

about. Given a project with high CCP, the reason might be due to the project (e.g., code

base, architecture, review processes) or due to the developers (e.g., lack of experience).

We can analyze observations in the spirit of twin experiments [72] in order to attribute the

property. Given a developer that works in two projects, we factor out the similar developer

[5]. Then we compare the probability that the developer will have a personal higher CCP,

knowing the project has a higher CCP than its twin. The higher the predictive ability,

the stronger the attribution to the project.

Note that twin experiments allow us to factor out common entities, with their possibly

unknown factors. For example, each given developer has a specific number of years of

experience. By considering the same developer activity, in the same year yet in two

different projects, we control the developer. We therefore also control the developer’s

years of experience without having to know their number.

Monotonicity [40, 70] adds to predictive ability by requiring a step by step increase

and not only a general increase in both variables together. This is since even when there

is conditional dependency between the variables, the probability of having an increase in

every step by mere chance is low.

Usually, causality is investigated in a single frozen state, for example between the

properties of a project at a given time. In co-change analysis we leverage temporal data:

we investigate project properties per year and see how a change in one metric is related

to changes in others. If A causes B in a certain context, then a change in A will lead to

a change in B in that context. If there is no causal relation (direct or indirect) between

A and B, the probability of accidental co-change is low. Therefore, co-change analysis is

important in relation identification.

An important extension of the co-change modeling is the move from a pair of variables,

possibly with controls, to a full supervised learning model (Section 4.3). Suppose that

we assume that the concept that we would like to model is a function of a known set of

variables and having the Markov property [30]. In this case, a model can be built on the

current state and the previous state (and the change in state as auxiliary variables) to

predict the change in the concept. Such a model actually predicts what a change in the

state will cause.

Such modeling deserves special attention when having two properties: high accuracy
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and minimal size. Given perfect accuracy, we are assured of the nonexistence of any other

intervening variable (see Section 4.3 for details). Minimality, as in achieving a decision

tree of minimal size, assures us that all the variables in the model are required and

influence the prediction. Achieving these properties is hard. Perfect accuracy might not

be achievable with noise. Minimality in modeling usually requires solving NP-complete

problems [19]. Achieving high accuracy using a minimal model is a common objective in

supervised learning settings and is not unique to our work.
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Chapter 3

From Technical Aspects of Code to

Developer Motivation

Here we explain the path that we took from technical aspects of software development to

motivation research. In short, the performance gaps observed between projects are high,

but the influence of each single technical aspect is relatively small. Prior work identified

large performance gaps between developers [66, 15, 14] and indeed this was the only area

where we noted large gaps in our analysis. This hints that the developer should be the

focal point for software improvement. It is known that motivation has a high impact on

performance. Therefore, we decided to investigate motivation, its causes, and its impact.

The CCP, the effort invested in fixing bugs, is more than 6 times bigger in the lowest

decile than in the top one. Hence, there is a lot to gain as a project improves its quality.

However, the improvement might require many small steps. File length, the classical

factor influencing tendency to bugs [58, 51, 28, 32] is easy to identify and in many cases

easy to fix. Files shorter than 100 lines have low CCP that increases monotonically from

that point [3]. On average, projects having short files and low coupling have CCP lower

by 25% than the median [5]. The influence of reuse is also positive yet moderate [1].

Also, out of the 170+ static analysis alerts of CheckStyle [16], only a handful seemed

to improve either CCP or commit duration, and their themes were simplicity, defensive

programming, and abstraction [3]. Even for them, the influence was moderate. Brooks

warned us that there is no “silver-bullet”, a single factor that will improve software

development by an order of magnitude [14]. Indeed, we too did not find any.

However, when observing the developers there are large performance gaps as in

projects [22, 13]. Table 3.1 shows the gaps in developers’ performance. They are large

not only in the extremes, which could be dismissed as a rare phenomenon, but also when

comparing the 25th and 75th percentiles to the median.

“Corrective Commit Prob.” computes the effort invested in fixing bugs, “Code Cou-

pling” is the average number of code files in a commit, “Test Presence” is the probability

15
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of having a test file in a commit [5]. “Commit Duration” is the average time between a

developer’s commit to the previous commit in the same day [5, 1]. “Refactor Prob.” is

the probability that a commit is a refactor (Section 4.4).

“Single File Fix Prob.” is a metric that was not discussed in our papers, so we explain

more about it here. It measures the probability that a bug fix will involve a single code

file, possibly with a test file, indicating cohesion. It has 0.64 Pearson correlation in

adjacent years, showing good stability. When using “Single File Fix Prob.” to predict

“Interface Involvement”, the precision lift is 19%, showing agreement between different

aspect of abstraction.1.

Table 3.1: Developer Performance Spread
Metric 10% 25% 50% 75% 90%

Corrective Commit Prob. 0.05 0.12 0.21 0.32 0.45
Code Coupling 0.12 0.82 1.33 1.83 2.32
Test Presence 0.00 0.01 0.08 0.22 0.36

Commit Duration 41.37 59.17 85.71 124.49 180.45
Refactor Prob. 0.01 0.07 0.14 0.24 0.35

Single File Fix Prob. 0.08 0.29 0.43 0.56 0.68

Brooks suggested employing high quality developers as a simple way to reach high

quality projects [14]. However, the ability of prestigious companies to hire such developers

and the ability of universities to train them is limited. Table 3.2 shows the average per-

formance of developers from select organizations, normalized by the value of the “Other”

group. Attribution to affiliation was done by the developer’s email address. We consid-

ered affiliations with at least 10 developers doing at least 200 commits each in a year.

Though performance might differ significantly by affiliation, the diversity is lower than in

the entire population (represented by the results in Table 3.1). There are high differences

in test presence, yet it is more a cultural norm than a skill. Low code coupling and high

single file fix probability are desirable and tend to be less influenced by project properties.

Out of all the affiliations, only RedHat and MIT show these properties (indicating good

decomposition to components), yet in very low values.

Experience improves developer skill moderately. Figure 3.1 shows the average perfor-

mance of the same developer in successive years, compared to the performance of the same

developer in the first year in that project. The highest difference is lower than 20% after

1Abstraction can be defined as a good separation between interface and implementation. We de-
veloped “Interface Involvement” in order to capture this concept. The programming languages C and
C++ have separate files for interface (header) and implementation. The convention is to use the same
file name with different extensions (e.g., ‘math.h’ for interface and ‘math.c’ for implementation). Given
a good abstraction, we expect that a change in the implementation will not require a change in the
interface. We therefore measure the probability that the interface file will be modified given that the
implementation file was modified. Low probability indicates high abstraction. Its adjacent year Pearson
correlation is 0.69.
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Table 3.2: Performance by Affiliation, relative to “Other”
Affiliation Develo-

pers
Corrective
Commit
Prob.

Code
Cou-
pling

Test
Pres-
ence

Commit
Dura-
tion

Refactor
Prob.

Single
File
Fix
Prob.

Amazon 52 0.71 1.31 1.29 1.69 0.83 0.85
Apache 366 1.15 1.14 1.79 1.26 1.12 0.95
Apple 90 1.87 1.20 2.67 1.95 1.71 1.13
Facebook 200 1.36 0.86 2.14 1.95 2.14 0.87
Google 1,677 1.91 1.06 1.72 1.67 1.41 0.91
IBM 62 0.61 1.06 1.60 1.60 0.98 0.88
Intel 122 0.86 1.13 0.80 0.91 2.46 1.39
Microsoft 320 1.31 1.09 2.03 1.50 0.91 0.82
RedHat 657 1.11 0.99 1.30 0.99 1.52 1.14
Cornell 29 0.56 1.09 0.61 0.94 0.96 1.22
Inria 38 1.01 0.66 1.10 0.85 1.25 0.64
MIT 32 1.12 0.99 1.21 1.19 0.99 1.03
Stanford 28 0.69 1.09 1.14 1.27 0.70 0.98
Uni. Michigan 28 0.96 0.94 1.14 1.04 0.87 0.89
Other 39,575 1.00 1.00 1.00 1.00 1.00 1.00

7 years. Only test presence and code coupling show a rather monotonic improvement,

and both can be improved with discipline even without an exceptional skill.

Figure 3.1: Relative performance of a developer in a given year, compared to the devel-
oper’s performance in the first year in the project.

The insights regarding developers are not new. Some even see human problems as

more important than technological ones [23, 26]. Specifically, many have investigated

motivation as an important factor in software engineering [49, 9, 27, 31]. Therefore, we

moved to investigating motivation.

Additional support for the importance of motivation came from our survey (Section
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4.3). 73% of the participants answered that motivation has more influence on their

productivity than skill (answers higher than neutral), and only 9% answered that their

skill is more influential.

We examined 11 motivators appearing in the literature and their relation to motiva-

tion. In general, motivators indeed predict high motivation and improvement in most of

them predicts motivation improvement. Hence, they provide ways to improve motivation.

Note that none of them was sufficient or required, hinting that different individuals are

motivated due to different reasons. We extended our investigation from quality to perfor-

mance in general to capture more influences of motivation (e.g., higher retention). The

impact of motivation on performance metrics was high, and these results were obtained

with four different labeling functions, increasing validity. These results are obtained on

developers in their actual work, not from lab experiments, probably exhibiting more

representative behavior.



Chapter 4

Papers

4.1 Which Refactoring Reduces Bug Rate?

Published: Amit, Idan, and Dror G. Feitelson. ”Which Refactoring Reduces Bug Rate?”

Proceedings of the Fifteenth International Conference on Predictive Models and Data

Analytics in Software Engineering. 2019.

In “Which Refactoring Reduces Bug Rate?” [4] we checked which types of refactoring,

identified by the description in the commit message, reduce CCP. We used the commit

message to extract refactoring types by linguistic themes. This led to diverse types re-

ferring to different aspects of the refactoring, like the reason for the refactoring (e.g.,

‘TODO’), the programming mechanism involved (e.g., enum), the goal (e.g., reuse), or

the process (e.g., using feedback).

Lehman’s laws of software evolution imply that quality may have a negative correla-

tion with the age of a project [47, 48]. Most refactoring types only reduce the rate of

degradation but do not avoid it. This was the first indication in our research that no

single activity is enough to improve quality. Also, refactoring that removes Self Admitted

Technical Debt (SATD) [60] (e.g., ‘TODO’ comments) is recommended. SATD provides

feedback by the developer on the code. Refactoring mentioning feedback (e.g., code re-

view or pylint) have higher probability to be beneficial, regardless of content. Hence,

feedback was found to be an important mechanism in software improvement.

This paper was the first to be published. It was published during the work on CCP,

when the term was not coined yet [5]. The paper investigates changes in bug fix rate,

which is equivalent to CCP.

19



Which Refactoring Reduces Bug Rate?
Idan Amit

idan.amit@mail.huji.ac.il
The Hebrew University of Jerusalem

Jerusalem, Israel

Dror G. Feitelson
feit@cs.huji.ac.il

The Hebrew University of Jerusalem
Jerusalem, Israel

ABSTRACT
We present a methodology to identify refactoring operations that
reduce the bug rate in the code. The methodology is based on com-
paring the bug fixing rate in certain time windows before and after
the refactoring. We analyzed 61,331 refactor commits from 1,531
large active GitHub projects. When comparing three-month win-
dows, the bug rate is substantially reduced in 17% of the files of
analyzed refactors, compared to 12% of the files in random com-
mits. Within this group, implementing ‘todo’s provides the most
benefits. Certain operations like reuse, upgrade, and using enum
and namespaces are also especially beneficial.
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1 INTRODUCTION
Our goal is to find actionable recommendations for software quality
improvement. Refactoring is an established approach to improving
code quality and promoting maintainability and continued develop-
ment [6]. Many different refactoring operations have been proposed.
But which ones provide the best benefits?

Refactors are change operations intended to improve code qual-
ity without changing functionality. We use a methodology that
analyzes changes over time. The metric we use is bug fixing rate:
Out of all the commits in a given period, what fraction are bug fixes.
We identify corrective and refactor commits using linguistic models
applied to the commit message. Once we identify the refactors, we
compare the bug-fix rate as reflected by corrective commits before
and after the refactor.
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Note that even when we see an improvement around a change,
it still doesn’t imply causality, and we cannot be sure that the
operation is recommended. The change might be accidental, or due
to other reasons. However, this methodology enables us to explore,
identify candidates, and follow up with focused experiments.

Refactors are 12% of the commits in large active GitHub projects,
but not all of them are equally suitable for analysis. Some don’t have
enough other commits around them, some involve a huge number
of files, and some are not done on identified source code. In order to
explore and identify effective refactors, we built a dataset of ‘clean’
refactors—commits of one non-test file with enough context—and
their messages. These commits were labeled as positive if they
reduced the bug-fix rate substantially. This reduces the problem
to supervised learning, where we can explore the attributes that
characterize commits that reduce the bug rate.

1.1 Related Work
Refactoring, first suggested by Opdyke [15], is “improving the de-
sign of existing code” [6]. Prior work investigated the influence
of refactoring on quality [1, 3, 4, 8, 14, 17, 19]. In general, this re-
search showed mixed results of positive and negative influence, of
small size. While prior work asks “Does refactoring have a posi-
tive influence?”, we ask “Which refactor operations have a positive
influence?”, enabling us to identify such operations.

To check the influence of refactoring one has to identify refac-
toring. Most work focused on the refactor technique. Tsantalis et al.
[18] developed RMiner for Java which has very high performance:
98% precision and 87% recall. However, they built an Abstract Syn-
tax Tree of the code in order to identify changes. We did the analysis
in Google’s BigQuery GitHub schema where the code per commit
is not available. Other approaches are manual labeling, which is
limited in scope, or Ref-Finder [9] with precision of only 35% [16].
We identify refactors and corrective commits using linguistic anal-
ysis of commit messages, an idea that is commonly used for defect
prediction [7].

1.2 Our Contribution
We present a way to find bug-rate reducing operations. We provide
scalable (analyzing millions of commits) accurate models to identify
corrective and refactor commits, based only on their messages.
We are agnostic to the refactor technique used and therefore can
explore and identify new efficient operations. We provide empirical
evidence for code rot [5, 10], and show that refactoring slows the
decay rate. This is a demonstration of Lehman’s 7th law of software
evolution, which states that software quality will appear to decline
unless it is rigorously maintained [11]. Our conclusions recommend
on refactor operations that improve quality.
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2 CHANGE IDENTIFICATION AND SCOPE
2.1 Linguistic Models for Commit Types
There are 10,845 open source projects in GitHub with 500+ commits
in 2018. We analyzed the 1,531 non-fork projects [2], since forks are
very close to their origin, are redundant, and distort the distribution.

We sampled uniformly random commits from the large active
projects. We labeled the commits following the taxonomy of Lientz
et al. [13] into corrective, adaptive, and perfective. We also labeled
refactor as a sub type of perfective. We then built a linguistic model
for commit messages, identifying positive occurrences and remov-
ing invalid ones (e.g., due to negative context, modals, or being part
of a different unrelated term). We used a test set of 1,100 samples
on which we evaluated the classifiers. The corrective model has
accuracy of 89%, precision of 84%, and recall of 69%. For the refactor
model, the accuracy is 93%, precision is 80%, and recall is 61%. For
our refactor use-case we need high precision. Moreover, knowing
the precision value enables us to estimate the real influence, con-
sidering that 20% of the hits are not refactors. Our analysis doesn’t
depend directly on the recall, yet the higher the recall, the more
cases we will have. See supplementary materials for more details.

2.2 Building a Refactors Dataset
Using the models we identified 749,603 commits as refactors. The
commits differ by their suitability to change analysis. A refactor
might be subject to noise due to few commits in context and appli-
cation to many files. We look for clean, less noisy, commits. Yet, the
more restrictive the definition of a clean refactor, the fewer cases
we have to analyze. Hence, we are in a tradeoff between quantity
and cleanness.

The following describes the 176,309 refactors done during 2018,
on which we based our decisions regarding the scope of refactors
to analyze and their context. The full distributions and generating
code are part of the supplementary materials.

First, we are interested only in refactoring done on source code.
We used the 28 major source code filename extensions, which cover
49% of GitHub files. Out of all the (file, refactor commit) pairs, 57%
belong to a major source code extension.

Another set of files that we would like to scope out are test
files, since the goal and behavior of tests is different from regular
code. Moreover, a refactor involving a test is likely to refactor the
tested file and not the test file. Since the code is not available in
BigQuery, we identify test files by matching their path with the
pattern ‘test’[12, 20], which matched 21%.

We define the context of a refactor as the commits made to the
same file before and after the refactor. In order to identify a change,
we need at least one commit before and after the refactor, and
more are needed for a robust analysis. In a context that spans three
months, 57% had fewer than 10 commits before the refactor and
56% had fewer than 10 commits after it. In a context that spans six
months the figures were 56% and 48%. Aiming for clean results we
examined the 61,331 refactor commits with at least 10 commits in
3 months on either side, and involving a single non-test file.

3 REFACTOR INFLUENCE ANALYSIS
We first explain the methodology and then present results.

3.1 Linguistic Identification of Useful
Refactors

Refactors are diverse in type, size, goal, subject, and implementation.
As we show below, their effect on bug rate has a high standard
deviation. This hints that there might be different types of refactors
with different effects.

In order to identify the most effective refactors, we retrieved the
commit messages from our refactor dataset and tokenized them. We
labeled them bywhether the refactor reduced the bug rate by at least
0.1. This enabled us to use machine learning to predict improvement
and evaluate influence. However, the number of tokens is very
high, the same semantic meaning might be represented by different
tokens, and all probabilities are subject to noise. Therefore, we used
linguistic and domain knowledge to map the tokens into groups,
e.g. considering ‘reorganizes’, ‘reorganized’ and ‘repackaging’ as
members of the ‘reorganize’ group.

3.2 Using Coupling as a Metric
Linguistic analysis as described above is based on what the devel-
oper intended to do in the refactor, and documented in the commit
message. But the refactor might fail to fulfill the intent or have other
side effects. It is therefore interesting to also look at the effect of
software properties that just happened to change. We use coupling,
which is a metric of software quality, and examine the influence of
a reduction in the coupling on the bug-fix rate.

Zimmermann et al. [21] showed that co-changes analysis, namely
files that change in the same commit, can be used to detect coupling.
We use the idea as a file-level metric for coupling based on the size
of co-changes. A commit is a unit of work ideally reflecting the
completion of a task. It should contain only the files relevant to
that task. A large number of files needed for a task means coupling.
Therefore, the metric is the average number of files in a commit.

The same approach can be applied to other software metrics
such as length, readability, and complexity.

3.3 Influence of Refactoring
In order to analyze the influence of refactors, we should first know
what happens without them. We compared the bug-fix rates of files
in two adjacent three-month windows and saw that only 42% of
the files had a lower bug-fix rate in the later window. The average
difference in the bug-fix rate is only 0.004, with standard deviation
of 0.2. Probability of improving by 0.1 or more was 12% (with 10
commits, 0.1 means one commit). These results indicate code rot,
yet show that code quality decreases slowly and with a variance
that is much larger than the change.

We present the influence of refactors in table 1. We examined
clean refactors with at least 10 commits in a three-month window
before them and in two such windows after them. The requirement
for the second window reduces the dataset by about 35%.

The average change in the bug rate is small for all refactor types,
and in all but one it is positive (an increase in bug rate). However,
the standard deviation is large, so there are many cases where the
refactoring does help. The results are sorted according to the proba-
bility of a substantial reduction in the bug rate (emphasized), where
“substantial” is taken to be at least 0.1 in a 3-month context. In all
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Table 1: Effect of refactor operations on bug rate

Metric: difference probability to improve
Avg±stddev by >0.1 by >0 by >0 by >0

Window before: 3mon 3mon 3mon 3mon 6mon
Window after: 3mon 3mon 3mon 4-6mn 6mon

Action Commits
todo 256 -0.003±0.137 0.248 0.493 0.523 0.500
feedback 149 0.005±0.137 0.228 0.479 0.407 0.419
reuse 122 0.027±0.136 0.211 0.398 0.451 0.511
upgrade 79 0.002±0.134 0.205 0.446 0.566 0.506
SE goals 995 0.003±0.137 0.205 0.485 0.527 0.506
sp/tab 358 0.000±0.132 0.202 0.486 0.469 0.499
improve 3,193 0.005±0.135 0.196 0.482 0.484 0.486
optimization 1,141 0.005±0.135 0.196 0.465 0.475 0.457
refactor 4,241 0.006±0.133 0.186 0.465 0.505 0.489
enum/ns 261 0.004±0.121 0.184 0.494 0.494 0.523
unneeded 7,167 0.001±0.129 0.180 0.501 0.496 0.502
rework 850 0.013±0.133 0.178 0.449 0.466 0.401
baseline 39,944 0.005±0.127 0.172 0.475 0.486 0.476
reorganize 423 0.013±0.144 0.168 0.410 0.487 0.462
rename 2,492 0.003±0.123 0.168 0.463 0.481 0.459
simplify 2,605 0.004±0.122 0.164 0.473 0.471 0.461
clean 595 0.009±0.134 0.162 0.460 0.482 0.482
coupling 10,180 0.028±0.133 0.135 0.403 0.447 0.459
style 196 0.036±0.137 0.132 0.397 0.470 0.420
spelling 47 0.046±0.128 0.080 0.380 0.500 0.360

cases but one this was larger than the 12% found for general com-
mits. The next column shows the probability for any improvement,
and the last two consider alternative time windows. “Commits” is
the number of refactors we analyze. Note that some of the results
are based on a small number of cases.

The rows of the table represent the refactoring operations. The
baseline row (emphasized) presents the influence of a general refac-
tor. Operations that may require explanation are ‘feedback’ - with
external feedback (human as code review or mechanical as pylint),
‘enum/ns’ - software engineering constructs like enum or names-
pace, ‘SE goals’ - explicit reference to a software goal like abstrac-
tion, ‘unneeded’ - removing unneeded code, ‘sp/tab’ - the white-
space/tabs wars common in the Python community, ‘refactor’ -
explicitly mentioning the term. ‘Coupling’ is refactors that had a
side-effect of reducing the number of non-test files in the commit
by at least one file. The rest of the operations are a textual evidence
of the name of the operation and its semantically equivalent terms.
A refactor can involve several operations.

Only one operation had a probability for improvement of 50% in
the next three months. However, in 75% of them the probability of
improvement was better than the 42% expected for general commits.
Observing the difference average and standard deviation it is clear
that all changes are small, usually reducing the quality and with a
high variance. This explains the mixed results in prior work. None
of the operations is a silver bullet or even reaches 60% probability
of improvement and a substantial reduction in bug rate.

Another result is that four to six months after the refactor many
operations are better than after one to three months. This might

suggest that a refactor disrupts the system and might cause more
bugs in the short term. But good refactors have a return on invest-
ment in the long term, and for some operations the six-month bug
rate shows improvement.

3.4 Possible Explanations
Once we can identify influential operations, the first question that
comes to mind is “Why does it influence in this way?” We don’t
claim to provide answers here but to suggest ideas that should be
investigated on their own.

The probability of reducing the bug rate by 0.1 between two 3-
month periods is 12%. Doing a refactor raises the probability to 17%.
The leading operation is ‘todo’, though based on a small number of
cases. It is interesting to further investigate why it is so influential.
A possible reason is that ‘todo’s actually reflect what the developers
themselves think should be done, based on their knowledge of the
code, and it is indeed advisable to act on this input.

‘Feedback’ and ‘SE goals’ indicate a change that is supported
by an external influence and guided. Maybe the identification of a
proper target contributes to the success. ‘Feedback’ is not a specific
change but a result of consulting, and its substantial improvement
probability is 32% higher than that of a baseline refactor.

‘Reuse’ and ‘upgrade’ should have been a free lunch, using an
already-existing component. However, the change itself led to short
term bugs and returning the investment only in the longer term.

The influence of ‘improve’ is lower, suggesting that we might not
be as good as we think in identifying needed improvements. This is
even more so with ‘clean’ and ‘reorganize’, which are slightly less
beneficial than a general refactor, and ‘rework’, which is perhaps
marginally better.

Simplification is one of the most advocated principles in software
engineering and in general. One would expect that the influence
of simplification would be high, but our results indicate it is lower
than a general refactor. It will be interesting to investigate if sim-
plification refactors indeed improve complexity metrics.

Interestingly, other than ‘rename’ and ‘unneeded’, we didn’t iden-
tify the linguistic expression of any refactor technique (e.g., ‘extract
method’, ‘pull up/down’). This might suggest that the context and
goal, and not the technique, are the cause of influence. A focused
study is needed to verify this.

Reduced coupling is slightly worse than no refactor in the first 3
months, and improves later. This might hint that a large reduction
in coupling is somewhat positive but involves destabilizing the
system.

3.5 Influence on the System and Influence of
the Developer

The linguistic exploration led to some surprising results. Consider
the removal of unneeded code, whitespace wars, style, rename, and
spelling. The compiler is indifferent to all of them, yet we see that
they have an effect. Hence, they influence via the developer, who
might make more bugs, e.g. due to confusing variable names.

The terms of whitespace wars, style, and spelling were not part
of our definition of a refactor. But their influence was big enough
to be observed in our refactor model hits. It is also possible that
developers who pay attention to style, pay attention to quality in
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general. In order to investigate their influence regardless of our
refactor model, one should develop a model for them and consider
all their occurrences.

4 THREATS TO VALIDITY
We checked differences in bug-fix rates before and after a refactor
as a measure of quality improvement. The time windows used
might be too long or too short. Since our context is rather long, it
is possible that different causes interfere with the change, a threat
we try to control by using a large number of cases.

The use of bug fixes might be misleading in case the refactor does
not lead to more bugs but helps to find bugs more efficiently. For
example, simplifying the code might reveal old bugs and increase
the future bug-fix rate.

We don’t know how a developer decides to do a refactor. How-
ever, it is not uniformly selecting a random file each day. The refac-
tors done depend on the history and goals, and this might bias our
data. If one decides to refactor a file after a period that had many
fixes by chance, the regression towards the mean might be seen
as an improvement. External causes, like a quality assurance blitz,
might also change the probability of finding and fixing a bug.

In order to analyze the refactors we needed a suitable context.
The refactors in the scope, and even more the clean refactors, are
a small part of all the refactors. A refactor done on an extensively
changing file might not represent other refactors. Finding recom-
mendable operations using clean commits and verifying them on
all commits will enable validation of the results.

The linguistic models for corrective and refactor commits were
built and estimated using labeled data sets. The models reach high
precision by not only identifying a term occurrence but also notic-
ing that “error message” and “this is a feature and not a bug” do not
indicate a corrective commit. While refactor operations are part of
the model, we don’t have a labeled data set and performance evalu-
ation for them. A text occurrence is usually positive, but validation
is needed.

5 FUTUREWORK AND CONCLUSIONS
We presented a method to identify refactor operations and evaluate
their effectiveness in reducing the bug rate. We provide results on
known refactoring operations and identify new ones.

In general, refactors are instrumental in reducing bug rates due
to code rot. A recommendation depends on the metric of inter-
est. Almost all refactor operations have a better probability for a
substantial improvement or improvement after four to six months
than a general commit. Being conservative, we recommend oper-
ations with at least 50% for improvement in the next six months:
do your ‘todo’s, remove unneeded code, aim to improve software
goals, upgrade and reuse, and use enums and namespaces.

Many other metrics can be used as both the changed metric
in the refactor or the target metric we value. Some of them have
immediate influence (e.g., a refactor that shortens a file length),
making the change cleaner and the analysis results more robust.
Many other aspects might influence the effectiveness of refactoring:
developer’s familiarity with the code, experience, file age, etc. The
high variance of influence gives hope to finding more effective

operations. Using this method, and further developing the method
itself, can lead to more actionable recommendations.

Supplementary Materials
See https://github.com/evidencebp/Which-Refactoring-Reduces-
Bug-Rate
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In this work [5] we presented metrics for software development. The main metric

of interest is the corrective commit probability (CCP), which reflects the effort invested

in fixing bugs. We also introduced commit duration for productivity, commit size for

coupling, and time to revert and time to fix a bug for bug detection efficiency.

We were surprised to note that despite the extensive work on software quality and

software development, there are no metrics suitable for our methodology of improvement

investigation. We looked for reliable metrics, that predict well a desired concept, and

can be computed in different contexts (e.g., for a developer, or for a given project in

a given year), enabling actionable intervention based on them. The desired concepts,

such as quality or productivity, are not only not well defined but also a source of many

disagreements. We cope with this by choosing metrics with value of their own (e.g., less

investment in fixing bugs, smaller commits) that are aligned with other agreed measures

of the concepts (e.g., code smell, references to coupling).

We also had to develop methodologies in order to justify our recommendations. We

introduced twin experiments in order to factor out developers. We introduced co-change

analysis, in this paper limited to a classifier, a concept, and a single control variable, in

order to investigate response to a change. These both reduce the threat of identifying

false relations and are a step towards establishing causality.
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Abstract
The effort invested in software development should ideally be devoted to the implementa-
tion of new features. But some of the effort is invariably also invested in corrective main-
tenance, that is in fixing bugs. Not much is known about what fraction of software devel-
opment work is devoted to bug fixing, and what factors affect this fraction. We suggest 
the Corrective Commit Probability (CCP), which measures the probability that a commit 
reflects corrective maintenance, as an estimate of the relative effort invested in fixing bugs. 
We identify corrective commits by applying a linguistic model to the commit messages, 
achieving an accuracy of 93%, higher than any previously reported model. We compute the 
CCP of all large active GitHub projects (7,557 projects with 200+ commits in 2019). This 
leads to the creation of an investment scale, suggesting that the bottom 10% of projects 
spend less than 6% of their total effort on bug fixing, while the top 10% of projects spend at 
least 39% of their effort on bug fixing — more than 6 times more. Being a process metric, 
CCP is conditionally independent of source code metrics, enabling their evaluation and 
investigation. Analysis of project attributes shows that lower CCP (that is, lower relative 
investment in bug fixing) is associated with smaller files, lower coupling, use of languages 
like JavaScript and C# as opposed to PHP and C++, fewer code smells, lower project age, 
better perceived quality, fewer developers, lower developer churn, better onboarding, and 
better productivity.

Keywords Corrective maintenance · Corrective commits · Effort estimate · Process metric

1 Introduction

Software quality is an important area in software engineering (Spinellis,  2006; Baggen 
et al., 2012; Stamelos et al., 2002; Ray et al., 2014; Corral & Fronza, 2015). Despite decades 
of work on this issue, there is no agreed definition of “software quality”. For some, this term 
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refers to the quality of the software product as perceived by its users (Schneidewind, 2002; 
Hackbarth et al., 2016). Others use the term in reference to the code itself, as perceived by 
developers, for example as reflected by code smells (Fowler et  al.,  1997; Van Emden & 
Moonen, 2002; Yamashita & Moonen, 2012; Khomh et al., 2009; Taba et al., 2013). Non-
functional properties of code (e.g., reliability, modifiability) were also used as quality measures 
(Boehm et al., 1976). Others include correctness as the foremost property (Dromey, 1995). 
Our approach is also that correctness is an important element of quality, and our focus is on 
the costs of removing defects.

The goal of software development is to create software that provides services and fea-
tures to its users. But part of the development effort is actually invested in fixing bugs that 
occurred in the software development process (Lientz, 1983). In fact, corrective mainte-
nance (aka fixing bugs) may represent a large fraction of software development, and may 
contribute significantly to software costs (Lientz et al., 1978; Schach et al., 2003; Boehm & 
Papaccio, 1988). It is time consuming, disrupts schedules, and hurts the reputation of soft-
ware products. Moreover, it is generally accepted that fixing bugs costs more the later they 
are found and that maintenance is costlier than initial development (Boehm, 1981; Boehm 
& Basili, 2001; Boehm & Papaccio, 1988; Dawson et al., 2010; Hackbarth et al., 2016). 
The effort invested in bug fixing therefore reflects on the health of the development pro-
cess. If you are constantly putting out fires, instead of making progress according to plan, 
your project might be in trouble.

If one were to just count fixed bugs, the comparison between a single-developer 1-week 
project and a 20-year 100-developers project would be misleading. Hence, normalization is 
needed. The natural normalization is by the total effort invested in the project. Ideally, the 
vast majority of the investment should go to development, and as little as possible on fixing 
bugs (Lientz,  1983). The literature contains vastly varying reports regarding the relative 
fraction of corrective maintenance, from 17.4% to 56.7% on average (Lientz et al., 1978; 
Schach et al., 2003; Latoza et al., 2006). Thus it is desirable to collect more data on this 
issue.

Based on these considerations, we suggest the Corrective Commit Probability (CCP, the 
probability that a given commit is a bug fix) as an estimate of the relative effort invested 
in fixing bugs. Having such data can improve our understanding of the factors that affect 
the basic attributes of software development, and specifically the division of effort between 
fixing previous problems and making progress with new features. CCP can also serve as a 
metric for the health of a project and its code. Note that we do not claim this is THE metric 
for project health. Project health is a multifaceted concept, yet a metric does not have to 
cover all possible considerations in order to be useful. We see it as a software engineering 
equivalent of blood pressure measurement. Many medical conditions are not captured by 
blood pressure. Nevertheless, it can be applied easily at scale, and helps in investigating the 
nature of the patient’s situation.

There are three main factors that may be expected to affect CCP:

– The difficulty of the domain and the application’s complexity (Sect.  8.1). The more 
complex the task, the more bugs that can be expected to be found, leading to a higher 
CCP. This is unavoidable when a project undertakes a very challenging task.

– The bug detection efficiency (Sect. 6). Higher efficiency leads to the detection of more 
bugs and a higher CCP. Thus a high CCP may reflect a conscientious organization 
which invests in code quality.

– The quality of the code (Sect. 7). High coupling (Sect. 7.3), and file length (Sect. 7.1) 
are indications of low code quality and indicate higher CCP.

818 Software Quality Journal (2021) 29:817–861
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Due to these different contributions, it is overly simplistic to label projects with a high CCP 
as potentially in trouble. However, we can study the factors that contribute to the CCP. For 
example, we find that ‘security’ projects tend to have a higher CCP than user interface ori-
ented projects. This is interpreted as reflecting the difficulty of the problem: a project that 
is intrinsically hard leads to the creation and fixing of more bugs.

We identify corrective commits using a linguistic model applied to commit messages, an 
idea that is commonly used for defect prediction (Ray et al., 2014; D’Ambros et al., 2010; 
Hall et al., 2012). The linguistic-model prediction marks commit messages as corrective 
or not, in the spirit of Ratner et al. labelling functions (Ratner et al., 2016). Though such 
predictions are not completely accurate and therefore the model hits do not always coincide 
with the true corrective commits, our accuracy is significantly higher than previous work 
(Hindle et al., 2009; Amor et al., 2006; Levin & Yehudai, 2017; Antoniol et al., 2008; Amit 
& Feitelson, 2019).

Given an implementation of the CCP metric, we perform a large-scale assessment of 
GitHub projects. We analyze all 7,557 large active projects (defined to be those with 200+  
commits in 2019, excluding redundant projects which might bias our results (Bird 
et al., 2009)). We use this, inter alia, to build the distribution of CCP, and find the ranking 
of each project relative to all others. The results indicate that significant differences occur 
between the CCP of different projects: those in the top 10% invest more than 6 times as 
much in bug fixing as those in the bottom 10%. Software developers can easily know their 
own project’s CCP. They can thus find where their project is ranked with respect to the 
community.

Note that CCP provides a retrospective assessment of a project’s state. It only applies 
after bugs are found, unlike code metrics which can be applied as the code is written. The 
CCP metric can be used as a research tool for the study of different software engineer-
ing issues. A simple approach is to observe the CCP given a certain phenomenon (e.g., 
programming language, coupling). For example, we show below that CCP appears to be 
inversely correlated with developer productivity: The average productivity is higher in low 
CCP projects.

Our main contributions in this research are as follows:

• We define the Corrective Commit Probability (CCP) metric for the relative investment 
in bug fixing. The metric is easy to compute, indifferent to programming language, and 
is applicable at all granularities.

• We develop a linguistic model to identify corrective commits that performs signifi-
cantly better than prior work and is close to human level.

• We show how to perform a maximum likelihood computation to improve the accuracy 
of the CCP estimation, also removing the dependency on the implementation of the 
linguistic model.

• We establish a scale of CCP across projects, which provides a calibration for practition-
ers who can compare their effort on bug fixing with the industry. The scale shows that 
projects in the top decile spend at least six times the effort on bug correction as projects 
in the bottom decile.

• We show that CCP correlates with various other effects, e.g. successful onboarding of 
new developers and productivity. This solidifies the scientific basis for software engi-
neering, specifically the understanding of factors that shift division of effort towards 
bug fixing.

• We present twin experiments and co-change analysis in order to investigate relations 
beyond mere correlation.
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The paper is structured as following: We present the related work (Sect. 2), explain the 
construction of CCP (Sect.  3), and in Sect.  4 presents our experimental methodology. 
The distribution of CCP is presented in Sect. 5, and the effect of detection efficiency on 
CCP in Sect. 6. Sect. 7 covers the interaction of CCP with coding practices, and Sect. 8 
the relation with the project profile. We then check to which extent the discussed fac-
tors cover CCP in Sect. 9. We end with threats to validity in Sect. 10 and conclusions in 
Sect. 11.

2  Related work

The number of bugs in a program could have been a great quality metric. However, Rice’s 
theorem (Rice, 1953) tells us that bug identification, like any non-trivial semantic property 
of programs, is undecidable. Nevertheless, bugs are being found, providing the basis for 
the CCP metric.

Capers Jones defined software quality as the combination of low defect rate and high user 
satisfaction (Jones, 1991, 2012). He went on to provide extensive state-of-the-industry sur-
veys based on defect rates and their correlation with various development practices, using 
a database of many thousands of industry projects. Our work applies these concepts to the 
world of GitHub and open source, using their accessibility to investigate defect rates’ pos-
sible causes and implications.

Software metrics can be divided into three groups: product metrics, code metrics, and 
process metrics. Product metrics consider the software as a black box. A typical example is 
the ISO/IEC 25010:2011 standard (ISO, 2011). It includes metrics like fitness for purpose, 
satisfaction, freedom from risk, etc. These metrics might be subjective, hard to measure, 
and not applicable to white box actionable insights, which makes them less suitable for our 
research goals. Indeed, studies of the ISO/IEC 9126 standard (ISO, 2001) (the precursor 
of ISO/IEC 25010) found it to be ineffective in identifying design problems (Al-Kilidar 
et al., 2005).

Code metrics measure properties of the source code directly. Typical metrics are 
lines of code (LOC) (Lipow, 1982), the Chidamber and Kemerer object-oriented met-
rics (aka CK metrics) (Chidamber & Kemerer,  1994), McCabe’s cyclomatic com-
plexity (McCabe,  1976), Halstead complexity measures (Halstead,  1977), etc. (Basili 
et al., 1996; Rahmann & Devanbu, 2013; Gyimothy et al., 2005). They tend to be spe-
cific, low level and highly correlated with LOC (Shepperd, 1988; Rosenberg, 1997; Gil 
& Lalouche, 2017; Molnar et al., 2020). Some specific bugs can be detected by match-
ing patterns in the code (Hovemeyer & Pugh, 2004). But this is not a general solution, 
since depending on it would bias our data towards these patterns.

Process metrics focus on the code’s evolution. The main data source is the source con-
trol system. Typical metrics are the number of commits, the commit size, the number of 
contributors, etc. (Graves et al.,   2000; Rahmann & Devanbu, 2013; Moser et al., 2008). 
Process metrics have been claimed to be better predictors of defects than code metrics 
for reasons like showing where effort is being invested and having less stagnation (Moser 
et al., 2008; Rahmann & Devanbu, 2013).

Working with commits as the entities of interest is also popular in just in time (JIT) 
defect prediction (Kamei et al., 2013). Unlike JIT, we are interested in the probability and 
not in a specific commit being corrective. We also focus on analyzing periods of a whole 
year, rather than comparing the versions before and after a bug fix, which probably reflects 
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an improvement. Examining results in consecutive years we show that CCP is stable, so 
projects that are prone to errors stay so, despite prior efforts to fix bugs.

Focusing on commits, we need a way to know if they are corrective. If one has access 
to both a source control system and a ticket management system, one can link the commits 
to the tickets (Bird et al., 2009) and reduce the CCP computation to mere counting. Yet, 
the links between commits and tickets might be biased (Bird et al., 2009). The ticket clas-
sification itself might have 30% errors (Herzig et al., 2013), and may not necessarily fit the 
researcher’s desired taxonomy. And integrating tickets with the code management system 
might require a lot of effort, making it infeasible when analyzing thousands of projects. 
Moreover, in a research setting the ticket management system might be unavailable, so one 
is forced to rely on only the source control system.

When labels are not available, one can use linguistic analysis of the commit messages 
as a replacement. This is often done in defect prediction, where supervised learning can 
be used to derive models based on a labeled training set (Ray et  al.,  2014; D’Ambros 
et al., 2010; Hall et al., 2012).

In principle, commit analysis models can be used to estimate the CCP, by creating a 
model and counting hits. That could have worked if the model accuracy was perfect. We 
take the model predictions and use the hit rate, the probability that the classifier will label 
a commit as corrective, and the model confusion matrix to derive a maximum likelihood 
estimate of the CCP. Without such an adaptation, the analysis might be invalid, and the hits 
of different models would have been incomparable.

Our work is also close to Software Reliability Growth Models (SRGM) (Wood, 1996; 
Graves et al.,   2000; Yamada & Osaki, 1985). In SRGM one tries to predict the number  
of future failures, based on bugs discovered so far, and assuming the code base is fixed. 
The difference between us is that we are not aiming to predict future quality. We identify 
current software quality improvement in order to investigate its causes and implications.

The number of bugs was used as a feature and indicator of quality before as absolute  
number (Khomh et  al.,  2012; Reddivari & Raman,  2019), per period (Vasilescu 
et al., 2015), and per commit (Shibab et al., 2012; Amit & Feitelson, 2019). We prefer the 
per commit version since it is agnostic to size and useful as a probability.

3  Definition and computation of the corrective commit probability

We now describe how we build the mechanism to estimate the Corrective Commit Prob-
ability, in three steps: 

1. Sect. 3.1: Constructing a gold standard data set of labeled commit samples, identifying 
those that are corrective (bug fixes). These are later used to learn about corrective com-
mits and to evaluate the model.

2. Sect. 3.2: Building and evaluating a supervised learning linguistic model to classify 
commits as either corrective or not. Applying the model to a project yields a hit rate for 
that project.

3. Sect. 3.3: Using maximum likelihood estimation in order to find the most likely CCP 
given a certain hit rate.

The need for the third step arises because the hit rate may be biased, which might falsify 
further analysis like using regression and hypothesis testing. By working with the CCP 
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maximum likelihood estimation we become independent of the model details and its hit 
rate. We can then compare the results with earlier versions of the model, or even with 
results based on other researchers’ models. We can also identify outliers deviating from 
the common linguistic behavior (e.g., non-English projects), and remove them to prevent 
erroneous analysis.

Note that we are interested in the overall probability that a commit is corrective. This is 
different from defect prediction, where the goal is to determine whether a specific commit 
is corrective. Finding the probability is easier than making detailed predictions. In analogy 
to coin tosses, we are interested only in establishing to what degree a coin is biased, rather 
than trying to predict a sequence of tosses. Thus, if for example false positives and false 
negatives are balanced, the estimated probability will be accurate even if there are many 
wrong predictions.

3.1  Building a gold standard data set

The most straightforward way to compute the CCP is to use a change log system for the 
commits and a ticket system for the commit classification (Bird et al., 2009), and compute 
the corrective ratio. However, for many projects the ticket system is not available. There-
fore, we base the commit classification on linguistic analysis, which is built and evaluated 
using a gold standard.

A gold standard is a set of entities with labels that capture a given concept. In our case, 
the entities are commits, the concept is corrective maintenance (Swanson, 1976), namely 
bug fixes, and the labels identify which commits are corrective. Gold standards are used in 
machine learning for building models, which are functions that map entities to concepts. 
By comparing the true label to the model’s prediction, one can estimate the model perfor-
mance. In addition, we also used the gold standard in order to understand the data behavior 
and to identify upper bounds on performance.

We constructed the gold standard as follows. Google’s BigQuery has a schema for 
GitHub1 were all projects’ commits are stored in a single table. We sampled uniformly 840 
(40 duplicate) commits as a train set. The first author then manually labeled these commits 
as being corrective or not based on the commit content using a defined protocol. The full 
protocol is included in the supplementary materials. In brief, fixes to documentation, style, 
typos, etc. are not considered to be bug fixes. Tangled commits, commits serving several 
goals (Herzig & Zeller, 2013; Herbold et al., 2020), are considered to be bug fixes even if 
they also include a refactor or introduce new code. Tests are considered to be a part of the 
system and its requirements. Therefore, a bug fix in the tests is a bug fix.

To assess the subjectiveness in the labeling process, two students were recruited to inde-
pendently label 400 of the commits. When there was no consensus, we checked if the rea-
son was a deviation from the protocol or an error in the labeling (e.g., missing an important 
phrase). In these cases, the annotator fixed the label. Otherwise, we considered the case as 
a disagreement and its final label was a majority vote of the annotators. The Cohen’s kappa 
scores (Cohen,  1960) among the different annotators were at least 0.9, indicating excel-
lent agreement. Similarly consistent commit labeling was reported by Levin and Yehudai 
(2017).

1 https:// conso le. cloud. google. com/ bigqu ery?d= github_ repos &p= bigqu ery- public- data& page= datas et

822 Software Quality Journal (2021) 29:817–861



1 3

Of the 400 triple-annotated commits, there was consensus regarding the labels in 383 
(95%) of them: 105 (27%) were corrective, 278 were not. There were only 17 cases of disa-
greement. An example of disagreement is “correct the name of the Pascal Stangs library.” 
It is subjective whether a wrong name is a bug.

In addition, we also noted the degree of certainty in the labeling. The message “mysql_
upgrade should look for .sql script also in share/directory” is clear, yet it is unclear whether 
the commit is a new feature or a bug fix. In only 7 cases the annotators were uncertain and 
could not determine with high confidence the label from the commit message and content. 
Of these, in 4 they all nevertheless selected the same label.

Two of the samples (0.5%) were not in English. This prevents English linguistic models 
from producing a meaningful classification.

Finally, in 4 cases (1%) the commit message did not contain any syntactic evidence for 
being corrective. The most amusing example was “When I copy-adapted handle_level_irq I 
skipped note_interrupt because I considered it unimportant. If I had understood its impor-
tance I would have saved myself some ours of debugging” (the typo is in the origin). Such 
cases set an upper bound on the performance of any syntactic model. In our data set, all the 
above special cases (uncertainty, disagreement, and lack of syntactic evidence) are rather 
rare (just 22 samples, 5.5%, since many behaviors overlap), and the majority of samples are 
well behaved. The number of samples in each misbehavior category is very small so ratios 
are very sensitive to noise.

3.2  Syntactic identification of corrective commits

Our linguistic model is a supervised learning model, based on indicative terms that help 
identify corrective commit messages. Such models are built empirically by analyzing cor-
rective commit messages in distinction from other commit messages.

Many prior language models suggest short lists made up of obvious terms like ‘bug’, 
‘bugfix’, ‘error’, ‘fail’, ‘fix’ (Hattori & Lanza, 2008; Ray et al., 2014). Such a list reached 
88% accuracy on our data set. A commonly suggested alternative approach today is to 
employ machine learning. We tried many machine learning classification algorithms and 
only the plain decision tree algorithm reached such accuracy. More importantly, as pre-
sented later, we are not optimizing for accuracy.

The main reason for the limited performance of the machine learning classification 
algorithms was that we are using a relatively small labeled data set, and linguistic analysis 
tends to lead to many features (e.g., in a bag of words, word embedding, or n-grams rep-
resentation). In such a scenario, models might overfit and be less robust (Hawkins, 2004). 
One might try to cope with overfitting by using models of low capacity. However, the con-
cept that we would like to represent (e.g., include “fix” and “error” but not “error code” 
and “not a bug”) is of relatively high capacity. The need to cover many independent textual 
indications and count them requires a large capacity, larger than what can be supported by 
our small labeled data set. We therefore elected to construct the model manually based on 
several sources of candidate terms and the application of semantic understanding. Note that 
though we did not use classification algorithms, the goal, the structure, and the usage of the 
model are of supervised learning.

We began with a private project in which the commits could be associated with a ticket-
handling system that enabled determining whether they were corrective. We used them in 
order to differentiate the word distribution of corrective commit messages and other mes-
sages and find an initial set of indicative terms. In addition, we used the gold-standard 
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data-set presented above. This data set is particularly important because our target is to 
analyze GitHub projects, so it is desirable that our train data will represent the data on 
which the model will run. This train data set helped tuning the indicators by identifying 
new indications and nuances and alerting to bugs in the model implementation.

To further improve the model we used some terms suggested by Ray et al. (2014) (vari-
ants of ‘deadlock’, ‘race condition’, ‘memory leak’, ‘buffer overflow’, ‘heap overflow’, 
‘missing switch case’, ‘faulty initialization’, ‘segmentation fault’, and ‘double free’), tough 
we did not adopt all of them (e.g., we do not consider a typo to be a bug). This model was 
used in Amit and Feitelson (2019), reaching an accuracy of 89%. We then added additional 
terms from Shrikanth and Menzies (2020) (variants of ‘proper’, ‘broke’, ‘vulnerab’, and 
‘defect’). We also used labeled commits from Levin and Yehudai (2017) to further improve 
the model based on samples it failed to classify.

The last boost to performance came from the use of active learning (Settles, 2010) and 
specifically the use of classifiers discrepancies (Amit et al., 2017). Once the model’s per-
formance is high, the probability of finding a false negative, positive_rate ⋅ (1 − recall) , is 
quite low, requiring a large number of manually labeled random samples per false nega-
tive. Amit and Feitleson (2019) provided models for a commit being corrective, perfective, 
or adaptive. A commit not labeled by any of the models is assured to be a false negative 
(of one of them). Sampling from this distribution was an effective method to find false 
negatives, and improving the model to handle them increased the model recall from 69% 
to 84%. Similarly, while a commit might be both corrective and adaptive, commits marked 
by more than one classifier are more likely to be false positives. Using them improved the 
precision from 84% to 87%.

The resulting model uses regular expressions to identify the presence of different indica-
tor terms in commit messages. We base the model on straightforward regular expressions 
because this is the tool supported by Google’s BigQuery relational database of GitHub 
data, which is our target platform.

The final model is based on three distinct regular expressions. The first identifies about 
50 terms that serve as indications of a bug fix. Typical examples are: “bug”, “failure”, and 
“correct this”. The second identifies terms that indicate other fixes, which are not bug fixes. 
Typical examples are: “fixed indentation” and “error message”. The third is terms indicat-
ing negation. This is used in conjunction with the first regular expression to specifically 
handle cases in which the fix indication appears in a negative context, as in “this is not an 
error”. It is important to note that fix hits are also hits of the other fixes and the negation. 
Therefore, the complete model counts the indications for a bug fix (matches to the first reg-
ular expression) and subtracts the indications for not really being a bug fix (matches to the  
other two regular expressions). If the result is positive, the commit message was considered  
to be a bug fix. The results of the model evaluation using a 1,100 samples test set constructed  
in (Amit & Feitelson, 2019) are presented in the confusion matrix of Table 1.

Super vised  learn ing metri cs shed light on the common behavior of a classifier and a 
concept. The cases in which the concept is true are called ‘positives’(P) and the positives 

Table 1  Confusion matrix of 
model on test data set

Classification

Concept True(Corrective) False
True 228 (20.73%) TP 43 (3.91 %) FN
False 34 (3.09%) FP 795 (72.27%) TN
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rate is denoted P(positive). Similarly, ‘negatives’ (N) are samples for which the concept 
is false. Cases in which the classifier is true are called ‘hits’ and the hit rate is P(hit). For 
example, in a classifier of defect prediction, a high hit rate means that the developer will 
have to examine many files.

Ideally, hits correspond to positives but usually they differ. Precision, defined as 
P(positive|hit), measures a classifier’s tendency to avoid false positives (FP). Precision 
might be high simply since the positive rate is high. Precision lift, defined as 
Precision∕P(positive) − 1 =

P(positive|hit)−P(positive)
P(positive)

 , copes with this difficulty and measures 
the additional probability of having a true positive relative to the base positive rate. Thus a 
useless random classifier will have precision equal to the positive rate, but a precision lift 
of 0.

Recall, defined as P(hit|positive), measures how many of the positives are also hits; in 
our case, this is how many of the fixes the classifier identifies. Accuracy, P(positive = hit) 
is probably the most common supervised learning metric. False Positive Rate, Fpr, is FP

N
 . 

We show in Sect. 3.3 how we can use the hit rate and the classifier’s recall and Fpr in order 
to better estimate the positive rate.

The confusion matrix of Table 1 contains all the data needed to calculate these super 
vised  learn ing metri cs:

– Positive rate (real corrective commit rate): 24.6%
– Accuracy (model is correct): 93.0%
– Precision (ratio of hits that are indeed positives): 87.0%
– Precision lift ( precision

positive rate
− 1 ): 253.2%

– Hit rate (ratio of commits identified by model as corrective): 23.8%
– Recall (positives that were also hits): 84.1%
– Fpr (False Positive Rate, negatives that are hits by mistake): 4.2%

Though prior work was based on different protocols and data sets and therefore hard to 
compare, our accuracy is significantly better than prior results of 68% (Hindle et al., 2009), 
70% (Amor et al., 2006), 76% (Levin & Yehudai, 2017) and 82% (Antoniol et al., 2008), 
and also better than our own previous result of 89% (Amit & Feitelson,  2019). The 
achieved accuracy is close to the well-behaving commits ratio in the gold standard.

3.3  Maximum likelihood estimation of the corrective commit probability

Let hr be the hit rate (probability that the model will identify a commit as corrective) and 
pr be the positive rate, the true corrective rate in the commits (this is what CCP estimates). 
In prior work, it was all too common to use the hit rate directly as the estimate for the 
positive rate. However, since model predictions are not perfect, the hit rate and positive 
rate may differ. By considering the model performance we can derive a better estimate 
of the positive rate given the hit rate. From a performance modeling point of view, the 
Dawid-Skene (Dawid & Skene, 1979) modeling is an ancestor of our work. But note that 
the Dawid-Skene framework represents a model by its precision and recall, and we use Fpr 
and recall.

There are two distinct cases that can lead to a hit. The first is a true positive (TP): There 
is indeed a bug fix and our model identifies it correctly. The probability of this case is 
Pr(TP) = pr ⋅ recall . The second case is a false positive (FP): There was no bug fix, yet 
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our model mistakenly identifies the commit as corrective. The probability of this case is 
Pr(FP) = (1 − pr) ⋅ Fpr . Adding them gives

Extracting pr leads to

We want to estimate Pr(pr|hr) . Let n be the number of commits in our data set, and k the 
number of hits. As the number of samples increases, k

n
 converges to the model hit rate hr. 

Therefore, we estimate Pr(pr|n, k) . We will use maximum likelihood for the estimation. 
The idea behind maximum likelihood estimation is to find the value of pr that maximizes 
the probability of getting a hit rate of hr.

Note that if we were given p, a single trial success probability, we could calculate the 
probability of getting k hits out of n trails using the binomial distribution formula

Finding the optimum requires the computation of the derivative and finding where it equals 
to zero. The maximum of the binomial distribution is at k

n
 . Equation (2) is linear and there-

fore monotone. Therefore, the maximum likelihood estimation of the formula is

For our model, Fpr = 0.042 and recall = 0.84 are fixed constants (rounded values taken 
from the confusion matrix of Table 1). Therefore, we can obtain the most likely pr given 
hr by

3.4  Validation of the CCP maximum likelihood estimation

George Box said: “All models are wrong but some are useful” (Box, 1979). We would like 
to see how close the maximum likelihood CCP estimations are to the actual results. Note 
that the model performance results we presented in Table 1, using the gold standard test 
set, do not refer to the maximum likelihood CCP estimation. We need a new independ-
ent validation set to verify the maximum likelihood estimation. Therefore, we uniformly 
sampled another set of 400 commits and the first author manually labeled them. We are 
interested in the estimation of two parameters, recall and Fpr. While 30 samples are consid-
ered to provide reasonable sample size for one parameter, our sample size is larger, improv-
ing the estimation. The model performance is presented in a confusion matrix shown in 
Table 2.

In this data set, the positive rate is 27.2%, the hit rate is 31.2%, the recall is 83.5%, and 
the Fpr is 11.7%. Note that the positive rate in the validation set is 2.6 percentage points 
different from our test set. The positive rate has nothing to do with MLE and shows that 

(1)hr = Pr(TP) + Pr(FP) = (recall − Fpr)pr + Fpr

(2)pr =
hr − Fpr

recall − Fpr

(3)Pr(k;n, p) =

(
n

k

)
pk(1 − p)n−k

(4)pr =

k

n
− Fpr

recall − Fpr

(5)pr =
hr − 0.042

0.84 − 0.042
= 1.253 ⋅ hr − 0.053
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statistics tend to differ on different samples. In this section, we would like to show that the 
MLE method is robust to such changes.

In order to evaluate how sensitive the maximum likelihood estimation is to changes in 
the data, we used the bootstrap method (Efron, 1992). We sampled with replacement 400 
items from the validation set, repeating the process 10,000 times. Each time we computed 
the true corrective commit rate, the estimated CCP, and their difference. Figure 1 shows the 
distribution of these differences.

In order to cover 95% of the distribution, we can trim the 2.5% tails from both sides. 
This will leave us with differences ranging between -0.044 to 0.046, so the estimated CCP 
has a confidence interval of ±4.5 percentage points. One can use the boundaries related to 
95%, 90%, etc. in order to be extra cautious in the definition of the valid domain.

Another possible source of noise is in the model performance estimation. If the model 
is very sensitive to the test data, a few anomalous samples can lead to a bad estimation. 
Again, we used bootstrap in order to estimate the sensitivity of the model performance 
estimation. For 10,000 times we sampled two data sets of size 400. On each of the data sets 
we computed the recall and Fpr and built an MLE estimator. We then compared the differ-
ence in the model estimation at a few points of interest: [0,1] – the boundaries of probabili-
ties, [0.042, 0.84] – the boundaries of the valid domain, and [0.06, 0.39] – the p10 and p90 
percentiles of the CCP distribution. Since our models are linear, so are their differences. 
Hence their maximum points are at the ends of the examined segments. When considering 
the boundaries of probabilities [0,1], the maximal absolute difference is 0.34 and 95% of 
the differences are lower than 0.19. When considering the boundaries of the valid domain 

Table 2  Confusion matrix of 
model on validation data set

Classification

Concept True(Corrective) False
True 91 (22.75%) TP 18 (4.5%) FN
False 34 (8.5%) FP 257 (64.25%) TN

Fig. 1  Difference distribution in 
validation bootstrap
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[0.042, 0.84], the maximal absolute difference is 0.28 and 95% of the differences are lower 
than 0.15. When considering the p10 and p90 percentiles of the CCP distribution [0.06, 
0.39], the maximal absolute difference is 0.13 and 95% of the differences are lower than 
0.07.

Using the validation set estimator on the test set, the CCP is 0.168, 7.7 percentage 
points off the actual positive rate. In the other direction, using the CCP estimator test data 
performance on the validation set, the CCP is 0.39, 11.8 points off. Since our classifier has 
high accuracy, the difference between the hit rate and the CCP estimates in the distribution 
deciles, presented below in Table 3, is at most 4 percentage points. Hence the main practi-
cal contribution of the MLE in this specific case is the identification of the valid domain 
(Sect. 3.5) rather than an improvement in the estimate.

3.5  Sensitivity to the fixed linguistic model assumption

The maximum likelihood estimation of the CCP assumes that the linguistic model perfor-
mance, measured by its recall and Fpr, is fixed. Hence, a change in the hit rate in a given 
domain is due to a change in the CCP in the domain, and not due to a change in the linguis-
tic model performance.

Yet, this assumption does not always hold. Both hr and pr are probabilities and must 
be in the range [0,  1]. Equation (2) equals 0 at hr = Fpr and 1 at hr = recall . For our 
model, this indicates that the range of values of hr for which pr will be a probability is 
[0.042, 0.84]. Beyond this range, we are assured that the linguistic model performance is 
not as measured on the gold standard. An illustrative example of the necessity of the range 
is a model with recall = 0.5 and Fpr = 0 . Given hr = 0.9 the most likely pr is 1.8. This is 
an impossible value for a probability, so we deduce that our assumption is wrong.

As described in Sect. 4.1, we initially estimated the CCP of all 8,588 large active pro-
jects in 2019. In 1,031 of them the CCP estimate was invalid, leaving us with a set of 7,557 
projects to study.

In 10 of the invalid projects, the estimated CCP was above 1. Checking these projects, 
we found that they have many false positives, e.g. due to a convention of using the term 
“bug” for general tasks, or starting the subject with “fixes #123” where ticket #123 was not 
a bug fix but some other task id.

The bulk of the invalid projects (11.8% of the original set) had an estimated CCP below 
0. This could indicate having extremely few bugs, or else a relatively high fraction of false 
negatives (bug fixes we did not identify). One possible reason for low identification is if 
the project commit messages are not in English. To check this, we built a simple linguistic 
model in order to identify if a commit message is in English. The model was the 100 most 
frequent words in English longer than two letters (see details and performance in supple-
mentary materials). The projects with negative CCP had a median English hit rate 0.16. 
For comparison, the median English hit rate of the projects with positive CCP was 0.54, 
and 96% of them had a hit rate above 0.16.

Interestingly, another reason for many false negatives was the habit of using very terse 
messages. We sampled 5,000 commits from the negative CCP projects and compared them 
to the triple-annotated data set used above. In the negative CCP commits, the median mes-
sage length was only 27 characters, and the 90th percentile was 81 characters. In the anno-
tated data set the median was 8 times longer, and the 90th percentile was 9 times longer.

It is also known that not all projects in GitHub (called there repositories) are software 
projects (Munaiah et  al.,  2017; Kalliamvakou et  al.,  2015). Since bugs are a software 
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concept, other projects are unlikely to have such commits and their CCP will be negative. 
Hence, the filtering also helps us to focus on software projects. Git is unable to identify 
the language of 6% of the projects with negative CCP, more than 14 times the ratio in the 
valid domain. The languages ‘HTML’, ‘TeX’, ‘TSQL’, ‘Makefile’, ‘Vim script’, ‘Rich Text 
Format’ and ‘CSS’ are identified for 22% of the projects with negative CCP, more than 4 
times as in the valid range. Many projects involve few languages and when we examined 
a sample of projects we found that the language identification is not perfect. However, at 
least 28% of the projects that we filtered due to negative CCP are not identified by GitHub 
as regular software projects.

Pull requests and issue management are typical of software projects. Therefore another 
check is to see how many of the projects in the negative domains use them. We used the 
GHTorrent (Gousios & Spinellis, 2012) BigQuery schema that collects pull requests and 
issues of GitHub projects. We wanted to examine whether projects in the valid domain tend 
to use pull requests more than those in the negative domain. The result was that none of the 
negative domain projects existed in the GHTorrent schema. 68% of the projects in the valid 
domain appeared there, and 75% of them used pull requests. The absence of all the nega-
tive domain projects is another indication of not being a typical software project.

To summarize, in the projects with invalid CCP estimates, below 0 or above 1, the 
behavior of the linguistic model changes and invalidates the fixed performance assumption. 
We believe that the analysis of projects in the CCP valid domain is suitable for software 
engineering goals. The CCP distribution in Table 3 is presented for both the entire data set 
and only for projects with valid CCP estimates. The rest of the analysis is done only on the 
valid projects.

3.6  CCP as a quality metric

There is no debate that bugs are bad, especially bugs reported by customers (Hackbarth 
et al., 2016). Moreover, assessing quality based on bugs is a process metric and therefore 
conditionally independent (Blum & Mitchell,  1998; Lewis,  1998) from code metrics. In 
particular, that makes them conditionally independent from the programming language, file 
length, code smells, etc. This can be applied at various resolutions, e.g., a project, a file, 
or a method, and help spot entities that are bug prone, improving future bug identification 
(Walkinshaw & Minku, 2018; Kim et al., 2007; Rahman et al., 2011).

It is therefore interesting to check to what degree CCP can be used as a quality metric. 
As noted above, quality is one of the factors that affect CCP: low-quality code is expected 
to have more bugs. But whether these bugs are actually found depends also on other fac-
tors, most obviously the bug detection efficiency (Jones, 1991, 2012). So the actual relation 
between CCP and low quality is a priori uncertain.

A simple approach is to check references to low quality in commit messages and cor-
related them with CCP (Figs. 2 and 3). The specific terms checked were direct references 
to “low quality”, and related terms like “code smell” (Fowler et al., 1997; Van Emden & 
Moonen, 2002; Yamashita & Moonen, 2012; Khomh et al., 2009; Taba et al., 2013) and 
“technical debt” (Cunningham, 1992; Tom et al., 2013; Kruchten et al., 2012). In addition, 
swearing is also a common way to express dissatisfaction, with more than 200 thousand 
occurrences compared to only hundreds or thousands for the technical terms. The prob-
ability of a commit containing swearing to be reverted are 69% higher than the average. In 
the same spirit, Romano et al. showed that negative sentiment increases the probability of a 
commit to be bug introducing (Romano et al., 2020).
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The commit meta-data contains the files involved in it. This enables us to aggregate the 
commits per file and compute the file’s CCP — the ratio of corrective commits out of the 
commits that modified the file. We considered files with 10 or more commits, in order to 
be more robust to noise. We compared those with at least 10% occurrences of the term to 
the rest.

Fig. 2  CCP of files with or without different quality terms

Fig. 3  CCP of projects with or without different quality terms

830 Software Quality Journal (2021) 29:817–861



1 3

Projects may have a lot of commits, and the vast majority do not contain the terms. 
Instead of a ratio, we therefore consider a project to contain a term if it has at least 10 
commits in which the term occurs. As the figures show, when the terms appear, the CCP is 
higher (sometimes many times higher), especially for the explicit term “low quality”. Thus 
the high-CCP metric agrees with the opinions of the projects’ developers regarding quality.

To verify this result, we attempted to use negative controls. A negative control is an 
item that should be indifferent to the analysis. In our case, it should be a term not related 
to quality. We chose “algorithm” and “function” as such terms. The verification worked 
for “algorithm” at the file level: files with and without this term had practically the same 
CCP. But files with “function” had a much higher CCP than files without it, and projects 
with both terms had a higher CCP than without them. Possible reasons are some relation to 
quality (e.g., algorithmic-oriented projects are harder) or biases (e.g., object-oriented lan-
guages tend to use the term “method” rather than “function”). Anyway, it is clear that the 
difference in “low quality” is much larger and there are some differences in the other terms 
too. Note that this investigation is not completely independent. While the quality terms 
used here are different from those used for the classification of corrective commits, we still 
use the same data source.

We further explored the relation using co-change analysis between swearing and CCP 
(the other terms are too rare; co-change analysis is explained in Sect.  4.2). The Pearson 
correlation of swearing rate over adjacent years is 0.74. The agreement of co-change is 
54% for any change and 88% when requiring a significant change (0.1 for CCP, 0.01 for the 
rarer swearing). These results remain when we control for programming language, project 
age, or number of developers.

Another way that developers express dissatisfaction is “Self Admitted Technical Debt” 
(Potdar & Shibab, 2014). We used the terms suggested by Rantala et al. (2020) and meas-
ured the relative CCP of files containing these terms compared to all files. Files containing 
‘TODO’ had average CCP 69% higher, ‘FIXME’ 116% higher, ‘HACK’ 28% higher, and 
‘XXX’ 42% higher.

4  Experimental methodology

Given the ability to estimate the CCP of any project given its development history, we can 
now investigate the relationship between CCP and various project attributes. Results are 
computed on GitHub projects active in 2019, selected according to the procedure outlined 
in Sect. 4.1, and specifically on projects whose CCP is in the valid domain. We did not 
work with version releases since we work with thousands of projects whose releases are 
not clearly marked. Note that in projects doing continuous development, the concept of 
release is no longer applicable.

Our results are in the form of correlations between CCP and such attributes. For exam-
ple, we show that projects with shorter files tend to have a lower CCP. These correlations 
are informative and actionable, e.g., enabling a developer to focus on longer files during 
testing and refactoring. But correlation is not causation, so we cannot say conclusively that 
longer files cause a higher propensity for bugs that need to be fixed. Showing causality 
requires experiments in which we perform the change, which we leave for future work. The  
correlations that we find indicate that a search for causality might be fruitful and could 
motivate changes in development practices that may lead to improved software quality.
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In order to make the results stronger than mere correlation, we use several methods in 
the analysis. We use co-change over time analysis in order to see to what extent a change in 
one metric is related to a change in the other metric (Sect. 4.2). Given factors A, B, and C, 
we control the results by making comparisons for fixed C to see that the relation between 
A and B is not due to C. We control project age, programming languages , number of 
developers, and detection efficiency as explained in Sect. 4.4. We also control for the devel-
oper, by observing the behavior of the same developer in different projects (Sect. 4.3). This 
allows us to separate the influence of the developer and the project.

The distributions we examined tended to have some outliers that are much higher than 
the mean and the majority of the samples. Including outliers in the analysis might distort 
the results. In order to reduce the destabilizing effect of outliers, we applied Winsorizing 
(Hastings et al., 1947). We used one-sided Winsorizing, where all values above a certain 
threshold are set to this threshold. We do this for the top 1% of the results throughout, to 
avoid the need to identify outliers and define a rule for adjusting the threshold for each spe-
cific case. In the rest of the paper we used the term capping (a common synonym) for this 
action. In addition, we check whether the metrics are stable across years. A reliable metric 
applied to clean data is expected to provide similar results in successive years.

4.1  Selection of projects

In 2018 GitHub published that they had 100 million projects2. The BigQuery GitHub 
schema contains about 2.5 million public projects prior to 2020. But the vast majority are 
not appropriate for studies of software engineering, being small, non-recent, or not even 
code.

In order to omit inactive or small projects where estimation might be noisy, we defined 
our scope to be all open source projects included in GitHub’s BigQuery data with 200+ 
commits in 2019. We selected a threshold of 200 to have enough data per project, yet have 
enough projects above the threshold. There are 14,749 such projects (Fig. 4).

However, this set is redundant in the sense that some projects are closely related 
(Kalliamvakou et  al.,  2015). The first step to reduce redundancy is to exclude projects 
marked in the GitHub API as being forks of other projects. This reduced the number to 
9,481 projects. Sometimes extensive amounts of code are cloned without actual fork-
ing. Such code cloning is prevalent and might impact analysis (Gharehyazie et al., 2019; 
Lopes et  al.,  2017; Allamanis,  2019). Using commits to identify relationships (Mockus 
et al., 2020), we excluded dominated projects, defined to have more than 50 common com-
mits with another, larger project, in 2019. Last, we identified projects sharing the same 
name (e.g., ‘spark’) and preferred those that belonged to the user with more projects (e.g., 
‘apache’). After the redundant projects removal, we were left with 8,588 projects. But cal-
culating the CCP on some of these led to invalid values as described above in Sect. 3.5. 
For analysis purposes we therefore consider only projects where CCP is in the valid range, 
whose number is 7,557.

A possible additional filter is to exclude projects identified by the topic “student-project” 
on GitHub. However, this turned out to be redundant, as the previous steps already filtered 
all such projects.

2 https:// github. blog/ 2018- 11- 08- 100m- repos/
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4.2  Co‑change over time

While experiments can help to determine causality, they are based on few cases and expen-
sive. On the other hand, we have access to plenty of observations, in which we can identify 
correlations. While causal relations tend to lead to correlation, non-causal relations might 
also lead to correlations due to various reasons. We would like to use an analysis that will 
help to filter out non-causal relations. By that we will be left with a smaller set of more 
likely relations to be further investigated for causality. In this and the next subsection we 
present two methods to identify situations that are likely to be causal.

When two metrics change simultaneously, it is less likely to be accidental. Hence, we 
track the metrics over time in order to see how their changes match. We create pairs of the 
same project in two consecutive years. For each pair, we check whether both the first and 
second metrics improved. The ratio of improvement match (the equivalent to accuracy in 
supervised learning) is an indication of related changes.

Denote the event that metric i improved from one year to the next by mi ↑ . The probabil-
ity P(mj ↑ | mi ↑ ), (the equivalent to precision in supervised learning), indicates how likely 
we are to observe an improvement in metric j knowing of an improvement in metric i. It 
might be that we will observe high precision but it will be simply since P(mj ↑ ) is high. In 
order to exclude this possibility, we also observe the precision lift, P(mj↑ |mi↑)

P(mj↑)
− 1 . Note that 

lift cannot be used to identify the causality direction since it is symmetric:

Fig. 4  Process for selecting 
projects for analysis
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If an improvement in metric i indeed causes the improvement in metric j, we expect high 
precision and lift. Since small changes might be accidental, we also investigate improve-
ments above a certain threshold. There is a trade-off here since given a high threshold the 
improvement is clearer, yet the number of cases we consider is smaller. Another trade-off 
comes from how far in the past we track the co-changes. The earlier we will go the more 
data we will have. On the other hand, this will increase the weight of old projects, and 
might subject the analysis to changes in software development practices over time and to 
data quality problems. We chose a scope of 5 years, avoiding looking before 2014.

4.3  Controlling the developer

Measured metric results (e.g., development speed, low coupling) might be due to the devel-
opers working on the project (e.g., skill, motivation) or due to the project environment 
(e.g., processes, technical debt). To separate the influence of developers and environment, 
we checked the performance of developers active in more than one project in our data set. 
By fixing a single developer and comparing the developer’s activity in different projects, 
we can investigate the influence of the project. Note that a developer active in n projects 
will generate O(n2) project pairs (“twins”) to compare.

Consider development speed as an example. If high speed is due to the project environ-
ment, in high-speed projects every developer is expected to be faster than himself in other 
projects. This control resembles twin experiments, popular in psychology, where a behav-
ior of interest is observed on twins. Since twins have a very close genetic background, a 
difference in their behavior is more likely to be due to another factor (e.g., being raised in 
different families).

Assume that performance on project A is in general better than on project B. We con-
sider developers that contributed to both projects, and check how often they are better in 
project A than themselves in project B (formally, the probability that a developer is better 
in project A than in project B given that project A is better than project B). This is equiva-
lent to precision in supervised learning, where the project improvement is the classifier 
and the developer improvement is the concept. In some cases, a small difference might be 
accidental. Therefore we require a large difference between the projects and between the 
developer performance (e.g., at least 10 commits per year difference, or more formally, the 
probability that a developer committed at least 10 times more in project A than in project B 
given that the average number of commits per developer in project A is at least 10 commits 
higher than in project B).

We considered only involved developers, which we define as those committing at least 
12 times per year (at least one commit per month on average), otherwise the results might 
be misleading. While this omits 62% of the developers, they are responsible for only 6% 
of the commits. This also correlates with the probability to continue to contribute to the 
project in the next year. The probability of developers contributing less than 12 commits 
to continue with the project is 0.22, while the probability of an involved developer to con-
tinue is 0.73. Developers contributing exactly 12 commits are balanced with a probability 
of 0.53 to continue.

(6)
P(mj ↑ |mi ↑)

P(mj ↑)
=

P(mi ↑ ∧mj ↑)

P(mi ↑) ⋅ P(mj ↑)
=

P(mi ↑ |mj ↑)

P(mi ↑)
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4.4  Controlling variables

We might see a relation between two variables that is actually due to a third confounding 
variable, influencing both of them. For example, a relation between high quality and high 
productivity might be due to the use of a more suitable language. The statistical method to 
avoid this is to control the confounding variable. Instead of examining the relation between 
quality and productivity in general, we will also examine if the relation holds separately for 
Java projects, C++ projects, etc.

When considering the control variables we first check their own relation with CCP. 
Later, we also control it as part of the analysis of the relation of other variables and CCP.

The control variables that we use are number of developers (Sect.  8.2), program-
ming languages (Sect. 8.3), project age (Sect. 8.4), and detection efficiency (Sect. 6). 
Though influential, we don’t control the project domain, for reasons explained in 
Sect. 8.1.

5  The distribution of CCP

Given the ability to identify corrective commits, we can classify the commits of each pro-
ject and estimate the distribution of CCP over the projects’ population.

Table 3 shows the distribution of hit rates and CCP estimates on the GitHub projects 
with 200+ commits in 2019, with redundant repositories (representing the same project) 
excluded. The hit rate represents the fraction of commits identified as corrective by the 
linguistic model, and the CCP is the maximum likelihood estimation. The lowest 10% of 
projects have a CCP of up to 0.06. The median project has a CCP of 0.2, more than three 
times the lowest projects’ CCP. Interestingly, Lientz at el. reported a median of 0.17 in 
1978, based on a survey of 69 projects (Lientz et al., 1978). The highest 10% have a CCP 
of 0.39 or more, more than 6 times higher than the lowest 10%. This shows that there is a 
wide spectrum of levels of investment in bug fixing, from just a few percents to more than 
a third of the total effort (as quantified by number of commits).

Table 3  CCP distribution in 
active GitHub projects

Full data set CCP ∈ [0, 1]

(8,588 projects) (7,557 projects)

Percentile Hit rate CCP est. Hit rate CCP est.
10 0.34 0.38 0.35 0.39
20 0.28 0.30 0.29 0.32
30 0.24 0.25 0.26 0.27
40 0.21 0.21 0.22 0.23
50 0.18 0.18 0.20 0.20
60 0.15 0.14 0.17 0.17
70 0.12 0.10 0.15 0.13
80 0.09 0.06 0.12 0.10
90 0.03 -0.02 0.09 0.06
95 0.00 -0.05 0.07 0.04
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An additional important attribute of metrics is that they are stable. In the case of CCP, 
the above distribution would be meaningless if the CCP of a project fluctuates wildly from 
year to year. We estimate stability by comparing the CCP of the same project in adjacent 
years, from 2014 to 2019. Overall, the CCP of the projects is reasonably stable over time. 
The Pearson correlation between the CCP of the same project in two successive years, with 
200 or more commits in each, is 0.86. The average CCP, using all commits from all pro-
jects, was 22.7% in 2018 and 22.3% in 2019. Looking at projects, the CPP grew on average 
by 0.6 percentage points from year to year, which might reflect a slow decrease in quality. 
This average hides both increases and decreases; the average absolute difference in CPP 
was 5.5 percentage points. Compared to the CCP distribution presented in Table 3 such 
changes are not very big.

Given the distribution of CCP, any developer can find the placement of his own project 
relative to the whole community. The classification of commits can be obtained by link-
ing them to tickets in the ticket-handling system (such as Jira or Bugzilla). For projects in 
which there is a single commit per ticket, or close to that, one can compute the CCP in the 
ticket-handling system directly, by calculating the ratio of bug-fixing tickets. Hence, having 
full access to a project, one can compute the exact CCP, rather than its maximum likeli-
hood estimation.

Comparing the project’s CCP to the distribution in the last column of Table 3 provides 
an indication of the project’s division of effort calibrated with respect to other projects.

6  Effect of detection efficiency on CCP

A major factor that affects CCP is the bug detection efficiency. The higher the efficiency 
the more bugs are detected, leading to a higher CCP (Jones, 1991, 2012). The two main 
factors leading to higher detection efficiency are using more tests, and having more devel-
opers and users who spot defects and correct them.

6.1  Linus’s law

Linus’s law, “given enough eyeballs, all bugs are shallow” (Raymond, 1998), suggests that 
a large community might lead to more effective bug identification, and as a consequence 
also to higher CCP. Our methodology was to focus on GitHub users (which can be compa-
nies or communities of developers) that have enough very popular projects and less popu-
lar projects, and compare their bug detection efficiency. The users we selected as most suit-
able in our data set were Google, Facebook, Apache, Angular (led by Google), Kubernetes 
(designed by Google), and Tensorflow (led by Google). Note that this requirement is very 
restrictive and even Microsoft and Amazon were not found to be suitable. As a byproduct, 
these are companies and communities known for their high standards. Note that three of 
the communities are actually part of Google. However, since Google is a huge company, 
they decided to separate these projects, and we followed their decision.

For each such source, we compared the average CCP of projects in the top 5% as meas-
ured by stars (7,481 stars or more), with the average CCP of projects with fewer stars. This 
reflects levels of interest in the projects, because GitHub stars are both ‘like’ functionality 
and a mechanism to track projects.

The results were that the most popular projects of high-reputation sources indeed have 
CCP higher than less popular projects of the same organization (Table  4). The popular 
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projects tend to be important projects: Google’s Tensorflow and Facebook’s React received 
more than 100,000 stars each. It is not likely that such projects have lower quality than the 
organization’s standard. Apparently, these projects attract large communities which provide 
the eyeballs to identify the bugs efficiently, as predicted by Linus’s law.

Note that these communities’ projects, including those without so many stars, have an 
average CCP of 0.26, 21% more than all projects’ average. Their average number of authors 
is 219, 144% more than the others. And the average number of stars is 5,208 compared 
to 1,428, a lift of 364%. It is possible that while the analysis we presented is for extreme 
numbers of stars, Linus’s law kicks in already at much lower numbers and contributes to 
the difference.

There are only a few such projects (we looked at the top 5% from a small select set of 
sources). The effect on the CCP is modest (raising the level of bug corrections by around 
30%, both a top and a median project will decrease in one decile). Thus, we expect that 
they will not have a significant impact on the results presented below.

6.2  Truck factor developers detachment

The mirror image of projects that have enough users to benefit from Linus’s law is projects 
that lose their core developers. The “Truck Factor” originated in the Agile community. Its 
informal definition is “The number of people on your team who have to be hit with a truck 
before the project is in serious trouble” (Williams & Kessler, 2002). In order to analyze it, 
we used the metric suggested by Avelino et al. (2016). Truck Factor Developers Detach-
ment (TFDD) is the event in which the core developers abandon a project as if a virtual 
truck had hit them (Avelino et al., 2019). We used instances of TFDD identified by Avelino 
et  al. and matched them with the GitHub behavior (Avelino et  al.,  2019). As expected, 
TFDD is a traumatic event for projects, and 59% of them do not survive it.

When comparing 1-month windows around a TFDD, the average number of commits is 
reduced by 1 percentage point. There is also an average reduction of 3 percentage points in 
refactoring, implying a small decrease in quality improvement effort. At the same time, the 
CCP decreases by 5 percentage points. Assuming that quality is not improved as a result of 
a TFDD, a more reasonable explanation is that bug detection efficiency was reduced. But 
even the traumatic loss of the core developers damage is only 5 percentage points.

Table 4  Linus’s law: CCP in 
projects with many or fewer stars

top 5% bottom 95%

(>7,481 stars) (<7,481 stars)

Source N avg. CCP (lift) N avg. CCP
Google 8 0.32 (27%) 66 0.25
Facebook 9 0.30 (12%) 9 0.27
Apache 10 0.37 (44%) 35 0.26
Angular 3 0.49 (34%) 32 0.37
Kubernetes 3 0.21 (35%) 3 0.16
Tensorflow 5 0.26 (32%) 26 0.20
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6.3  Use of tests

The use of tests (Myers et al., 2004; Beizer, 2003) is a common method to increase bug 
detection efficiency, so we checked its relation to CCP.

We identify test files by looking for the string “test” in the file path (Zaidman 
et al., 2011; Levin & Yehudai, 2017; Amit & Feitelson, 2019). The positive rate of the 
“test” pattern is 15% of files contained in commits. We manually labeled 50 files and 
only one of them was wrong (a non-robust estimation of 97.5% accuracy). We labelled 
another 20 hits of the labeling function. While only 35% of the hits were test files, 
another 60% were related files (e.g., test data or make file), leading to a precision of 
95%. The only labeled false positive had the pattern “test” as part of the string “cuttest”. 
Note that Berger et al. reported 100% precision of the same pattern, based on 100 sam-
ples (Berger et al., 2019).

The average CCP of a project with hardly any tests is 0.20, compared to 0.22 in pro-
jects with at least some tests. Figure 5 shows CCP by test presence deciles. The CCP in 
the first decile is 0.20, compared to 0.25 in the last one. Hence we have a 10% difference 
between no tests and the rest, and 25% difference between the two extremes.

In order to understand whether tests increase bug detection efficiency or that projects 
with more tests actually have more bugs, we use the time to identify a bug.

Kim and Whithead reported that the median time to fix a bug is about 200 days 
(Kim & Whitehead,  2006). In order to compute bug fix time one should identify the 
bug-inducing commit, for example by using the SZZ algorithm (Śliwerski et al., 2005) 
which requires access to the source code in each commit. We used the GitHu b BigQu ery  
schema so we do not have such access. Instead we use the last time the file was touched 
before the bug-fixing commit, ‘Time from Previous Update’. This is a lower bound on 

Fig. 5  CCP by Tests Presence. In this and following figures, each boxplot shows the 5, 25, 50 (solid line), 
75, and 95 percentiles. The dashed line represents the mean
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the time to fix the bug since the bug-inducing commit is this one or an earlier one. Note 
that a single unrelated commit between the bug-inducing commit and the fixing commit 
is enough to reduce metric estimation and miss the true time to detect the bug. Look-
ing at fixed bugs, the average time between a bug correction and the previous time the 
involved file was modified is 131 days, more than 4 months. But there is a wide distribu-
tion. In 24% of the cases the file was updated at most 1 day ago, in 41% at most a week, 
the median is 15 days, and in 59% at most 30 days. Assuming an exponential model, 
time to miss only 1% of the current bugs is 15 ⋅ log2(100) = 15 ⋅ 6.64 , which is 100 days.

Projects that hardly have tests (less than 1% test files in commits, allowing few false 
positives) fix a bug after 72 day on average, 33% more than the rest. This indicates that 
reduced testing is indeed related to inefficiency in bug-detection, and not to less bugs.

Using the same analysis we did for Linus’s law, the extremely popular projects identify 
bugs in 51 days on average, compared to 78 days for the others from the same organiza-
tions (53% higher). Comparing per organization the result holds for all but Angular and 
Kubernetes, each with only 3 extremely popular projects. Project age is on one hand an 
upper bound on the time to find a bug, and on the other hand correlated with popularity. 
Age explains part of the behavior but the analysis is based on a single project in some 
cases.

As another metric for bug detection efficiency, we used time to revert a commit. We 
identify reverts using git’s default commit message for reverts ‘This reverts commit XXX’. 
Identifying these messages enable us to identify pairs of reverted and reverting commits 
and compute the duration between them. Unlike ‘Time form Previous Update’, the revert 
duration is exact and not a lower bound. However, reverting a commit is a small part of 
the ways to fix a bug and only 0.2% of the commits are reverted. In popular projects, the 
average time to revert is 15 days, compared to 27 day in the rest, 44% lower. In the projects 
with at least minimal tests the average time to revert is 21 days, compared to 38 days in 
those lacking tests, 45% lower.

Hence, we show that detection efficiency improves due to the use of tests and a high 
number of eyeballs. CCP increases by about 30% due to the improved detection efficiency, 
a small ratio compared to the 6 times gap between the 10 and 90 percentiles.

7  Effects of coding on CCP

To further study effects related to CCP, and see what is related to higher investment in bug 
fixing, we studied the correlations of CCP with various project attributes. To strengthen the 
results beyond mere correlations we control for variables which might influence the results, 
such as project age and the number of developers. We also use co-change analysis and 
“twin” analysis, which show that the correlations are consistent and unlikely to be acciden-
tal (Sects. 4.2 and 4.3).

7.1  File length

The correlation between high file length and an increase in bugs has been widely inves-
tigated and considered to be a fundamental influencing metric (Lipow,  1982; Gil & 
Lalouche,  2017). The following analysis first averages across files in each project, and 
then considers the distribution across projects, so as to avoid giving extra weight to large 

839Software Quality Journal (2021) 29:817–861



1 3

projects. In order to avoid sensitivity due to large values, we capped large file lengths at 
181KB, the 99th percentile.

In our projects data set, the mean file length was 8.1 KB with a standard deviation of 
14.3KB, a ratio of 1.75 (capped values). Figure 6 shows that the CCP increases with the 
length. Projects whose average capped file size is in the lower 25% (below 3.2KB) have 
average CCP of 0.19. The last five deciles all have CCP around 0.23, as if from a certain 
point a file is “just too long”.

We did not perform a co-change analysis of file length and CCP since the GitHub 
BigQuery database stores only the content of the files in the HEAD (last version), and not 
previous ones. Controlling by project age and developers support the results. When con-
trolling for language, in most languages projects with low CCP indeed have shorter files. 
On the other hand, in PHP they are 10% longer, and in JavaScript the lengths in the 10% 
low-CCP projects are 31% higher than the rest.

7.2  Smells

Code smells are properties of the source code that indicate low quality and potential prob-
lems (Arcelli Fontana et al., 2013; Van Emden & Moonen, 2002). They are usually found 
by static analysis and are programming language dependent. We used a data set of 677 Java 
repositories parsed by the Check Style tool, which identifies 151 smells (Amit et al., 2021). 
Table 5 shows the Pearson correlation of several example smells with CCP, the lift of co-
change with CCP, and the adjacent year stability of these smells. In addition to the indi-
vidual smells, we consider the sum of all the smells that CheckStyle identifies.

The analysis of smells and quality require a delicate analysis, considering the specific 
smell, the popularity, etc. An unpopular smell simply does not appear in most cases and 
cannot have high correlation with bugs. However, it is easy to see that smells are slightly 
correlated and co-change with CCP.

Fig. 6  CCP distribution for files with different lengths (in KB, capped)
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7.3  Coupling

A commit is a unit of work ideally reflecting the completion of a task. It should contain 
only the files relevant to that task. Many files needed for a task means coupling. Therefore, 
the average number of files in a commit can be used as a metric for coupling (Zimmermann  
et al., 2003; Amit & Feitelson, 2019). To validate that this metric captures the way devel-
opers think about coupling, we compared it to the appearance of the terms “coupled” or 
“coupling” in messages of commits containing the file. Out of the files with at least 10 
commits, those with a hit rate of at least 0.1 for these terms had average commit size 45% 
larger than the others.

When looking at the size of commits, it turns out that corrective commits involve sig-
nificantly fewer files than other commit types: the average corrective commit size is 3.8, 
while the average non-corrective commit size is 5.5 (median 2 for both, a longer tail for 
non-corrective). Therefore, comparing files with different ratios of corrective commits will 
influence the apparent coupling. To avoid this, we will compute the coupling using only 
non-corrective commits. We define the coupling of a project to be the average coupling of 
its files (all files, including tests).

Figure 7 presents the results. There is a large difference in the commit sizes: The 25% 
quantile is 3.1 files and the 75% quantile is 7.1. Similarly to the relation of CCP to file 
sizes, here too the distribution of CCP in commits above the median size appears to be 
largely the same, with an average of 0.24. But in smaller commits, there is a pronounced 
correlation between CCP and commit size, and the average CCP in the low coupling 25% 
is 0.18. Projects that are in the lower 25% in both file length and coupling have 0.15 aver-
age CCP and 29.3% chance to be in the bottom 10% of files ranked by CCP, 3 times more 
than expected.

When we analyze CCP and coupling co-change, the match for any improvement is 52%. 
A 10-percentage point reduction in CCP and a one file reduction in coupling are matched 
72% of the time. Given a reduction of coupling by one file, the probability of a CCP reduc-
tion of 10 percentage points is 9%, a lift of 32%. Results hold when controlling for lan-
guage, number of developers, detection efficiency, and age, though in some settings the 
groups are empty or very small.

In twin experiments, the probability that the developer’s coupling is better (lower) in the 
project with lower CCP was 49%, a lift of 15%. When the coupling in the low-CCP project 
was better by at least one file, the developer coupling was better by one file in 33% of the 
cases, a lift of 72%.

Table 5  CCP and Selected 
Smells

Metric Pearson 
with CCP

Co-change Lift Stability

NPathComplexity 0.15 0.16 0.88
MethodLength 0.14 0.26 0.94
VisibilityModifier 0.14 0.15 0.43
AvoidInlineConditionals 0.10 0.18 0.76
Sum of Smells 0.06 0.11 0.81
NestedIfDepth 0.05 0.06 0.90
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8  The project profile and CCP

8.1  Effect of project domain

The effect of the domain — what the project is supposed to do — comes in two levels. 
First, some domains are more complicated and have more stringent requirements than oth-
ers. For example, software for rocket science or flying a jet plane require more effort than a 
standard game on a smartphone or software for maintaining a blog. Second, some projects 
are simply bigger than other projects in the same domain. Bigger projects require more 
effort, and may contain more bugs just due to their size.

GitHub allows labeling projects with their topics. We extracted the topics and present 
in Table 6 some of the indicative topics out of the 100 most popular ones, showing a large 
CCP range. Hence, it is possible that a program will have more bugs and higher CCP 
since it tries to tackle a hard topic. Note, however, that from a black-box point of view, as 
expected from end users, quality should be indifferent to the domain. A crashing program 
is a problem even when the domain is hard.

On the other hand, comparing hard and easy domains might introduce noise in analysis 
of source code and be considered an unfair benchmark. But even if topics influence CCP, 
this is not a suitable variable to use as control. The most popular topic, hacktoberfest3, 
appears in only 7% of the projects. There are 13,581 topics and the average number of 

Fig. 7  CCP distribution for projects with different average commit sizes (number of files, capped, in non-
corrective commits)

3 https:// hackt oberf est. digit aloce an. com/
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topics per project is 4.5. Hence, even if the controlled groups will be large enough, it is 
not clear what is the proper control group of a project labeled as ‘framework’, ‘linux’, and 
‘machine-learning’. Comparison of projects from different domains is a threat, yet combi-
nations of topics are very diverse and have a low popularity, so one can hope that the influ-
ence on the analysis is low.

Other than the topic itself, a given topic might indicate other differences, like the pro-
gramming language. We checked the influence of Java programs’ domains by observing 
the packages they use. Android applications have an average CCP of 0.24, Swing (a user 
interface library) programs have CCP of 0.22, and Serlvets and programs involving concur-
rency, databases, or security have average CCP of 0.23. Hence, given the same program-
ming language, the CCP difference between rather different domains is rather small.

8.2  Number of developers and CCP

The number of developers, via some influence mechanisms (e.g., ownership), was inves-
tigated as a quality factor and it seems that there is some relation to quality (Norick 
et al., 2010; Bird et al., 2011; Weyuker et al., 2008). The number of developers and CCP have  

Table 6  CCP by Topic (partial 
list of topics)

Topic Repositories CCP

minecraft 31 0.28
microservices 33 0.26
security 75 0.26
cloud 61 0.24
hacktoberfest 532 0.24
blockchain 46 0.24
database 84 0.24
devops 39 0.24
audio 30 0.23
kubernetes 103 0.23
linux 143 0.23
windows 93 0.23
raspberry-pi 31 0.23
bioinformatics 40 0.23
editor 37 0.23
bot 32 0.22
deep-learning 48 0.22
ui 38 0.22
ios 70 0.22
gui 31 0.22
android 146 0.22
machine-learning 96 0.21
docker 119 0.21
framework 84 0.21
library 50 0.20
wordpress 40 0.19
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Pearson correlation of 0.12. The number of developers can reach very high values and 
therefore be very influential.

Figure  8 shows that percentiles of the CCP distribution increase monotonically with 
the number of developers. There are several possible explanations for this phenomenon. 
It might be simply a proxy to the project size (i.e. to the LOC). It might be due to the 
increased communication complexity and the difficulty to coordinate multiple developers, 
as suggested by Brooks in the mythical “The Mythical Man Month” (Brooks, 1975). Part of  
it might also be a reflection of Linus’s law, as discussed in Sect. 6.1.

When investigating other variables, we control for the number of developers by dividing 
the projects into 3 groups: the 25% of projects with the least developers have few develop-
ers (at most 10), the next 50% are intermediate (at most 80), and the rest have numerous 
developers. We then check if the results hold for each such group.

8.3  Programming languages and CCP

The influence of programming language on software attributes such as quality is a 
highly contentious topic (Prechelt, 2000; Nanz & Furia, 2015; Ray et  al.,  2014; Berger 
et al., 2019; Bhattacharya & Neamtiu, 2011; Kochhar et al., 2016). Other than the direct 
language influence, languages are often used in different domains, and indirectly imply 
programming culture and communities. Our investigation of programming languages is 
only superficial, and aims mainly to advise the possible control of language due to their 
influence on CCP.

We extracted the 100 most common file name extensions in GitHub, which cover 94% 
of the files. Of these, 28 extensions are of Turing-Complete programming languages (i.e., 

Fig. 8  CCP distribution for projects with different numbers of developers
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excluding languages like SQL). We consider a language to be the dominant language in 
a project if above 80% of files were in this language. There were 5,407 projects with a 
dominant language out of the 7,557 being studied. Figure 9 shows the CDFs of the CCP of 
projects in major languages.

The figure focuses on the low to medium CCP region (excluding the highest CCPs). 
For averages see Table  7. All languages cover a wide and overlapping range of CCP, 
and in all languages one can write code with few bugs. The least bugs occurred in Shell 
scripts. This is an indication of the need to analyze quality carefully, as Shell is used 
to write scripts and should not be compared directly with languages used to write, for 
example, real-time applications. Project in JavaScript, and to a somewhat lesser degree, 
in C#, also tend to have lower CCPs. Higher CCPs occur in C++, and, towards the tail 
of the distribution, in PHP. The rest of the languages are usually in between with chang-
ing regions of lower CCP.

In order to verify that differences are not accidental, we split the projects by language 
and examined their average CCP. An ANOVA test (Fisher, 1919) led to an F-statistic of 
8.3, indicating that language indeed has a substantial effect, with a p-value around 10−9 . 
Hence, as Table 7 shows, there are statistically significant differences among the pro-
gramming languages, yet compared to the range of the CCP distribution they are small.

Of course, the above is not a full comparison of programming languages (See Prechelt,  
2000; Nanz & Furia,  2015; Ray et  al.,  2014; Berger et  al.,  2019) for comparisons  

Fig. 9  Cumulative distribution of 
CCP by language. Distributions 
shifted to the right tend to have 
higher CCP

Table 7  CCP and development speed (commits per year of involved developers) per language. Values are 
averages ± standard errors

Metric

Language Projects CCP Speed Speed in low-
CCP 10%

Speed in others

Shell 146 0.18 ± 0.010 171 ± 10 185 ± 29 169 ± 11
JavaScript 1342 0.20 ± 0.004 156 ± 3 166 ± 8 154 ± 3
C# 315 0.21 ± 0.008 181 ± 6 207 ± 27 178 ± 7
Python 1069 0.22 ± 0.004 139 ± 3 177 ± 19 137 ± 3
Java 764 0.22 ± 0.005 148 ± 4 205 ± 17 143 ± 4
C++ 341 0.24 ± 0.007 201 ± 7 324 ± 33 196 ± 7
PHP 326 0.25 ± 0.009 168 ± 6 180 ± 22 167 ± 6
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and the difficulties involving them). Many factors (e.g. being typed, memory allocation  
handling, compiled vs. dynamic) might cause the differences in the languages’ CCP.  
Our results agree with the results of Ray et al. (2014) and Berger et al. (2019), indicating  
that the difference between languages is usually small and that C++ has relatively high 
CCP.

8.4  Project age

Lehman’s laws of software evolution imply that quality may have a negative correlation 
with the age of a project (Lehman, 1980; Lehman et al., 1997). We checked whether more 
bugs are found in older projects in our dataset. We first filtered out projects that started 
before 2008 (GitHub beginning). For the remaining projects, we checked their CCP each 
year. Figure 10 shows that CCP indeed tends to increase slightly with age. In the first year, 
the average CCP is 0.18. There is then a generally upward trend, getting to an average of 
0.23 in 10 years. Note that there is a survival bias in the data presented since many projects 
do not reach high age.

Wanting to control age, we divided the projects into 4 age groups. Those started earlier 
than 2008, GitHub’s start, were excluded from the control. Those started in 2018–2019 
(23%) are considered to be young, the next, from 2016–2017 (40%), are medium, and those 
from 2008–2015 (37%) are old. When we obtained a result (e.g., correlation between cou-
pling and CCP), we checked if the result holds for each of the groups separately.

Fig. 10  CCP distribution (during 2019) in projects of different ages
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8.5  Developer engagement and CCP

The relation between churn (developers abandoning the project) and quality steps out of the 
technical field and involves human psychology. Motivation influences performance (Campbell 
et al., 1993; Wright & Cropanzano, 2000). Argyle investigated the relation between develop-
ers’ happiness and their job satisfaction and work performance, showing “modestly positive 
correlations with productivity, absenteeism, and labour turnover” (Argyle, 1989). In the other 
direction, Ghayyur et al. conducted a survey in which 72% claimed that poor code quality is 
demotivating (Ghayyur et al., 2018). Hence, quality might be both the outcome and the cause 
of motivation.

We checked the retention of involved developers, where retention is quantified as the 
percentage of developers that continue to work on the project in the next year, averaged 
over all years (Fig. 11). Note that the median is 100% retention in all four low-CCP deciles, 
decreases over the next three, and stabilizes again at about 85% in the last three CCP 
deciles.

When looking at co-change of CCP with churn ( 1 − retention ), the match is only 51% 
for any change but 79% for a change of at least 10 percentage points in each metric. An 
improvement of 10 percent points in CCP leads to a significant improvement in churn in 
21% of the cases, a lift of 17%. When controlling the language, age group, or developer 
number group, we still get matching co-change. When controlling for detection efficiency, 
we get a small -3% precision lift for high efficiency, and result holds for medium and low.

Acquiring new developers complements the retention of existing ones. We define the  
on-boarding ratio as the average percentage of new developers becoming involved. Figure 12  
shows that the higher the CCP, the lower is the on-boarding, and on-boarding average is 
doubled in the first decile compared to the last.

Fig. 11  Projects’ developer retention per CCP decile. Note the change in the median
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In order to be more robust to noise, we consider projects that have at least 10 new devel-
opers. When looking at co-change of on-boarding and CCP, the match is only 53% for any 
change but 85% for a change of at least 10 percent points in both metrics. An improvement 
of 10 percent points in CCP leads to a significant improvement in on-boarding in 10% of 
the cases, a lift of 18%. When controlling on language, results fit the relation other than in 
PHP and Shell (which had a small number of cases). Results hold for all age groups. For 
size, they hold for intermediate and numerous numbers of developers; by definition, with 
few developers there are no projects with at least 10 new developers. When controlling for 
detection efficiency, we get -1% precision lift for low, and the result holds for medium and 
high.

8.6  Development speed and CCP

The definition of productivity is subjective and ill-defined. Measures including LOC 
(Maxwell et al., 1996), modules (Morasca & Russo, 2001), and function points (Maxwell 
& Forselius,  2000; Jiang et  al.,  2007) per time unit have been suggested and criticized 
(Kemerer & Porter, 1992; Kemerer, 1993). We chose development speed by the number 
of commits per involved developer per year to be our main productivity metric. This is 
an output per time measure, and the inverse of time to complete a task, investigated in 
the classical work of Sackman et al. (1968). The number of commits is correlated with 
self-rated productivity (Muphy-Hill et  al.,  2019) and team lead perception of produc-
tivity (Oliveira et  al.,  2020). Commits are also suitable as the output unit since a com-
mit is a unit of work, its computation is easy and objective, and it is not biased toward  
implementation details.

Fig. 12  On-boarding per CCP decile
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The number of commits per project per year is relatively stable with a Pearson correla-
tion of 0.71. The number of developers per year is also stable with a Pearson correlation 
0.81. To study development speed we omit developers with fewer than 12 commits per year 
since they are non-involved developers. We also capped the number of commits per devel-
oper at 500, about the 99th percentile of the developers’ contributions. While commits by 
users below the 99th percentile are only 73% of the total, excluding the long tail (which 
reaches 300,000 commits) is justified because it most probably does not represent usual 
manual human effort. Using both restrictions the correlation of commits per developer in 
adjacent years is 0.62 (compared to 0.59 without them), which is reasonably stable.

As Fig. 13 shows, there is a steady decrease of speed with CCP. The average speed in 
the first decile is 56% higher than in the last one. Speed differs in projects written in differ-
ent languages. Yet in all of them lower CCP goes with higher speed (see Table 7).

We also conducted twin experiments, to control the developer. When a developer works 
in a faster project, he is faster than himself in other projects in 51% of the cases, 8% lift. 
When the project speed is 10 commits larger, the developer has 42% chance to be also 10 
commits faster than himself, a lift of 11%.

Investigating co-change of CCP and speed, in 52% of the cases, an improvement in CCP 
goes with an improvement in speed. Given a CCP improvement, there is a speed improve-
ment in 53% of the cases, a lift of 4%. Given a 10 percent points improvement in CCP, the 
probability of 10 more commits per year per developer is 53%, and the lift is 2%. In the 
other direction, given an improvement in speed the probability of a significant improve-
ment in CCP drops to 7%. Hence, knowing of a significant improvement in CCP, a speed 
improvement is likely, but knowing of a speed improvement a significant CCP improve-
ment is very unlikely.

When controlling for age or language, results hold. Results also hold for intermediate 
and numerous developer groups, with a positive lift when the change is significant, but a 

Fig. 13  Distribution of commits per year of involved developers (capped) per CCP decile
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-3% lift in the few developers group for any change. When controlling for detection effi-
ciency, the precision lift is -2% for low efficiency, and holds for medium and high.

The GitHu b Torre nt BigQu ery schema enabled us to also use productivity metrics based  
on pull requests and issues (Gousios & Spinellis, 2012). Note that while our project selection 
represents large projects active during 2019, the selection criteria of Gousios and Spinellis 
(2012) were different, and covered 2011–2016. There are 5,165 projects in the schemas inter-
section, 68% of our data set. Note that this selection has a strong bias towards relatively old 
and long living projects.

The first interesting result from this investigation is that output measures are not very 
correlated, though they should represent the same concept. We measure Pearson cor-
relation with commits, the metric available to us on all projects. Merged issues have 
correlation of 0.17, merged pull requests 0.51, and developers (output producers) have 
correlation of 0.42. Despite the differences between output metrics, Table 8 shows that 
all of them co-change and have positive precision lift with respect to CCP. Note that in 
some cases the lift is higher than that with commits (output metric) and commits per 
involved developer (productivity metric).

We also measured a new productivity metric, the average duration between a com-
mit and the prior one on the same day. The requirement for the same day overcomes 
large gaps of inactivity of open source developers that could be misinterpreted as long 
tasks. We manually labeled 50 such cases to validate that they fit the duration needed 
for the code change. Table 8 shows that the same-day duration is highly stable with 0.87 
adjacent-years Pearson correlation, and co-changes with both commits and CCP. Com-
mit duration is an investment metric, and the co-change indicates that the less bugs, the 
faster are the commits per involved developer (CPID). Therefore, the relation between 
quality and productivity holds for various productivity metrics.

The above results can also be used to reflect on the relationship between quality and 
productivity. There are two opposing theories regarding this relationship. The classical 
Iron Triangle (Oisen, 1971) sees them as a trade-off: investment in quality comes at the 
expense of productivity. On the other hand, “Quality is Free” claims that investment in 
quality is beneficial in general and leads to increased productivity (Crosby, 1979). Our 
results in Fig. 13 and Table 7 indicate that productivity (as operationalized by commits 
per year per involved developer) is correlated with lower CCP, namely with lower rela-
tive investment in bug fixing, leaving a larger fraction of the effort to making progress 
with the project.

Note that this is not a tautology: it is not just that you produce more non-corrective com-
mits when CCP is low, it is that you produce more commits overall. So low-CCP projects 

Table 8  CCP and Productivity

CCP Commits CPID
Metric Stability lift lift lift

CCP 0.83 – 0.13 0.27
Commits 0.81 0.13 – 0.32
Commits per involved developer 0.91 0.27 0.32 –
Merged issues per involved developer 0.50 0.33 0.16 -0.12
Merged PRs per involved developer 0.76 0.04 0.13 0.25
Same day duration avg 0.87 0.11 0.19 0.13
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enjoy a win-win increase in productivity: they produce more commits, and more of these 
commits are not wasted on fixing bugs. The twin experiments help to reduce noise, demon-
strating that development speed is a characteristic of the project. In case that this correla-
tion is indeed due to causality, then when you have fewer bugs you also gain speed, enjoy-
ing both worlds. This relation between quality and development speed is also supported  
by Jones’s research on time wasted due to low quality (Jones 2015, 2006) and developers  
performing the same tasks during “Personal Software Process” training (Shrikanth et al.,  
2020).

9  Is CCP redundant?

We examined many variables of projects, coupling, length, programming language, etc. If 
CCP is a function of these variables and can be predicted by them, it adds no additional 
value. In this section, we examine to what extent the variables that we consider can predict 
CCP. We do it by building a machine learning model based on them, trying to predict CCP.

Note that unlike the regular use case of machine learning, we do not need a model to 
predict CCP. Unless it is a new project with very few commits, we can measure the CCP 
directly. But if we can build a model that predicts a project’s CCP, this means that we have 
identified all the relevant factors that affect CCP. The model that we built has a modest 
goal, and attempts to predict only whether a project will be in the 50% with the lowest CCP 
or not. We chose to divide to two equal-size groups at 50% in order to avoid problems due 
to imbalanced data sets (Van Hulse et al., 2007; Krawczyk, 2016; Oak et al., 2019).

We present in Fig.  14 a small tree model generated using scikit-learn (Pedregosa 
et al., 2011) that is simple to understand, of accuracy 63%. We present it to demonstrate 
that a very small model can predict quite well. Blue represents high quality probability and 
orange represents low quality.

Decision trees (Quinlan, 1986) are greedy algorithms. Hence the model uses the number  
of the authors as its root, since this is the most informative feature. Note that one cannot 
deduce that the next levels features are the next most indicative ones since their utility is  
evaluated when they are conditioned on the prior nodes. Also note that decision tree clas-
sifiers use stooping rules and pruning rules that limit the evolution of the tree. If a feature  
is not included in the tree, it does not imply that it is not informative. It means that it 
was not informative enough at the given structure of the tree. The model demonstrates 
that authors (size, Sect.  8.2), coupling (quality, Sect.  7.3), file length (quality, Sect.  7.1)  

Fig. 14  Model Predicting High Quality Group
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and stars (detection efficiency, Sect.  6) are informative. Yet, even when using them, the 
leaves are rather diverse as demonstrated by the Gini metric values (Dorfman, 1979) and 
the class distribution (the value property). Note that many other models and features are 
also useful, this tree is an example, not the only model.

Our goal is to understand to what extent the features we discussed above explain the 
CCP. There are several possible outcomes. If we cannot make good predictions, this means 
that the features are not useful, although they might be useful combined with more features 
or in a different model. If the prediction accuracy is perfect, not only that we can predict, 
but we also know that there are no other causal features that are missing. If any additional 
causal feature was missing, the concept would not be a function of the given features, and 
accuracy would not be perfect.

Our results are in between. The best accuracy we got was 68%. We also trained and 
evaluated the accuracy of a high capacity random forest on the same data set, in order to 
reach overfitting deliberately (Arpit et al., 2017). We reached an accuracy of 72%, which 
serves as an estimate of the upper bound on the best possible classifier results on this data 
set. Thus the result of 68% is close to that level. Though the features discussed improve the 
predictive power significantly relative to the majority rule, even combined they cannot cap-
ture the CCP. Therefore CCP is influenced by other factors too and cannot be replaced by a 
function of the discussed ones.

10  Threats to validity

We set out to measure the Corrective Commit Probability and do so based on a linguistic 
analysis, what poses a construct validity threat. We investigated whether it is indeed accu-
rate and precise in Sect. 3.4. The number of test labeled commits is small, about 1,000, 
hence there is a question of how well they represent the underlying distribution. We evalu-
ated the sensitivity to changes in the data. Since the model was built mainly using domain 
knowledge and a different data set, we could use a small training set. Therefore, we pre-
ferred to use most of the labels as a test set for the variables estimation and to improve the 
estimation of the recall and Fpr.

The labeling was done manually by humans who are prone to error and subjectivity. 
In order to make the labeling stricter, we used a label ing proto col, provided in the sup-
plementary materials. Out of the samples, 400 were labeled by three annotators indepen-
dently. The labels were compared in order to evaluate the amount of uncertainty. Other 
than uncertainty due to different opinions, there was uncertainty due to the lack of informa-
tion in the commit message. For example, the message “Changed result default value to 
False” describes a change well but leaves us uncertain regarding its nature. We used the 
gold standard labels to verify that this is rare.

Our main assumption is the conditional independence (Blum & Mitchell, 1998; Lewis,  
1998) between the corrective commits (code) and the commit messages describing them 
(process) given our concept (the commit being corrective, namely a bug fix). This means 
that the model performance is the same over all the projects, and a different hit rate is 
due to a different CCP. This assumption is invalid in some cases. For example, projects 
documented in a language other than English will appear to have no bugs. Non-English 
commit messages are relatively easy to identify; more problematic are differences in Eng-
lish fluency. Native English speakers are less likely to have spelling mistakes and typos. A 

852 Software Quality Journal (2021) 29:817–861



1 3

spelling mistake might prevent our model from identifying the textual pattern, thus lower-
ing the recall. This will lead to an illusive benefit of spelling mistakes, misleading us to 
think that people who tend to have more spelling mistakes tend to have fewer bugs.

Another threat to validity is due to the family of models that we chose to use. We 
chose to represent the model using two parameters, recall and Fpr, following the guid-
ance of Occam’s razor and resorting to a more complex solution only when a need arises. 
However, many other families of models are possible. We could consider different sub-
models for various message lengths, a model that predicts the commit category instead of 
the Boolean “Is Corrective” concept, etc. Each family will have different parameters and 
behavior. More complex models will have more representative power but will be harder to 
learn and require more samples.

A common assumption in statistical analysis is the IID assumption (Independent and 
Identically Distributed random variables). This assumption clearly does not hold for 
GitHub projects. We found that forks, projects based on others and sharing a common his-
tory, were 35% of the active projects. We therefore removed forks, but projects might still 
share code and commits. Also, older projects, with more commits and users, have higher 
weight in twin studies and co-change analysis.

Our metric focuses on the fraction of commits that correct bugs. One can claim that the 
fraction of commits that induce bugs is a better metric when one is interested in quality. In 
principle, this can be done using the SZZ algorithm (the common algorithm for identifying 
bug-inducing commits (Śliwerski et al., 2005)). But note that SZZ is applied after the bug 
was identified and fixed. Thus, the inducing and fixing commits are actually expected to 
give similar results.

Another major threat concerns internal validity. As we noted, a low CCP can result from 
a disregard for fixing bugs or an inability to do so. On the other hand, in extremely popular  
projects, Linus’s law “given enough eyeballs, all bugs are shallow” (Raymond, 1998) might 
lead to more effective bug identification and high CCP. Likewise, improvements in bug 
detection (e.g., by doubling the QA department) can have a large effect on the CCP. We 
identify such cases and discuss them in Sect. 6.

Focusing on corrective commits also leads to several biases. Most obviously, existing 
bugs that have not been found yet are unknown. Finding and fixing bugs might take months 
(Kim & Whitehead, 2006). Different policies and methods, such as the adoption of con-
tinuous integration (Bernardo et al., 2018), might change the time to merge fixes. When 
projects differ in the time needed to identify a bug, our results will be biased.

Tasks differ in size and difficulty and their translation to commits might differ due to 
the project or developer habits. Commits may also include a mix of different tasks. In order 
to reduce the influence of project culture we aggregated many of them. In order to elimi-
nate the effect of personal habits, we used twins experiments. Other than that, the number  
of commits per time is correlated to developers’ self-rated productivity (Muphy-Hill 
et al., 2019) and team lead perception of productivity (Oliveira et al., 2020), hence it provides a  
good computable estimator.

Software development is usually done subject to lack of time and resources. Due to that, 
many times known bugs of low severity are not fixed. While this leads to a bias, it can be 
considered to be a desirable one, by focusing on the more important bugs. In the other 
direction, we give all fixes the same weight. When such data is available, it might be more 
proper to give higher weight to important bugs, distinguish between bugs by their cause, 
etc.

A threat to external validity might arise due to the use of open source projects that might 
not represent projects done in software companies. We feel that the open source projects 
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are of significant interest on their own. Other than that, the projects we analyzed include 
projects of Google, Microsoft, Apple, etc. so at least part of the area is covered.

The decision to use commits as the basic entity and assuming they are atomic is another 
threat. One could choose pull requests as the basic entity, which reflect 6 commits on  
average. On the other hand, it is known that many commits are tangled (Herzig & Zeller,  
2013; Herbold et al., 2020), serving more than one goal, for example including both a fix  
and a refactor. Moreover, the relation is not one-to-one: a bug might be fixed in more 
than a single commit, and a commit might resolve several bugs or tasks. We showed in  
Sect. 8.6 that pull requests, issues, and commits are only moderately related with respect 
to the number of them done in a year. Hence these entities are indeed different, and one 
should use the one that best serves one’s interests. Commits are the only entities available 
in the BiqQuery schema of GitHub repositories, enabling up-to-date analysis. Commits are 
also smaller units than pull requests and issues, and directly reflect the work of the devel-
oper modifying the code. We therefore find them to be the better choice.

Time, cost, and development speed are problematic to measure. We use commits as a 
proxy to work since they typically represent tasks. However, quality, productivity, and their 
relations can be defined in many different ways and should be further investigated. For 
example, it is possible to measure productivity as time to merge a fix, as done by da Costa 
et al. (2018), who report lower productivity after the introduction of continuous integra-
tion, that should increase quality. We do not have the needed data to replicate their analy-
sis. We extended the analysis with pull requests and issues when this data was available, 
showing that the result holds with a variety of productivity metrics.

11  Conclusions

We presented the Corrective Commit Probability (CCP), a metric for the relative effort 
invested in fixing bugs, reflecting on the health of a project and its code. We started off 
with a linguistic model to identify corrective commits, significantly improving prior work 
(Hindle et al., 2009; Amor et al., 2006; Levin & Yehudai, 2017; Amit & Feitelson, 2019), 
and developed a mathematical method to find the most likely CCP given the model’s hit 
rate.

The CCP metric has the following properties:

– It is stable: it reflects the character of a project and does not change much from year to 
year.

– It is informative in that it has a wide range of values and distinguishes between projects.

We estimated the CCP of all 7,557 independent large active projects in 2019 in BigQuery’s 
GitHub data. This created a quality scale, enabling observations on the state of the prac-
tice. Projects at the top of the scale spend more than 6 times as much effort on bug fixing as 
projects at the bottom of the scale. Using this scale developers can compare their project’s 
relative investment in fixing bugs (as reflected by CCP) to the community. A low percentile 
may suggest the need to invest more effort.

We furthermore show a correlation between CCP and various project attributes, includ-
ing long files, coupling, occurrence of code smells, low perceived quality, lower productiv-
ity, developer churn, and less effective onboarding. These can serve as starting points for 
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research on how such project attributes may affect the division of effort between bug fixing 
and making continued progress with the project’s development.

12  Supplementary materials

The language models are available at https:// github. com/ evide ncebp/ commit- class ifica tion. 
Utilities used for the analysis (e.g., co-change) are at https:// github. com/ evide ncebp/ analy 
sis_ utils. Database construction code is available at https:// github. com/ evide ncebp/ gener al.  
All other supplementary materials can be found at https:// github. com/ evide ncebp/ corre ctive-  
commit- proba bility.
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4.3 A Large Scale Survey of Motivation in Software

Development and Analysis of its Validity

Unpublished: Amit, Idan, and Dror G. Feitelson. ”A Large Scale Survey of Motivation

in Software Development and Analysis of its Validity”, 2023.

In this thesis, we developed a machine learning method to investigate motivation

on a large scale, over years, in a quantitative and reproducible way. We based our

work on labeling functions, classifiers that need to be just somewhat better than a guess

[67, 62, 6]. Given such labeling functions, we could apply our relation identification

methods to investigate the relation between motivation and productivity, etc.

However, part of the labeling functions validation should be done by comparing re-

ported motivation and actual behavior. We therefore conducted a survey and asked the

participants for their GitHub profile, allowing us to do the matching.

The survey led to interesting results besides the matching. We asked about eleven

motivators from the literature (e.g., ownership, recognition). All eleven motivators had

good performance when predicting high motivation. We also conducted a follow-up sur-

vey with the same developers with the same question on the same project. This allowed

us to evaluate the performance of motivator improvement in predicting motivation im-

provement. Recognition, and specifically expressing interest were found to be an effective

way to improve motivation, a way that is simple, widely applicable, and always within

budget.

We also extended the co-change model, building a full model on all features, consider-

ing the context and aiming to predict a change. Finally, we also examined the reliability

and validity of the answers and noted that they are limited. The methods that we used

for the validity are a contribution of their own.
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Abstract

Context: Motivation is known to improve performance. In software
development in particular, there has been considerable interest in the
motivation of contributors to open-source.
Objective: We would like to predict motivation, in various settings.
We identify 11 motivators from the literature (enjoying programming,
ownership of code, learning, self-use, etc.), and evaluate their relative
effect on motivation using supervised learning. Since motivation is an
internal subjective feeling, we also analyze the validity of the answers.
Method: We conducted a survey with 66 questions on motivation which
was completed by 521 developers. Most of the questions used an 11-point
scale. We evaluated the answers’ validity by comparing related questions,
comparing to actual behavior on GitHub, and comparison with the same
developer in a follow-up survey.
Results: Validity problems include moderate correlations between an-
swers to related questions, as well as self-promotion and mistakes in the
answers. Despite these problems, predictive analysis—investigating how
diverse motivators influence the probability of high motivation—provided
valuable insights. The correlations between the different motivators are
low, implying their independence. High values in all 11 motivators pre-
dict increased probability of high motivation. In addition, improvement
analysis shows that an increase in most motivators predicts an increase in
general motivation.
Conclusions: All 11 motivators indeed support motivation, but only
moderately. No single motivator suffices to predict high motivation or
motivation improvement, and each motivator sheds light on a different
aspect of motivation. Therefore models based on multiple motivators
predict motivation improvement with up to 94% accuracy, better than
any single motivator.

Keywords: Motivation, Software engineering, Open-source development, Sur-
vey validity.
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1 Introduction

Motivation has a high impact on human performance in many fields [38, 13,
60, 104, 54]. In the context of software development it is especially interesting
[22, 89], due to the phenomenon of open-source development [81], where many
of the developers are volunteers [88].

We conducted a large-scale survey asking developers about their motiva-
tion. Our survey contained questions related to eleven motivators which may
affect motivation, taken from prior work. Some of these motivators relate to
the culture of open source, such as adhering to its ideology [24] and develop-
ing software for self-use [81]. Other motivators are related to internal reasons,
such as enjoyment from developing code [44, 12], learning from it [18], the
feeling of overcoming a challenge [71, 67], or gaining ownership of a project
[60, 16]. Additional motivators extend this to a wider context: being part of
a community [15, 105], receiving recognition for one’s work [41, 100] — or,
in unpleasant situations, suffering from hostility [79, 3]. Finally, there are
project-based motivators like a sense of importance [45], as well as receiving
payment for participating in a project [25, 82]. The survey contained 66 ques-
tions, covering 11 motivators. We obtained answers from 1,724 developers, and
521 of them completed the whole survey. A year later we conducted a followup
survey, answered by 124 of the original participants.

We wanted to investigate motivation in the framework of supervised learning,
enabling us to predict motivation in many settings. Our main goal was to obtain
answers to motivation questions by developers whose real activity is public on
GitHub. This matching allows to validate labeling functions, heuristics that
predict motivation better than a guess. A first example of the use of our data
is given in Amit and Feitelson [10] which validated labeling functions like long
commit messages and working diverse hours. The labeling functions that were
validated on our data predicted well the retention of 151,775 developers in their
real natural activity at GitHub.

Then we moved to predict motivation using the motivators. In prior work it
was common to focus on hit rate, how common is a motivator [37, 30, 48, 41].
We wanted to extend this analysis and investigate questions like necessary and
sufficient conditions for motivation.

The follow-up survey allowed us to further advance from mere motivation
prediction to change prediction. If a motivator increased from the original survey
to the follow-up, it improved. We modeled and investigated the predictive power
of motivator improvement on motivation improvement.

Taken together, a motivator that is influential in all these separate ways is
likely to have a true impact. In general, all the motivators were found to con-
tribute to motivation in the predictive sense (knowing of a high motivator means
higher probability of motivation). Other than challenge, ideology, and hostility,
an improvement in the follow-up answers of the motivator also increases the
probability of motivation improvement. On the other hand, none of the moti-
vators is sufficient or necessary on its own for high motivation. Yet, when used
together in a predictive model, one can predict well both high motivation and
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motivation improvement.
Other than using the answers, we evaluated their reliability and validity.

Motivation is an internal subjective feeling. When answering regarding our
motivation, a valid answer depends on internal identification of the motivation,
correct translation into a proper answer, and lack of personal biases [19, 58].
We examined the correlations between questions concerning the same motivator
to evaluate coherence. We also checked the consistency of answers of the same
person to the same questions in the original and follow-up surveys. Moreover, we
investigated the validity of the answers, using identification of errors, differences
between perception and actual behavior on GitHub, and biases.

We found that the attitudes toward motivators are only moderately stable.
The validity also suffers from many kinds of problems. Simple mistakes, like
typos, are rather rare. Biases are more common. For example, almost all de-
velopers agree that ‘My code is of high quality’. This may indicate that our
participants are indeed highly skilled developers. However, the GitHub profiles
provided by some participants allowed us to compare their answers to their ac-
tual behavior. This showed that the participants overestimated their code qual-
ity, their documentation level, and their productivity. Despite these problems,
questions belonging to the same motivator are usually coherent. Comparing
answers of the same developer in the original and follow-up survey also shows
a moderate stability. Therefore, the results that were supported by multiple
analyses seem to be valid.

This study makes three main contributions:

• We conducted a large-scale survey on software developers’ motivation,
covering 11 motivators.

• We make several methodological innovations, including about assessing
the validity of the results:

– We asked participants for their GitHub profiles, which enabled com-
paring survey answers and actual behavior.

– This allowed the validation of motivation labeling functions for mo-
tivation [10]. The labeling functions introduces a new methodology
for motivation research complementing experiments, interviews, sur-
veys, and case studies. This methodology facilitates quantified, re-
producible, long-term investigation, based on large-scale data from
real projects.

– We conducted a follow-up survey, asking the same people the same
questions again after more than a year. This allowed us to measure
the answers’ stability and the impact of changes in motivators on
changes in motivation.

– We framed the analysis as a supervised learning problem. We initially
considered each single motivator as a classifier for high motivation,
moved to full models, and then applied the same methods for moti-
vation improvement.
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– We used the correlations of different questions in the same topic to
measure absolute and relative coherence.

– The large scale of the study allowed us to compare answers of different
people in the same project, estimating subjectivity.

– We used several types of analyses in tandem to investigate the rela-
tions between motivators and motivation. Most relations were con-
sistent in most or all the methods, testifying to their validity.

• We analyze the results using a machine-learning framework and reach
several conclusions regarding motivators and their influence:

– We corroborate previous work showing that in general motivators
from prior work are indeed correlated with motivation.

– At the same time we find that none of them alone is enough to guar-
antee motivation, so developers usually need several reasons in order
to have high motivation. Also, predictive performance is improved
by taking multiple motivators into account.

– Answers regarding motivation have moderate validity, shown by com-
paring to similar questions, comparing to a different date, or com-
paring to actual behavior.

– We found that although hostility is rare, when it exists it has a
negative influence on motivation. Yet, it tends to be unobserved
by others in the same project.

2 Related Work

2.1 Motivation

Motivation, in general and in work context, has been extensively investigated
due to its importance. Many theories were suggested. Skinner suggested operant
conditioning, learning behavior due to reward and punishments [92]. Maslow’s
hierarchy of needs sees self-actualization as the top need [69]. McClelland argues
that motivation comes from a mixture of affiliation (society based), authority
(opportunities to gain it), and achievements (overcoming challenges) [71]. The
equity theory claims that motivation might be hurt due to relative comparison
and the feeling of not being fairly treated [3].

In the context of work, the Goal Setting Theory claims that challenging
yet achievable goals benefit the motivation [67]. Close in spirit is Vroom’s Ex-
pectancy Theory [101] that claims that one estimates the outcome, the outcome
value, and the probability of the value. Given these, the motivation is deter-
mined, and one will have more motivation in tasks where an outcome that is
valued is likely to be achieved.

Herzbereg et al. suggested the Motivation-Hygiene Theory [49]. According to
it, positive motivation is usually due to intrinsic motivators. However, external
hygiene factors might lead to the loss of motivation. Hackman and Oldman
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suggested the Job Characteristics Theory [45]. They claim that the motivation
might come from the job itself, due to the significance, autonomy, skill, identity,
and feedback related to the job.

These theories are classical and were introduced long ago, and use different
approaches (see comparison [52]). Though they were criticized, they are still
beneficial [19].

Demarco and Lister [32], and also Frangos [38], claim that the important
software problems are human and not technological. So, many have investigated
motivation in software engineering [62, 22, 39, 42].

Open-source development is the collaborative development of software that
is free to use and further modify. The best-known non-technical equivalent is
Wikipedia. A seminal description of the phenomenon is given in Raymond’s
“The Cathedral and the Bazaar” [81]. Payment is probably the most common
way to motivate people to perform a task, though it is an extrinsic motivation
and therefore its influence is more complex [25, 82]. However, it is common
to perform open-source software development as a volunteer, which means that
salary is not the motivation, making it startling from an economical point of
view at first sight [63]. Therefore, the motivation of open-source developers
was investigated as a specific domain, in an effort to uncover other motivators
[105, 100, 31, 65, 47, 83].

Empirical research also supports the benefit of motivation. Task significance,
a motivation cause, was shown to increase productivity [43]. Campbell et al. see
performance as a function of motivation but also of knowledge and skill [28].

2.2 Motivators

The research literature has not produced a canonical agreed list of factors that
influence motivation. Mayer et al. reviewed 75 years of motivation measures
[70]. This showed that many different factors have an effect, but the agreement
between them is limited. We therefore needed to select which ones to include
in our study.

We based our list of motivators mainly on Beecham et al.’s review of moti-
vation in software engineering [22] and Gerosa et al.’s [41] work on motivation
in open-source development. Our default was to include motivators in order to
cover more aspects of motivation. The motivators that we chose have a long
history going back to Herzberg’s Motivation-Hygiene Theory [49], and therefore
were thoroughly investigated over the years (e.g., in general [48] and in software
development [30]). Note that we excluded some of the motivators which are
less relevant to open-source development, like “Job security” and “Company
policies”. Conversely, we did include “hostility”, which is a demotivator (it is
common to refer to factors of positive influence as motivators and those of neg-
ative influence as demotivators) [3]. Since we have only a single demotivator,
we use the term “motivator” to refer to both it and the positive motivators.

In Section 5.2 we list and discuss the 11 motivators used in our study. In
Section 6.1 we compare our results and the results in the survey from which we
selected our motivators.
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2.3 Reliability of Motivation Reports

The limited reliability of motivation reports, a problem that we also cope with,
was investigated in prior work. Using self-estimation in a survey might be
a threat to the validity of the collected data. There might be biases due to
ego defenses[19], the Dunning–Kruger effect [58], subjectivity, and different
personal scales. Further, “research on self-esteem (Shavit & Shouval, 1980)
[90] has demonstrated empirically that individuals resist lowering favorable self-
perceptions” [27]. Previous work has tried to evaluate these difficulties.

Argyle [12] checked the reliability of self-estimation of happiness and showed
it is related to peer and supervisory estimation. The Maslach Burnout Inventory
validated self-estimation on burnout by comparison with the answers of a close
person such as a spouse or a co-worker [68]. Judge et al. [55] also compared a
person’s and significant other’s answers. For work answers “The average corre-
lation between the self and significant-other reports, corrected for unreliability,
was r = .68.”

Wigert and Harter investigated performance reviews, an area close to moti-
vation [103]. They mention methodological difficulties when one tries to rely on
supervisory estimation instead of self-estimation: individual supervisory ratings
are a much less reliable measure of performance than objective measures [99],
and 62% of the variance in ratings can be attributed to rater bias, while actual
performance accounts for just 21% of the variance [86]. Yet, Tsui reports that
an employee and his manager’s evaluation of effectiveness match [84].

Beatty et al. [20] also compare manager and employee’s appraisals. They
found that there is agreement on medium performance and some disagreements
on high and low performance. In a second usage there was higher agreement,
though it was not clear if it was due to clarification of requirements or just
better communication.

As prior work shows, there is a moderate agreement between self-reports
and a close person’s report. This supports the self-reported answers validity
yet warns that they are not perfectly accurate. In this study, we compare the
same person’s answers to related questions, and the same person’s answers in
the original and follow-up surveys, reaching a similar agreement level. We also
note that despite all the above concerns, Scott et al. report that Facebook found
that surveys are twice more accurate than predictive analytics in employee churn
[85].

3 The Survey Instrument

3.1 Design

Our design aimed to serve some goals. This led to the construction of a relatively
long survey with 66 questions (see Appendix A). The first goal was to obtain
labels about quality and productivity in development. The first section of the
survey was “Questions regarding yourself” (18 questions). This part included
general questions about motivation and verifiable questions about conduct (e.g.,
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the writing of detailed commit messages). We also asked questions about self-
rating of skill. After collecting the answers we found out that developers tend
to have a very good opinion about their performance so we ended using these
questions only to investigate answer validity problems (Section 6.2). Few of the
questions (e.g., “I enjoy software development very much”) were used to indicate
the existence of a motivator, later analyzed for influence on general motivation.

The second goal was to obtain information about motivators. This served
us for predictive analysis of answers, co-change analysis of motivation improve-
ment, and labeling functions based on behaviour cues in real software develop-
ment [10]. Due to that we aimed to represent many motivators and use few
questions for the main ones. The questions were in the second section “Ques-
tions regarding activity in a repository” (28 questions), in which we asked about
a specific project and its related behavior. This included our motivation ground
truth question: “I regularly have a high level of motivation to contribute to the
repository” (based on [73]).

We planned to validate our results with respect to the popular Job Satisfac-
tion Scale questionnaire [50] (10 questions) which was included as is. Analysis
and direct feedback indicated confusion, so we ended up using it just for va-
lidity. Hence, it served as a source of attention-check items [87]. In questions
about the community, we asked people in a single person project to skip, also
serving as attention checking. These cases are discussed in Section 6.2. Since
the mistakes were due to misunderstanding, as some of the participants directly
commented, we included participants that answered so and just measured the
how common these mistakes were.

We also added a “Demography” section (8 questions). Demography is of
interest on its own and enables us to compare it to the Stack Overflow survey.
Last, we ask an open question requesting comments whose goal is to ensure that
we did not miss a significant factor in the structured questions.

By using questions from prior work, we benefit from a previous validation.
In the discussion below we note prior work on each motivator (Section 5.2), and
in the replication package we identify the specific source of each survey question
[9].

An important goal of the survey was to enable us to compare answers regard-
ing motivation and actual behavior. For example, we could compare answers to
“I write detailed commit messages” and actual commit message length. There-
fore, we asked the participants to choose a specific project and provide its name,
preferably a public GitHub project. We asked for their GitHub profile for inves-
tigating the developer behavior. We also asked for the email from participants
who were interested in the research results. Email and GitHub profile are per-
sonally identifying information, which is usually not collected. We needed them
to match the answers to other data related to the same person, but do not
include them with the other experimental materials. This was approved by our
IRB (study 09032020).

The survey was designed to take about 10 minutes. Most questions used a
Likert scale [66, 53]. Values ranged from 1 to 11, providing closest-to-normal
distribution [64]. All participants saw the sections in the same order, yet the
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questions order within the sections was randomized.

3.2 Execution

The target population in software engineering is hard to define in many cases
[17]. We started with a well-defined population - active developers in large
active GitHub projects. We approached only developers that published there
email as public, and we obtained a list describing the population by name.
This population was essential in order to match answers about motivation and
actual behavior in GitHub. However, this population is small compared to all
developers. We therefore also reached developers in social media, which led
to 80% of the participants. We used machine learning to differ between the
population and did not find a large difference (see supplementary materials).

The survey was conducted using the Qualtrics platform from December 2019
to March 2021. We obtained 1,724 participants, 521 of them completed the
survey.

We conducted a pilot until February 2020, including 16 people from our
social circles. We received feedback on the focus of the survey and redundant
questions, which were deliberate decisions. Few participants alerted us about the
principal position of GitHub, feedback we failed to use at this stage. We received
wording suggestions that we applied. We checked that the long survey can be
completed in 15 minutes, which was OK. After the entire survey was conducted,
we found out that 84% of those that finished it did it in this duration. Since the
content of the questions was not changed, we included the pilot participants in
the survey.

GitHub is a platform for source control and code development used by mil-
lions of users [1]. We initially focused on 1,530 active public GitHub projects
with 500+ commits during 2018, described in [7, 8, 5]. About 40,000 developers
contributed to these projects that year, of which 9,000 contributed more than
12 commits. We extracted developers’ email addresses using the GitHub public
email API, fetching the emails of the developers that chose to share them pub-
licly. We sent emails to 3,255 developers with a public email that had enough
commits. We also had a gift card lottery, offering $50 to three of the partici-
pants. This channel led to 339 participants, which is 20% of the total.

We also recruited participants in social networks by convenience sampling
[33, 2], which led to the remaining 80% of the participants. We used Reddit,
an online discussions site, as an important source of participants. Reddit has
numerous subreddits, channels dedicated to discussions on specific topics. It has
many channels relevant to programmers such as programming language based,
operating system based, tools, etc. We posted slowly in different subreddits, to
get familiar with the community, as posting at a high rate might be considered as
spamming. Each subreddit has different formal and informal rules that should
be respected. We found the people showed interest in the survey, which led to
discussions and upvotes. These in turn led to more attention to the survey.

As noted above, we asked participants for the name of their project and
their GitHub profile. They provided the names of 484 projects and 303 personal
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GitHub profiles. But after posting the survey in social media, we noted that
many participants stop at the “Questions regarding activity in a repository”
section since they do not contribute to a GitHub repository. This was also
accompanied by direct feedback saying that. Since we were interested in answers
about motivation in general and needed the GitHub profile only to link to actual
behavior, we changed the questions about “GitHub repository” to “any project”,
avoiding this drop.

The original survey ended in March 2021. A year after the last response, in
April 2022, we sent a follow-up survey to the 341 participants that provided their
emails in the original survey. We sent them the name of the project on which
they initially answered, and asked to answer on the same project in case that
they are still active there and on a different project otherwise. The questionnaire
was the same as the first one, with the additional validation question “Is it the
same project on which you answered last time?”. In the follow-up survey, 124
out of the 341 participants we reached out to answered (36.3%).

3.3 Answers Treatment and Validation

Our emails to GitHub developers had 4.4% response rate, close to the 5% re-
ported by [51]. Due to a mistake, we sent multiple emails to developers that
worked on multiple suitable projects, and we apologize for that. This was both
annoying and mis-estimated the number of developers. After fixing the mistake
the response rate was 8.1%, close to the 9% reported by Feitelson which used
a similar dataset [35]. We believe that the response rate benefited from the
use of the GitHub public email API. Email is used by GitHub in the develop-
ment, and therefore they are usually updated (our bounce rate was 1%). The
API returns the emails of developers that choose to share them publicly, hence
more agreeing to cold communication. We believe that many people found the
topic, motivation in software development, exciting. We anecdotally noticed it
in up-votes and comments in social media, responses to the open questions in
the survey, and the 19.8% of the participants that left email wanting to learn
the research results.

We checked if participants answer all questions with the same answer (e.g.,
due to maliciousness or boredom). There was a single such participant, who
answered a few ”Questions about yourself” and dropped, not included in analysis
anyway. 91% of the participants that did not finish the survey, abandoned in
less than 5 minutes. Only 7% answered the survey in less than 5 minutes, a
quick yet possible duration.

Some participants do not answer all questions. In these cases, we used the
relevant answers and did not attempt to fill the missing ones.

Section 6.2 presents validity problems in the answers. Section 6.3 presents
the internal coherence of motivators and their construction. Section 6.4 uses
the follow-up survey and treats the survey as a longitudinal study and shows
that their agreement is better than independent.

However, the strongest validation comes from the ability to predict the be-
haviour of 151,775 developers in 18,958 GitHub projects. Amit and Feitelson
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used our dataset to define labeling functions [26, 80, 11] for motivation [10].
The labeling functions are weak classifiers, validated heuristics that predict mo-
tivation better than a guess, which are based on behavioural cues. For example,
working in more diverse hours and writing longer commit messages are labeling
functions. These labeling functions predicted the high answers of our survey
participants. When used on the entire GitHub datasets, they predicted reten-
tion, and higher activity and output of 151,775 developers. Hence the answers
agree with the labeling function, which agree with the behaviour of a mass of
new unseen developers.

All data and code are in the supplementary materials. Personal identifiers
were hashed to preserve anonymity yet allow matching.

4 Analysis

Supervised learning is a powerful framework, suitable to our needs. In super-
vised learning we try to predict a concept (e.g., high motivation) using a classi-
fier (e.g., decision tree) based on features (e.g., motivators). The versatility of
supervised learning allows us to investigate a single motivator, all of them, or
temporal changes. One can apply supervised learning to a single motivator for
direct evaluation or to all of them, leverage their combined power.

The concept, which we try to predict, is high motivation. The classifiers,
which provide us with predictions, are the motivators (e.g., high ownership).
We evaluate how well motivators predict high motivation, using metrics that
compare the prediction to the actual motivation. Interesting metrics are the
fraction of those with, say, high ownership who indeed are highly motivated
(precision), the improvement over just the prevalence in the population (preci-
sion lift), and what fraction of the highly motivated who have high ownership
(recall).

The analysis of each individual motivator with respect to general motiva-
tion provides simple basic results yet ignores more complex relations like con-
founders. We therefore also performed additional, more complex analyses. We
analyzed the relations between motivators to see that this risk is small. We
used the follow-up survey to analyze motivation improvement of each motivator
alone. Last, we built combined models utilizing all motivators to avoid risk of
confounding and leverage the power of all motivators.

5 Results

5.1 General Motivation

Motivation might derive from many motivators, from payment to enjoyment.
The concept that we would like to investigate is high motivation to contribute
to a project, and its relations to these various factors.

We measure general motivation using the question “I regularly have a high
level of motivation to contribute to the repository” (pattern is based on [73]).

10



The results show that developers are generally motivated (Figure 1). High
motivation (at least 9 = ‘somewhat agree’ on a scale of 1 to 11) was reported
by 52.4% of the participants.

Figure 1: Distribution of answers to general motivation question.

We identified paid people by their answer to a specific question about it
(question 3.c). 41% of the participants that answered this question said that
they are paid (284 participants). 24% of the participants (377) that had GitHub
in their project name were identified as contributing to it (the question encour-
aged providing a GitHub project when possible). Note that being paid and using
GitHub are not mutually exclusive. 38% of participants of GitHub projects that
answered the payment question, said that they are paid.

It is generally accepted that motivated workers work longer hours [21]. Show-
ing that our measurement of general motivation exhibits the same relation pro-
vides supporting evidence to its validity. And indeed, participants reporting
high motivation (at least 9) reported an average of working 19.3 hours a week
on the project, compared to 3.4 hours for those reporting low motivation (be-
low 9). This result may be tainted by mixing data about paid developers with
data about volunteers, who are common in open-source projects. We checked
this by looking at paid workers separately, out of the participants that reported
payment, and the influence of payment is indeed large. For unpaid workers
the reported average working hours were 10.8 (high motivation) and 4.5 (low),
while for paid workers they were 27.9 (high) and 25.8 (low). Thus, both paid
and unpaid participants work more hours when motivated yet the average of
unmotivated paid developers is higher than that of motivated unpaid developers
and therefore we do not mix them.

We planned to also validate the measurement with the similar question from
the Job Satisfaction Survey: “Taking everything into consideration, how do
you feel about your work?” [50]. However, as discussed in Section 6.2, some
of the participants were confused and answered most survey questions on an
open-source project to which they contribute, yet answered the Job Satisfaction
Survey on their regular job. Despite this confusion, the Pearson correlation
between the questions is 0.32. When focusing on paid developers, for which
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the probability of confusion is lower, the correlation is 0.36. This correlation is
similar to the inner correlation in the other motivators as shown below.

5.2 Motivators

Table 1 summarizes the predictive performance of all the motivators. We discuss
each of the motivators in the following subsections. Note that in each row we
analyzed participants that answered the motivation question and at least one
question about the motivator, so populations are not necessarily identical.

We use common metrics used in machine learning and information retrieval.
The concept that we want to predict is high general motivation. This was
operationalized by the answer to the question “I regularly have a high level of
motivation to contribute to the repository” being 9 ‘somewhat agree’ or above.

Usually in machine learning a classification algorithm (e.g., decision tree)
is used to create a model, which is a specific rule providing predictions (e.g.,
if A & not B). In contrast, our models are the motivators (e.g., ownership,
challenge), also binarized into high and low using 9 as the threshold. Note
that in this part the models are pre-defined, and not learnt by a classification
algorithm, and we only evaluate their predictive performance.

The cases in which the concept is true are called ‘positives’ and the positive
rate is denoted P (positive) (in our case this is 0.52 as noted above). Cases in
which the model is true are called ‘hits’ and the hit rate is P (hit). For example,
a high hit rate for ownership means that many participants report ownership,
and we want to see whether they are also generally motivated.

Ideally, hits correspond to positives, but usually some of them differ. Pre-
cision, defined as P (positive|hit), measures a model’s tendency to avoid false
positives (FP). But precision might be high simply since the positive rate is

high. Precision lift, defined as precision
P (positive) − 1 = P (positive|hit)−P (positive)

P (positive) , copes

with this difficulty and measures the additional probability of having a true
positive relative to the base positive rate. Thus, a useless random model will
have precision equal to the positive rate, but a precision lift of 0. Recall, de-
fined as P (hit|positive), measures how many of the positives are also hits; in
our case, this is how many of the highly motivated participants also report high
ownership.

We now present our analysis of each individual motivator, from the most to
the least prevalent. We show how common high answers (9 and above) are to
each motivator, in general, for paid developers, and for open-source developers.

5.2.1 Enjoyment

We measure enjoyment [41, 44, 12] by the following questions (numbered by
their location in the survey):

2.9 I enjoy software development very much

2.15 I enjoy trying to solve complex problems
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Table 1: High Motivation Predictability by Motivator
Motivator Hit rate Performance as predictor of motivation

(Fraction ≥ 9) Accuracy Precision Prec. lift Recall
Enjoyment 0.74 0.64 0.62 0.18 0.86
Ownership 0.73 0.59 0.57 0.10 0.81
Learning 0.72 0.59 0.58 0.10 0.80
Importance 0.63 0.61 0.61 0.16 0.73
Challenge 0.62 0.63 0.62 0.20 0.74
Self-use 0.56 0.60 0.61 0.17 0.65
Ideology 0.53 0.57 0.59 0.13 0.60
Recognition 0.48 0.58 0.60 0.18 0.56
Payment 0.45 0.55 0.58 0.10 0.49
Community 0.41 0.63 0.67 0.35 0.53
Hostility 0.07 0.52 0.65 0.30 0.08

3.8 My work on the repository is creative

3.10 I derive satisfaction from working on this repository

An example of the results is shown in Figure 2.
We calculated the average answer to all these questions per participant, and

then the average of these averages. This led to an overall average of 9.07. 74% of
the participants reported high enjoyment (at least 9 - ‘somewhat agree’), more
than all other motivators.

76% of the GitHub participants reported high enjoyment and 75% of the
paid participants. The correlation of enjoyment with motivation is 0.51, the
highest of all motivators.

Figure 2: Answers distribution of enjoyment question.

The recall of enjoyment is 0.83, making it very common among people of high
motivation, more than both the hit rate and the positive rate. The precision is
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0.62 and the precision lift is 0.18, which is positive and significant yet not very
high.

Note that the hit rate of 74% for enjoyment is significantly higher than the
positive rate of 52%. This has a large influence on the predictive metrics. True
positives are the intersection of the hits and the positives, so they are bounded
by both. But once the hit rate is higher than the positive rate, the precision is
bounded from above. In our case, the model hit rate is 74% and the positive rate
is 52%, so the model precision can be at most 52

74 = 70%. The actual precision
is 62% which is not high yet is 89% of the bound created from the positive rate
and the hit rate.

5.2.2 Ownership

We measure ownership [22, 41, 60, 16, 72] by the following questions:

3.2 - I have complete autonomy in contributing to the repository

3.3 - I have significant influence on the repository

3.4 - I feel responsible to the repository success

3.16 - I am a core member of the repository

The average answer for ownership was 9.02. 73% of the participants reported
high ownership (9 or above, second highest of all motivators). This was also
the percentage for paid participants; with GitHub participants it was 75%. The
correlation of ownership with motivation is 0.24. The recall when predicting
high motivation based on high ownership was 0.81, higher than the hit rate.
However, the precision is 0.57 and the precision lift is only 0.10, partly since
ownership is so common.

5.2.3 Learning

Learning [22, 41, 18] is based on the question:

3.17 - I learn from my contributions

The average of the answers was 9.15, the highest among all motivators. 72%
of the participants reported high levels of learning, 70% of the GitHub partic-
ipants and 77% of the paid ones. The correlation of learning with motivation
is 0.23. Learning has a recall of 0.80, indicating that it is another very com-
mon characteristic of people with high motivation. Its precision is 0.58 and its
precision lift is 0.10, which is relatively low.

5.2.4 Importance

Importance [22, 45, 43] is based on the question:

3.11 - The repository is important
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The average was 8.62. The correlation of importance with motivation is
0.35. 63% of the participants report high feeling of importance. The same oc-
curred among GitHub participants, compared to 74% among paid participants.
This is rather surprising since we assume that one will have more considerations
and constraints in the context of a paid job than in volunteering to open-source
projects. So, we would assume that one would have higher freedom to choose
by importance when volunteering, leading to a higher rate among GitHub par-
ticipants, but the data shows the opposite. Importance has precision of 0.61
and precision lift of 0.16. It has a recall of 0.73, which is high in absolute terms
and relative to its hit rate.

5.2.5 Challenge

Challenge [22, 71, 67, 94, 78, 89] is based on the question:

3.9 - Working on this repository is challenging

The average of challenge answers was 8.41. 62% of participants reported a
high sense of challenge, 60% of the GitHub participants and 66% of paid ones.
The correlation of challenge with motivation is 0.30. Challenge has precision
of 0.62 and precision lift of 0.20. Its recall is 0.74, which is high in absolute
terms and relative to its hit rate.

5.2.6 Self-use

Self-use [41, 81] is based on the question:

3.5 - I’m interested in the repository for my own needs

The average of self-use answers was 7.86. 56% of the participants reported
high self-use motivation, 61% of GitHub participants and 43% of paid ones.
Note that while usually the probabilities in the entire population, in GitHub,
and among paid participants are rather similar, in this case the probabilities
are quite different. ‘Scratching your own itch’ is a well known motivation in
open source [81] so one would expect a higher probability in GitHub. On the
other hand, many companies produce organizational software that does not have
personal uses, so 43% of paid participants which self-use may sound rather high.
The correlation of self-use with motivation is 0.16. Self-use has a recall of almost
two thirds, 0.65. This seems to be a unique attribute of open source, enabling
people to develop the software that they need. The precision is 0.61 and the
precision lift is 0.17. This might be since people see satisfying their need as a
task to complete and not an enjoyable activity. Indeed, self-use and enjoyment
have a Pearson correlation of just 0.16.

5.2.7 Ideology

Ideology [41, 24] is based on the question:

2.18 - I contribute to open source due to ideology
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53% of the participants reported high ideology-based motivation, rising to
61% of GitHub participants, aligned with the ideological roots of open-source
development [24]. 49% of paid participants also gave high answers regarding
contribution due to ideology. That can be either due to many people being
paid to contribute to open source, or a common habit of paid developers to
contribute to open source in their free time. Regardless of the reason, the
popularity is surprisingly high. But we note that in the answers to the open
question participants said that different ideologies (e.g., ‘Software should be
free’ [93], ‘Social good’) can lead to contribution to open-source software, and
that a finer distinction is needed. The average of ideology answers was 7.34.
The correlation of ideology with motivation is 0.14, the lowest other than for
hostility. The precision of ideology is 0.59, the precision list is 0.13, and the
recall 0.60.

5.2.8 Recognition

We measure recognition [22, 41, 82, 81, 100] by the following questions:

2.13 I contribute to open source in order to have an online portfolio

2.14 I try to write high quality code because others will see it

3.15 I get recognition due to my contribution to the repository

3.24 In the past year, members of my GitHub community asked questions that
show their understanding of my contributions (based on [57])

3.25 In the past year, members of my GitHub community expressed interest in
my contributions (based on [57])

The average of all the questions was 7.33, lower than all positive motivators.
48% of the participants reported high recognition-based motivation, 49% of
the GitHub ones, and 52% of paid ones. The correlation of recognition with
motivation is 0.27. The precision is 0.60 and the precision lift 0.18, indicating
a boost to motivation. The recall is 0.56 while the recognition hit rate is 0.48.

5.2.9 Payment

Payment [22, 41, 25, 82] is based on the yes/no question:

3.c - I’m being paid for my work in this repository

We note that remuneration in open-source projects may have many facets.
Developers may accrue income from donations or lectures. Their work on the
project may help them secure future positions or gain access to future consult-
ing contracts. In the interest of simplicity and precision we use the objective
criterion of specifically being paid a salary to define payment.

41% of the participants that answered the payment question said that they
are paid. 38% of participants of GitHub projects that answered the payment
question said that they are paid.

16



Payment has precision of 0.58 and precision lift of 0.10, making it one of
the weakest motivators in general and the weakest for its hit rate. Payment is
also the only motivator that had a negative precision lift when we run the same
analysis on the follow-up survey.

Its recall is 0.49, less than the positive rate of high motivation which is 0.52.
The correlation of payment with motivation is 0.15, lowest than all but ideology
and hostility.

5.2.10 Community

We measure community [22, 41, 71, 23, 15, 105, 36] by the following questions
(which we asked to answer only if you are not the only developer in the project):

3.13 Belonging to the community is motivating my work on the repository

3.14 The community is very professional

3.20 The repository’s community of developers is more motivated than that of
other repositories

3.24 In the past year, members of my GitHub community asked questions that
show their understanding of my contributions (based on [57])

3.25 In the past year, members of my GitHub community expressed interest in
my contributions (based on [57])

Note the questions 3.24 and 3.25 are about recognition from the community
and therefore appear in both motivators.

The average of community answers was 7.36. 40% of the participants re-
ported high community-based motivation, lower than all positive motivators.
This is based on 40% of the GitHub participants and 44% of the paid ones.
The correlation of community with motivation is 0.42, the second highest. The
precision is 0.67 and the precision lift is 0.35, higher than all other motivators.
Hence, though the community motivator is not common, when it exists, the
probability of high motivation is higher. The recall is 53%, not very high yet
29% higher than the hit rate.

5.2.11 Hostility

Hostility can be viewed as a community with negative influence. Hostility hurts
motivation hence it is a demotivator and not a positive motivator. We measure
hostility [79, 3, 49, 29] by the following questions (which we asked to answer
only if you are not the only developer in the project):

3.6 We have many heated arguments in the community

3.7 I wish that certain developers in the repository will leave

3.22 In the past year, members of my GitHub community put me down or were
condescending to me (based on [29])
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3.23 In the past year, members of my GitHub community made demeaning or
derogatory remarks about me (based on [29], Figure 3)

The average of hostility answers was 2.80. Only 7% of the participants
reported high hostility, 4% of the GitHub participants and 7% of the paid ones.
The recall is just 8%, yet it is higher than the hit rate. The correlation of
hostility with motivation is 0.01. This is the lowest correlation, close to zero yet
not the large negative correlation which is expected.

Figure 3: Answers distribution of a hostility question.

Surprisingly, hostility also has a relatively high precision of 0.65 and a high
precision lift of 0.30. One would expect that knowing that someone suffers from
hostility will reduce the probability of high motivation, instead of the increase
that we see. But the participants who reported high hostility also reported
higher averages for all motivators besides payment. A possible explanation
is that those participants kept contributing to the project due to the other
motivators; those who suffered from hostility and did not have other reasons
to stay probably left. Note, however, that we had only 9 people that reported
both high hostility and high motivation, so the analysis is not robust.

We identified 10 pairs of developers which contribute to the same project.
This allowed us to evaluate their agreement on hostility. Surprisingly, when a
person reports heated arguments (question 3.6), the probability that the other
participant will agree is just 50%. For the rest of the hostility questions, the
other participants never claimed high hostility too. For comparison, in impor-
tance and challenge, which also describe aspects of the project, if one participant
provided a high half answer (6 or above), the other always agreed. This provides
an important indication that hostility might go unnoticed.

5.3 Motivation Improvement Analysis

An important goal in many data analyses is to uncover causal relations. But
causality is hard to define rigorously because it is hard to ascertain that motiva-
tor A caused outcome B. The usual approach is to look at correlations between
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motivators and outcomes in a given dataset, as we did in Section 5.2. We now
extend this to look at the dynamics across time: the possible correlation be-
tween a change in a motivator and a change in the outcome. For example, we
want to see whether an increase in the sense of ownership of a project predicts
an increase in motivation.

Such “co-change” analysis [8] is important for the following reason. If causal-
ity exists, meaning that in certain contexts motivator A causes outcome B, then
a change in A will cause a change in B. But co-change of two motivators does
not necessarily imply causality. By identifying instances of co-change, where a
change in A correlates with a change in B, we therefore identify cases where
causality may be at work.

Note, however, that the actual relationship between motivators and general
motivation may be conditioned on other motivators. In this subsection we
look at the co-change of motivators and general motivation alone, regardless
of context. In the next subsection we consider all the motivators together, to
handle cases where the effect of A on B is conditioned on another motivator C.

The change data comes from comparing the original survey and the follow-
up survey. In the original survey 341 developers provided their emails. A year
after the last response, we reached out and asked them to answer the survey
again. We asked them to answer on the same project if they are still active in it.
This allowed us to compare the answers of the same person over time. We had
124 follow-up participants in total. 60 of them continued in the same project,
and these are the ones we analyze here. For each of them, we look at increases
in the motivators and general motivation from one year to the next. Note that
if a person reported 3 for ownership in the first survey, and 4 in the follow-up,
this is an increase regardless of the values being low.

Table 2: Motivation Improvement Over Time Predictability by Motivator
Motivator Improvement Prediction of improved motivation

rate Accuracy Precision Prec. lift Recall
Challenge 0.33 0.53 0.10 -0.50 0.17
Ideology 0.30 0.60 0.17 -0.17 0.25
Importance 0.30 0.70 0.33 0.67 0.50
Learning 0.30 0.70 0.33 0.67 0.50
Enjoyment 0.28 0.71 0.34 0.71 0.48
Recognition 0.27 0.72 0.39 0.95 0.47
Self-use 0.22 0.78 0.46 1.31 0.50
Ownership 0.17 0.77 0.45 1.27 0.35
Hostility 0.16 0.70 0.20 -0.01 0.15
Community 0.16 0.75 0.39 0.93 0.28

The probability of improvement in general motivation, i.e. the positive rate,
was 20%. Since we included only developers that stayed in the same project for
at least a year, there is probably survivorship bias, and the probability in the
whole population is probably even lower.
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The probability of improvement in the different motivators is at most 33%
(Table 2). When the precision lift is positive, it tends to be very high. We
could not find out why the lift is negative for challenge and ideology. One
could expect a larger negative lift for hostility, which did not materialize. This
may be explained by developers having other motivators that offset hostility as
explained in Section 5.2.11.

The recall is up to 50% for many motivators and higher than their improve-
ment rate (hit rate). This shows that improvement in importance, learning,
enjoyment, recognition, and self-use are common when motivation improves.

Only a single person that was not originally paid received a payment in the
follow-up, therefore we did not apply co-change analysis to this motivator.

Co-change analysis can be performed in the downward direction too: given
a decrease in a motivator, how common is a decrease in general motivation.
Results are quite similar to the upward direction and given in the supplementary
materials.

The follow-up survey can also be considered a replication of the original
survey. We used all 124 participants that answered the follow-up survey to
run the analysis of predicting motivation (as in Table 1). We found a positive
precision lift for all motivators besides payment. The agreement supports the
results in general. The disagreement in payment indicates that the result is not
robust.

5.4 A Combined Motivation Model

All the motivators have a positive precision lift of at least 10% (Table 1). This
is aligned with the prior work claiming their positive influence. However, the
highest precision lift is just 35%, with 67% precision, for the ‘Community’ moti-
vator. This means that none of the motivators is a sufficient condition for high
motivation or close to it. We analyzed the Pearson correlation between motiva-
tors (in supplementary materials) and noted that none of the correlations is very
high. Hence, each motivator describes a different aspect, and a combination of
motivators might help to reach high motivation.

The inputs of machine learning models are named “features”. So far, we
investigated each motivator as a single feature, ignoring all other motivators.
This type of analysis suffers from the threat of confounding variables on one hand
and does not leverage the full power of the data on the other hand. We therefore
built combined models to predict motivation, based on all the motivators as
features.

Since exact values tend to change (see Section 6.4) and we are indifferent to
the level of low motivation, we prefer classification framework over regression.
The predicted concept was high motivation, operationalized as before by answers
of 9 (‘somewhat agree’) or above to “I regularly have a high level of motivation
to contribute to the repository”. We had 345 participants that answered this
question. The positive rate is 52%.

We used the scikit-learn package for classification algorithms [75]. We used
low-capacity small models such as decision trees and logistic regression in order
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to obtain simple interpretable models which are also rather robust to overfit-
ting [14]. We also used models of medium capacity such as random forests,
boosting, and neural networks to build models of better representation ability
and performance. When splitting samples into train and test, we would like
to have enough samples for reliable estimation in the test, and use the rest for
train since models perform better with more data. The number of samples we
have is very low. Repeating with 10 different seeds we noted that the standard
deviation on both the accuracy and the positive rate (which is not influenced
from learning) is 0.03. We therefore used 30% for reasonable test estimation
and used the rest for training models that are suitable for small datasets.

The performance of all the models was rather close, with accuracy ranging
from 62% to 77%. Amusingly, the highest accuracy on the test set (77%) was
reached by a single node tree, checking high enjoyment. As Table 1 showed,
the accuracy when using enjoyment on the whole dataset is just 64%, so this
result is accidental. The model with the second highest accuracy (76%) was
a neural network [61], whose capacity is relatively high. The simple model of
highest accuracy was a logistic regression model [98] which reached accuracy of
72%. Its intercept was -2.04, indicating a general tendency for low motivation.
Hostility had a strong negative coefficient of -0.46. All the other motivators had
positive coefficients. The highest were enjoyment with 1.13, self-use with 0.61,
and importance with 0.59.

Note that models can assign different weights to false positives and false neg-
atives, and trade off precision and recall. Using this, we could build a precision-
favoring decision tree model [77] with precision of 81% and recall of 41%. Con-
versely, a recall-favoring stochastic gradient descent (SGD) model [106] reached
recall of 96% with precision of 62%.

We also modeled the co-change dataset of Section 5.3, to predict a change
in the motivation based on changes in the motivators as features. Such a model
is of interest since assuming that motivation is a function, a co-change model
can predict the result of a change.

Two properties of such modeling deserve special attention: accuracy and
minimality. We first discuss accuracy. A co-change model allows us to predict
the motivation change given any motivator’s change. Perfect accuracy assures
us that there are no other external causal variables influencing the samples in
our dataset. Assume by contradiction such a variable c, other than the model
variables. Hence there is a behavior function g and an assignment of values
such that g(c1, v1, ...vn) 6= g(c2, v1, ...vn) where v1, ...vn are the values of the
model variables. However, since we have perfect prediction given the model
variables, it should be that g(c1, v1, ...vn) = m(v1, ...vn) = g(c2, v1, ...vn) — a
contradiction. Hence such a variable cannot exist. Perfect accuracy is rare, and
mostly indicates a problem in the analysis and not capturing all causal variables.
However, the accuracy bounds the influence of such external variables.

As for minimality, consider decision trees [77] as models. For each leaf, vari-
ables that do not appear in the path to this leaf do not influence the prediction.
On the other hand, each variable along the path is necessary, and a change in
its value will change the prediction. In this sense, the model is minimal and
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every variable along the path is required. All the variables that we use here
are mutable (can change, in contrast for example to the project creation year).
With both perfect accuracy and minimality, the model predicts each change.
More than that, the removal of any variable will hurt the prediction of some
changes.

Figure 4: A decision tree predicting motivation improvement

When aiming for high accuracy, we built models based on AdaBoost [40] and
Neural Networks [61] which reached accuracy of 94%. Aiming for either precision
or recall, 100% were reached. The size of these models is high and far from
minimality, which is the price for achieving the high accuracy. Alternatively,
we found a small model, presented in Figure 4, whose “recognition increase and
challenge decrease” leaf reaches 78% recall with 41% precision. Note, however,
that the dataset is a very small dataset with a high VC dimension [97, 96] (due
to having many questions and wide scale), and therefore the threat of noise
is very high. Also, the dataset probably does not fully represent motivation
complexity. A larger dataset will probably better represent human motivation
behavior but will require a larger model and have lower performance.

6 Analysis of Validity and Reliability

In the previous analysis we analyzed the data as if it is completely reliable.
However, the reliability might be limited in many ways. Since the data is given,
what we do in this section is to evaluate its reliability from various aspects.

When using the answers of participants, one should check which population
they represent. We compare our survey demographics to the demographics of
the Stack Overflow survey, answered by around 80 thousand developers world-
wide. Distributions are not similar yet close. We used two channels in order to
reach participants: direct emails to developers contributing at GitHub and social
media. We build supervised learning trying to differ them, whose performance
was no better than the positive rate, indicating no big obvious difference. These
are detailed in the supplementary materials.

We compare our results to other surveys, the investigate their agreement
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(Section 6.1). We grouped questions into motivators based on their content,
regardless of the answers to them. In Section 6.3 we examine the coherence of
the motivators and compare them to grouping based on the answers. The follow-
up survey allows us to evaluate the stability of answers, comparing a person’s
answer in two different dates (Section 6.4). It also provides an additional dataset
on which we can check the degree in which our results reproduce. Last but not
least, we investigate reliability in the answers themselves, from typos to mistakes
and biases (Section 6.2).

6.1 Surveys’ Hit Rate Comparison

In Table 3 we compare our survey to prior work on motivation. Most prior
work provides hit rates of motivators, forcing us to use the same metric for the
comparison. Note that hit rate indicates how common motivators are and not
their relation to general motivation. Moreover, some works provide only the
ranking of motivators. In case the hit rate itself was provided, we present it in
parentheses. Gap is the difference between the minimal and maximal rank of a
motivator in the different surveys, serving as a diversity metric. Also note that
in some cases different names or even just overlapping concepts were used in
the prior work, detailed in the replication package.

Note that the surveys are from different years, from 1978 to 2022. Herzberg
investigated the general population, Fitz and Couger investigated IT personnel,
Gerosa investigate open-source developers, and we investigated developers in
general, many of which were open-source developers. The instruments were
also different in most cases. However, if the surveys generalize to describe a
universal behavior, they should agree.

We computed the Pearson correlation between the average ranks in all sur-
veys and the ranks in each individual survey. The result was above 0.8 for Fitz
and for our survey, about 0.7 for Couger and Herzberg, and 0.64 for Gerosa.
Gerosa is closer to us in time and population so a higher correlation is expected.
Our ranking and our followup ranks had a correlation of 0.96, Herzberg and Fitz
had a correlation of 0.87 and the rest were much lower. For example, Couger
that reproduced the work of Fitz 10 years later, had a correlation of 0.67 with
it.

When looking at the hit rates themselves, even just browsing the table shows
that in general the distributions are quite different. We get a 0.97 correlation
between our survey and our follow-up. Gerosa has 0.65 correlation with ours,
0.51 with the follow-up. Herzberg has 0.24 correlation with ours, 0.38 with the
follow-up, and -0.21 with Gerosa.

Enjoyment is ranked high in all surveys, with a small gap between the maxi-
mal and minimal rank, indicating a stable high result. Community and payment
are rather low, and not ranked high in any survey. Ownership, Recognition
and Learning have large gaps, hence results regrading them in one survey do
not generalize well to the others. It might be possible achieve higher agree-
ment by applying transformations considering different times (e.g., importance
of payment is reduced) or different populations (e.g., payment is less important
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Table 3: Comparison of Motivators Hit Rates and their Ranks in Different
Surveys
Motivator Avg.

Rank
Fitz
[37]

Couger
[30]

Herzberg
[48]

Gerosa
[41]

Our Follow-
up

Gap

Enjoyment 2 2 1 3 (22) 3
(18.9)

1 (74) 2 (71) 2

Challenge 2.60 1 2 1 (40) 5 (62) 4 (64) 4
Ownership 3.80 6 6 4 (20) 2 (73) 1 (76) 5
Learning 4 5 7 5 (5) 1

(22.6)
3 (72) 3 (69) 6

Importance 5 4 (63) 6 (59) 2
Self-use 5 2 (21) 6 (53) 7 (53) 5
Recognition 5.17 3 5 2 (30) 5

(10.6)
8 (48) 8 (46) 6

Ideology 5.67 6 (8.8) 6 (53) 5 (61) 1
Payment 6.50 8 4 5 (5) 4

(16.6)
9 (45) 9 (37) 5

Community 8 7 8 7 (4) 6 (8.8) 10
(41)

10
(32)

4

Hostility 11 11 (7) 11 (6)

in open source). However, the disagreement is not surprising since Couger [30]
already indicated the people in different position report different motivators,
and so do people from different countries Herzbereg [48].

6.2 Face Validity of Answers

To check the validity of the answers in our survey, we looked for mistakes,
insincere answers, and biases.

The answer to the gender question was a free text field, in which the partic-
ipant could write any answer. Only 4 (0.8%) of the answers had a typo (e.g.,
‘mail’, ‘boi’). Three of the answers were variants of ‘Attack Helicopter’, a term
“used to disparage transgender people”1. Hence, these answers were probably
not sincere. In the country question, 1.2% of the answers had a typo.

1.3% of the developers said they had 15 years of experience with GitHub, es-
tablished in 2008, which was impossible when the survey ended in 2021. A single
answer (0.2%) of age of 100 years is probably insincere. Note that these error
rates are much better than the 8.5% who seemed to have given a wrong answer
to a single simple question in [46], and the 10% failure to identify negatively
worded (reverse-coded) items discussed in [76].

The job satisfaction questions were taken from a survey of 9,900 Australian
clinical medical workers published in 2011 [50]. Amusingly, software developers

1https://en.wikipedia.org/wiki/I_Sexually_Identify_as_an_Attack_Helicopter
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were on average less satisfied in all questions. More importantly, questions
about payment are irrelevant to volunteers and questions about community are
irrelevant to people working alone. We explicitly asked to skip these questions
if they are irrelevant. However, 57.7% of the people that answered that they are
not paid, answered the payment satisfaction question. Therefore, it seems they
answered regarding their salary from a different job, not related to the discussed
project. Some participants made comments in the open question that support
this.

Some developers answered that they work on a public GitHub project. For
these projects, we checked the number of developers who committed code. Of
five developers who were found to work on single person projects, one answered
most of the community-related questions, which are irrelevant to such projects.

There were questions in which the change in the follow-up survey is known
in advance: age and experience should grow linearly with time. The follow-
up question was about a year after the first one. In order to avoid rounding
mistakes (e.g., a 20.5 years old participant might answer either 20 or 21), we
consider answers as “unreasonable” only if the follow-up answer was more than
a year lower, or at least three years higher. 26% of the answers about experi-
ence exhibited such unreasonable differences. Two participants lost 5 years of
experience each, somehow compensated by a participant that gained 11 years
of experience in about a year. 16% of the answers regarding GitHub experience
were unreasonable. However, for age, which has a higher presence in daily life,
there were no unreasonable differences.

It seems that the biggest reliability problem comes from human failings [76],
bias due to ego defenses[19], or the Dunning–Kruger effect (that people with
lower capabilities tend to have higher self-esteem) [58]. Only 5.6% of the par-
ticipants gave a low answer to ‘My code is of high quality’, going up to 20.8%
when including neutral answers (6 on the 11-point scale). The Pearson corre-
lation with years of experience, a common method to estimate skill [34], was a
very low 0.06. Moreover, first degree holders gave answers averaging 9.05, higher
than all others. People trained in computer science gave answers averaging 9.3,
lower than the 10.5 average in math, yet a bit higher than arts (9.0), science
(8.7), technology (8.6), and business (7.5).

Using the participants’ GitHub profile, we can compare their actual activity
to their self-perception. People that answered that they write detailed commit
messages (at least 9 - ‘somewhat agree’), had average commit message length of
89 characters, placing them in the 61 percentile of GitHub developers, not very
far from the median. Participants saying that they write high quality code have
corrective commit probability (CCP) [8] of 0.36 (investing more than a third of
their work in bug fixing), worse than 81% of the GitHub developers.

It seems that there is also a bias leading to higher answers about the par-
ticipant than about the community. The average answer for questions about
themselves is 9.1, 24% more than the average answer to questions about the
project. A somewhat smaller difference of 4.5% to 17.1% was found when the
questions were essentially paired (e.g, ‘My code is of high quality’ and ‘The
quality of the code in this repository is better than others’).
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We cannot accurately aggregate the probability of mistakes. The probability
of identifying an insincere answer is low, around 0.2%. Mistakes typically occur
in few percent of the answers, yet in specific questions (the job satisfaction in
our case) might be around 50%. Biases are the largest threat to validity, as
demonstrated by the 79% participants that consider their code to be of high
quality. Only 5.6% of the participants gave a low answer to ‘My code is of high
quality’, and 20.8% when including neutral. The 5.6% that think that their
code is of low quality seem to be either more modest or more realistic.

6.3 Internal Coherence of Motivators

The motivators were represented in the survey by one or more questions each.
The use of multiple questions (e.g. for ‘community’) allows us to treat them as
labeling functions of the same concept and evaluate their agreement [80, 11].
The agreement, measured by the average Pearson correlation of the related
questions, reflects the internal coherence of these motivators. Low coherence
might be due to our subjective grouping of questions or due to human nature.

As a reference of the level of correlation that we can expect, we focus on
closely related question pairs. For example, ‘I am skilled in software develop-
ment’ has a correlation of just 0.62 with ‘My code is of high quality’. ‘I regularly
reach a high level of productivity’ and ‘I am a relatively productive program-
mer’ have correlation of just 0.57. Table 5 shows that the correlation of the
same person answers to the motivation question in the original and follow-up
survey is 0.52. Note that a correlation of 0.5 is even higher than the correlation
between LOC count and step functions on it [6]. Therefore, coherence of about
0.6 is high.

Table 4: Motivator Coherence
Motivator Coherence Follow-up Coherence
All Questions 0.11 0.07
Community 0.36 0.15
Enjoyment 0.32 0.25
Hostility 0.49 0.60
Ownership 0.58 0.57
Recognition 0.24 0.17

Table 4 presents the coherence of the motivators. ‘Coherence’ is defined as
the average Pearson correlation between all pairs of questions related to the same
motivator. The motivators ‘Challenge’, ‘Ideology’, ‘Importance’, ‘Learning’,
‘Payment’, and ‘Self-use’ do not appear in Table 4 since they are based on
a single question each, hence our method is not applicable to them. ‘Follow-
up Coherence’ is the same metric as ‘Coherence’ computed on the follow-up
survey. Note that this provides additional support, yet the support is not totally
independent since the participants in the follow-up survey also participated in
the original one.
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The ‘All Questions’ row represents all the questions together (basically re-
lated to motivation) and has rather low coherence. The following motivators all
have much higher coherence, indicating that they indeed reflect a meaningful
grouping of questions related to specific concepts. The coherence of ‘Hostility’
and ‘Ownership’ is relatively high in both surveys, and close to the highest
coherence we can expect. The coherence of ‘Community’, ‘Enjoyment’, and
‘Recognition’ is between 0.15 to 0.36 in both surveys.

Figure 5: Dendrogram of questions based on their Pearson correlation. See
questions text in [9]

The creation, selection and grouping of questions to motivators was done
by the authors. In case of questions from prior work, we had indications of
the intended motivators. Disagreements were discussed and resolved. Though
the taxonomy is justifiable and fits our needs, we are aware of the justification
of other ones, some considered by us. As a benchmark for our taxonomy we
compare it to one created using the answers, based on actual relations between
them. We build this taxonomy using automatic clustering based on their answer
correlations. This will provide additional evidence on whether our grouping was
indeed meaningful.

The dendrogram in Figure 5 represents a hierarchical clustering [74] of ques-
tions based on the correlations between them. The questions ‘I have significant
influence on the repository’ (3.3) and ‘I am a core member of the repository’
(3.16) are the most correlated questions with Pearson of 0.83 (transformed to
1 − 0.83 = 0.17 to represent distance in the figure). As we allow weaker cor-
relations, more questions are clustered together, and when we allow Pearson
correlation of only 0.3 most questions are already grouped into one big cluster,
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which is uninteresting. Some of the clusters match our content-based moti-
vators: The orange cluster matches hostility and the lower brown sub-cluster
matches ownership. The purple cluster shows a group that we did not con-
sider: productivity and possible productivity improving elements such as good
colleagues, physical conditions, and opportunities to use your abilities. Other
clusters may overlap our definitions, but also mix in unrelated questions. For
example, the pink cluster contains 3 questions about recognition and one about
importance, which we feel is not really related. Since our manually built factors
are more coherent with respect to content, we use them and not the hierarchical
clusters.

6.4 Answers Stability Between Original and Follow-up Sur-
veys

The follow-up survey, conducted one year after the original survey, allowed us
to compare the answers of the same person over time. Table 5 shows stability
of questions by motivator.

To compare the answers in the two surveys we first compute the Pearson
correlation between them. We also compute the differences between them, both
the average absolute average difference (column ‘Avg. Abs. Diff’) and the aver-
age relative difference (difference divided by the question value, column ‘Avg.
Rel. Diff’). ‘Pred(25)’ [102] is the probability that the follow-up answer is in
the range of 25% of the initial answer.

Note that the distributions of answers are far from uniform, and some an-
swers are much more popular than others. As a result, there is a high probability
for getting the same answer even when the answers are independent. ‘Pred(25)
Lift’ computes the lift, i.e. the extra probability above the expected Pred(25)
from two independent answers from the answers distribution.

Pearson correlation, Pred(25), Pred(25) lift, and relative difference indicate
stability for almost all motivators. Hostility has a near zero lift and not a large
positive one, indicating less stability than expected. Note that the hostility
distribution (e.g. Figure 3) has a strong mode in the lowest value, making the
independent distribution benchmark very high. Note also that the lift is close
to zero hence more likely to be influenced by noise.

Payment is a binary feature hence its stability should be analyzed with
different metrics. The initial and follow-up payment agree in 85% of the cases.
70% of those that were paid in the initial survey were also paid a year later.
Only a single person out of the 27 that were not paid in the initial survey got
payment in the follow-up.

The Pearson correlations are between 0.42 to 0.68. Though, over time the
project, the people, and their motivations change [41], which might result in
different answers.
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Table 5: Similarity of Motivation Type Answers of Same Person in Two Dates
Motivator Avg. Abs. Avg. Rel. Pred(25)

Pearson Diff Diff Pred(25) Lift
Learning 0.68 0.91 0.04 0.81 0.22
Ownership 0.66 1.02 -0.01 0.83 0.42
Hostility 0.63 1.10 0.38 0.38 -0.02
Enjoyment 0.60 1.06 0.00 0.84 0.29
Ideology 0.57 1.61 0.02 0.74 0.99
Importance 0.54 1.28 0.02 0.74 0.38
Motivation 0.52 1.83 -0.03 0.60 0.30
Challenge 0.51 1.46 0.08 0.70 0.23
Community 0.48 1.46 0.04 0.44 0.04
Recognition 0.45 1.70 0.19 0.54 0.36
Self-use 0.43 2.35 0.04 0.51 0.20

7 Threats to Validity

Usually, construct validity raises due to the measurement method. In the case of
motivation, and motivators, there is a problem since the concept themselves are
not well defined [70, 95] or over-defined, with 102 definitions [56]. Therefore, it
is hard to measure them or evaluate how well a measurement method performs.
We cope with this threat using several methods like using questions from prior
work, which were already considered to be useful.

The selection of motivators and questions has subjective aspects, and others
could be chosen. We based our selection on motivators with massive prior
work in motivation in general, in software development, and open source. We
compared our taxonomy to an automated objective taxonomy, derived from the
answers.

However, our strongest calming evidence for both construct and external
validity, comes from the use of our data to validate motivation labeling functions
[10]. Our data agrees with the labeling functions, which agree with the retention
of 151 thousands developers working on 18,958 real projects. Hence, the answers
agree with the retention of a large number of developers in their natural real
work.

Investigating internal validity, some questions have systematic problems.
The job satisfaction questions were answered by many participants on their
day job. In self-assessment questions developers have a very high perception
of themselves, not aligned with their actual performance (Section 6.2). We
therefore avoided using these answers for motivation analysis.

In order to further reduce the influence of individual questions, we grouped
questions by motivators. While we still do the analysis at the question level too
(available in the supplementary materials), the aggregation reduces the weight
of a specific answer and makes the concepts more robust. However, answers to
different questions on the same concepts are only moderately correlated (Section
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5.2), so one can argue that our grouping is not correct. Indeed, we grouped
questions by subjective judgment of their contents, and in principle a different
taxonomy could be used. We compared our content based grouping to the one
inferred from correlation (Section 5.2). The match is only partial hence our
grouping is supported yet there are also different justifiable groupings.

Surveys are answered by people. Answers of the same person change over
time (Section 6.4) and therefore analysis based on the original survey might not
agree with the same analysis on the follow-up survey. Concerning the concept
of hostility, different people provided widely different answers about the same
project (Section 5.2.11). In this case this does not represent a data-quality
problem, since the answers actually represent different experiences, and the
difference itself is an important result.

We measured the relations between motivators and motivation in multiple
ways: correlation, predictive performance, and co-change. A similar result in all
methods (e.g., community increases motivation by 20%) would have been very
reliable. However, there are many quantitative and even several qualitative
differences in the results. For example, Table 1 shows that all motivators have
positive precision lift in high motivation prediction, hence knowing of a positive
motivator increases the probability of high motivation. On the other hand,
in the follow-up analysis presented in Table 2, three of the eleven motivators
have negative precision lift, hence knowing of their increase from the original
survey indicates higher probability of motivation reduction. While negative lift
is expected for hostility, the results for challenge and ideology disagree with the
high motivation prediction.

Reliability was evaluated over time, using the follow-up survey, and with
respect to other questions. We also investigated the validity of questions using
simple mistakes, biases, and comparison to actual behavior.

Throughout this research we obtained many results. While our number of
participants is very high for a survey, we analyzed the answers in many ways. In
some scenarios (e.g., developers in the same project, developers answering the
follow-up), the numbers are quite small. Statistical learning theory [97, 96] tells
us that in such cases several of the empirical results will probably be different
from the actual ones. This is an inherited threat from the dataset size and
analysis type, which should be resolved by replication studies obtaining more
data and supporting the results in different analyses.

Our survey population came from two sources - GitHub developers accessed
by email and developers accessed using social media. We used machine learning
(details in the supplementary materials) to see how different these populations
are and could not find a model differing them better than the positive rate. This
means that there is no obvious big difference between the populations.

Similarity between the participants group and the desired population in-
creases the probability of generalization. We provide demographics analysis and
a comparison to the Stack Overflow survey (in the supplementary materials).
Though our participants resemble the Stack Overflow survey participants (while
being somewhat more professional), it is not clear what the general developers
group is.
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8 Conclusions

We conducted a large survey of software developers regarding motivation. We
grouped the questions by motivators and analyzed their relation to motivation.

Our supervised-learning-based analysis of motivators ranged from using each
motivator as a classifier for motivation, through using motivator improvement
as a classifier for motivation improvement, to constructing models that use the
combined power of multiple motivators for improved prediction. We confirmed
that previously suggested motivators do indeed contribute to motivation. At the
same time, the influence of each individual motivator is limited, as also noted
in prior work [48, 30].

Apparently, the motivation of different developers, working in different con-
texts, may be influenced by different motivators. No single motivator by itself is
sufficient for inducing high motivation. At the same time, none of the motivators
is strictly necessary. An analysis of the relations between them indicated that
motivators tend to have low correlation. This indicates that one should not look
at motivators from the prism of which is the “most important” one; a better
description is that each one of them captures a different aspect of motivation
[70], and multiple aspects should be satisfied in order to have high motivation.

All motivators have coherence higher than the set of all questions together,
but only hostility and ownership have rather high coherence. In general, all mo-
tivators are at least moderately coherent and predictive, in all analyses. How-
ever, out of the eleven motivators, ten motivators (excluding ownership) did not
meet all three criteria of high coherence, stability, and predictive power. This
indicates that the bar that we set is high.

It is also interesting to notice the relative position of payment. Trying to
predict high motivation based on a single motivator, payment has precision lift
of 10%, the lowest value of all positive motivators, and the only negative lift on
the follow-up survey. Since payment is the common way to promote motivation
in businesses, it is important to note that other motivators might lead to a larger
effect.

Hostility is a very coherent demotivator. However, different people in the
same project disagree on hostility, implying that it is not noticed by others.
Hence, not noticing hostility is not enough to assure lack of hostility in a project,
and therefore actively looking for it might be needed.

Our survey also provided another motivation to investigate motivation. 73%
of the participants answered that motivation has more influence on their pro-
ductivity (answers higher than neutral), and only 9% answered that their skill
is more influential. This agrees with prior work on the benefit of motivation for
productivity [91].

Participants who reported an improvement in the interest expressed in them
had a large tendency for improvement in motivation. Recognition, and specif-
ically expressing interest, is free, applicable in all situations, and influential.
Considerate behavior and looking for practical benefits coincide here. Be kind
and give recognition, it is likely to pay off.
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Data Availability

All experimental materials (except for identifying data such as emails and
GitHub profiles) is available at [9].
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[34] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanen-
berg. Measuring programming experience. In 20th IEEE Inter-
national Conference on Program Comprehension, pages 73–82, 2012.
doi:10.1109/ICPC.2012.6240511.

[35] D. G. Feitelson. ”we do not appreciate being experimented on”: Developer
and researcher views on the ethics of experiments on open-source projects.
arXiv 2112.13217 [cs.SE], 2021, arXiv:2112.13217 [cs.SE].

[36] F. Ferreira, L. L. Silva, and M. T. Valente. Turnover in open-source
projects: The case of core developers. In Proceedings of the 34th
Brazilian Symposium on Software Engineering, pages 447–456, 2020.
doi:10.1145/3422392.3422433.

[37] J. Fitz-Enz. Who is the dp professional. Datamation, 24(9):125–128, 1978.

[38] S. A. Frangos. Motivated humans for reliable software products. In
D. Gritzalis, editor, Reliability, Quality and Safety of Software-Intensive
Systems: IFIP TC5 WG5.4 3rd International Conference on Reliability,
Quality and Safety of Software-Intensive Systems, pages 83–91. Springer
US, Boston, MA, May 1997. doi:10.1007/978-0-387-35097-4 7.

[39] C. França, F. Q. B. da Silva, and H. Sharp. Motivation and satisfac-
tion of software engineers. IEEE Transactions on Software Engineering,
46(2):118–140, Feb 2020. doi:10.1109/TSE.2018.2842201.

[40] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997. doi:10.1006/jcss.1997.1504.

[41] M. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles, C. Treude,
I. Steinmacher, and A. Sarma. The shifting sands of motivation: Revisit-
ing what drives contributors in open source. In Proceedings of the 43rd In-
ternational Conference on Software Engineering, pages 1046–1058, 2021.
doi:10.1109/ICSE43902.2021.00098.

[42] S. A. K. Ghayyur, S. Ahmed, S. Ullah, and W. Ahmed. The impact of
motivator and demotivator factors on agile software development. Inter-
national Journal of Advanced Computer Science and Applications, 9(7),
2018. doi:10.14569/IJACSA.2018.090712.

35



[43] A. Grant. The significance of task significance: Job performance effects,
relational mechanisms, and boundary conditions. The Journal of Applied
Psychology, 93:108–24, Feb 2008. doi:10.1037/0021-9010.93.1.108.

[44] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson. What hap-
pens when software developers are (un)happy. Journal of Systems and
Software, 140:32–47, 2018. doi:10.1016/j.jss.2018.02.041.

[45] J. R. Hackman and G. R. Oldman. Motivation Through the Design of
Work: Test of a Theory. Academic Press, New York, 1976.

[46] S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A. Ghaleb,
K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski, M. N. Ah-
madabadi, et al. A fine-grained data set and analysis of tangling in
bug fixing commits. Empirical Software Engineering, 27(6):1–49, 2022.
doi:10.1007/s10664-021-10083-5.

[47] G. Hertel, S. Niedner, and S. Herrmann. Motivation of software developers
in open source projects: an internet-based survey of contributors to the
linux kernel. Research Policy, 32(7):1159–1177, 2003. doi:10.1016/S0048-
7333(03)00047-7. Open Source Software Development.

[48] F. Herzberg. One more time: How do you motivate employees? New
York: The Leader Manager, pages 433–448, 1986.

[49] F. Herzberg, B. Mausner, and B. B. Snyderman. Motivation to Work.
Wiley, New York, 1959.

[50] D. Hills, C. Joyce, and J. Humphreys. Validation of a job satisfaction
scale in the australian clinical medical workforce. Evaluation & the Health
Professions, 35:47–76, Mar 2011. doi:10.1177/0163278710397339.

[51] Y. Huang, D. Ford, and T. Zimmermann. Leaving my fingerprints: Moti-
vations and challenges of contributing to oss for social good.

[52] J. Irvine. A framework for comparing theories related to motivation in
education. Research in Higher Education Journal, 35, 2018.

[53] A. Joshi, S. Kale, S. Chandel, and D. K. Pal. Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7(4):396,
2015. doi:10.9734/BJAST/2015/14975.

[54] T. Judge, C. Thoresen, J. Bono, and G. Patton. The job satisfaction-job
performance relationship: a qualitative and quantitative review. Psycho-
logical Bulletin, 127:376–407, Jan 2001. doi:10.1037/0033-2909.127.3.376.

[55] T. A. Judge, E. A. Locke, C. C. Durham, and A. N. Kluger. Dispositional
effects on job and life satisfaction: The role of core evaluations. Journal
of Applied Psychology, 83:17–34, 1998. doi:10.1037/0021-9010.83.1.17.

36



[56] P. R. Kleinginna Jr and A. M. Kleinginna. A categorized list of motivation
definitions, with a suggestion for a consensual definition. Motivation and
emotion, 5(3):263–291, 1981.

[57] A. Kluger and O. Bouskila-Yam. Facilitating listening scale (FLS). In
D. L. Worthington and G. D. Bodie, editors, The Sourcebook of Listen-
ing Research: Methodology and Measures, pages 272–280. Wiley Online
Library, Aug 2017. doi:10.1002/9781119102991.ch25.

[58] J. Kruger and D. Dunning. Unskilled and unaware of it: How dif-
ficulties in recognizing one’s own incompetence lead to inflated self-
assessments. Journal of Personality and Social Psychology, 77:1121–1134,
1999. doi:10.1037/0022-3514.77.6.1121.

[59] K. Kuusinen, H. Petrie, F. Fagerholm, and T. Mikkonen. Flow, intrinsic
motivation, and developer experience in software engineering. In H. Sharp
and T. Hall, editors, Agile Processes in Software Engineering and Ex-
treme Programming, pages 104–117. Springer International Publishing,
2016. doi:10.1007/978-3-319-33515-5 9.

[60] C. F. Lam and S. T. Gurland. Self-determined work motivation pre-
dicts job outcomes, but what predicts self-determined work motiva-
tion? Journal of Research in Personality, 42(4):1109–1115, 2008.
doi:10.1016/j.jrp.2008.02.002.

[61] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015. doi:10.1038/nature14539.

[62] P. Lenberg, R. Feldt, and L. G. Wallgren. Behavioral software engineering:
A definition and systematic literature review. Journal of Systems and
Software, 107:15–37, 2015. doi:10.1016/j.jss.2015.04.084.

[63] J. Lerner and J. Tirole. Some simple economics of open-source. Journal of
Industrial Economics, 50:197–234, Feb 2002. URL http://www.people.

hbs.edu/jlerner/simple.pdf.

[64] S.-O. Leung. A comparison of psychometric properties and normality in
4-, 5-, 6-, and 11-point likert scales. Journal of social service research,
37(4):412–421, 2011.

[65] Y. Li, C.-H. Tan, H. Teo, and T. Mattar. Motivating open source soft-
ware developers: Influence of transformational and transactional lead-
erships. In Proceedings of the 2006 ACM SIGMIS CPR Conference on
Computer Personnel Research: Forty Four Years of Computer Personnel
Research: Achievements, Challenges & the Future, pages 34–43, Jan 2006.
doi:10.1145/1125170.1125182.

[66] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 22:55, 1932.

37



[67] E. A. Locke. Toward a theory of task motivation and incentives.
Organizational Behavior and Human Performance, 3(2):157–189, 1968.
doi:10.1016/0030-5073(68)90004-4.

[68] C. Maslach, S. Jackson, and M. Leiter. Maslach burnout inventory third
edition. In C. P. Zalaquett and R. J. Wood, editors, Evaluating Stress: A
Book of Resources, pages 191–218. Scarecrow Education, 1997.

[69] A. H. Maslow. A theory of human motivation. Psychological Review,
50:370–396, 1943.

[70] J. D. Mayer, M. A. Faber, and X. Xu. Seventy-five years of motivation
measures (1930–2005): A descriptive analysis. Motivation and Emotion,
31:83–103, 2007.

[71] D. C. McClelland. The Achieving Society. Van Nostrand, Princeton, NJ,
1961.

[72] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann. Today was a good
day: The daily life of software developers. IEEE Transactions on Software
Engineering, 47(5):863–880, 2021. doi:10.1109/TSE.2019.2904957.

[73] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,
C. Winter, A. Knight, E. Smith, and M. Jorde. What predicts software
developers’ productivity? IEEE Transactions on Software Engineering,
47(3):582–594, 2021. doi:10.1109/TSE.2019.2900308.

[74] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview. WIREs Data Mining and Knowledge Discovery, 2(1):86–97,
2012. doi:10.1002/widm.53.

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830, 2011. URL http://www.jmlr.org/papers/

volume12/pedregosa11a/pedregosa11a.pdf.

[76] P. M. Podsakoff, S. B. MacKenzie, J.-Y. Lee, and N. P. Podsakoff.
Common method biases in behavioral research: a critical review of the
literature and recommended remedies. Journal of Applied Psychology,
88(5):879, 2003. doi:10.1037/0021-9010.88.5.879.

[77] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[78] S. Ramachandran and S. V. Rao. An effort towards identifying oc-
cupational culture among information systems professionals. In Pro-
ceedings of the 2006 ACM SIGMIS CPR Conference on Computer
Personnel Research: Forty Four Years of Computer Personnel Re-
search: Achievements, Challenges & the Future, pages 198–204, 2006.
doi:10.1145/1125170.1125221.

38



[79] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu. Stress and
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A Survey Questions

To facilitate the review, the full questionnaire used in the survey is reproduced
herewith.

A.1 Survey introduction

Dear participant,
We are a team of researchers interested in improving software development

(see for example https://www.cse.huji.ac.il/˜feit/papers/Refactor19PROMISE.pdf).
If you contributed to a GitHub repository as a developer in the last 12

months, we ask for your help by answering questions about your contribution
and motivation. Answering these questions is estimated to take 10–15 minutes
of your time.

Based on the experience of respondents to this questionnaire in the past,
you may gain new insights about your priorities in software development and
areas of importance to you. Your answers, with the answers of others, will allow
researchers in the future to investigate motivation, quality and productivity in
software development and hopefully improve them.

We would appreciate a link to your GitHub profile in order to match your
answers and GitHub activity (e.g., number of commits, years in the repository).
We are aware that the profile is a personal identifier and we will keep it private
and use it for research purposes only. The results of analysis of the profile data
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will be reported in aggregated form only. Of course, in case that you are not
interested, you can leave the field empty.

If you are willing to participate in this study, move to the next page. By
moving to the next page you agree to participate in this study. The only in-
convenience that this study may cause you is the need to concentrate on the
questions for about 10-15 minutes. Yet, you may quit this survey at any time
without answering all the questions, with no consequences for you. We will
be grateful if you complete ALL the questions. No personally identifying in-
formation will be collected, except your GitHub profile if you choose to share
it.

Thank you so much for your help.
Prof. Dror Feitelson, Prof. Avi Kluger, Ph.D. candidate Idan Amit
If you have any question you can contact Idan Amit at idan.amit@mail.huji.ac.il

A.2 Questions regarding yourself

The questions in this section are in Likert scale where 1 is ‘Strongly disagree’
and 11 is ‘Strongly agree’.

1. Productivity is more important to me than quality

2. My motivation has more influence on my productivity, than my skill

3. I regularly reach a high level of productivity (based on [73])

4. I am a relatively productive programmer

5. I am skilled in software development (based on [59])

6. My code is of high quality

7. I am satisfied with my performance in software development [59]

8. I want my code to be beautiful

9. I enjoy software development very much

10. It is important for me to program well (based on [59])

11. I write tests for my code

12. I write detailed commit messages

13. I contribute to open source in order to have an online portfolio

14. I try to write high quality code because others will see it

15. I enjoy trying to solve complex problems [4]

16. I contribute to open source in order to become a better programmer

17. I improved as a programmer since a year ago

18. I contribute to open source due to ideology
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A.3 Questions regarding activity in a repository

Please choose one specific GitHub repository that you work on. Answer the
following questions with respect to this repository. (These questions

• What is the link of the GitHub repository that you answer on? (Free ext)

• How many hours a week do you work on the repository (average)? (Free
text)

• I’m being paid for my work in this repository (Yes/No)

The questions in this section are in Likert scale where 1 is ‘Strongly disagree’
and 11 is ‘Strongly agree’.

1. I regularly have a high level of motivation to contribute to the repository
(based on [73])

2. I have complete autonomy in contributing to the repository

3. I have significant influence on the repository

4. I feel responsible for the repository’s success

5. I’m interested in the repository for my own needs

6. We have many heated arguments in the community. If you are the only
developer in the project, please skip.

7. I wish that certain developers in the project will leave. If you are the only
developer in the project, please skip.

8. My work on the repository is creative

9. Working on this repository is challenging

10. I derive satisfaction from working on this repository

11. The repository is important

12. When I look at what we accomplish, I feel a sense of pride.

13. Belonging to the community is motivating my work on the project. If you
are the only developer in the project, please skip.

14. The community is very professional. If you are the only developer in the
project, please skip.

15. I get recognition due to my contribution to the repository

16. I am a core member of the repository
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17. I learn from my contributions

18. The quality of the code in this repository is better than others

19. Code quality in the repository improved since a year ago

20. The project’s community of developers is more motivated than that of
other projects. If you are the only developer in the project, please skip.

21. My personal motivation in this repository has increased since a year ago

22. In the past year, members of my project community put me down or were
condescending to me. If you are the only developer in the project, please
skip. (based on [29])

23. In the past year, members of my GitHub community made demeaning or
derogatory remarks about me. If you are the only developer in the project,
please skip. (based on [29])

24. In the past year, members of my project community asked questions that
show their understanding of my contributions. If you are the only devel-
oper in the project, please skip. (based on [57])

25. In the past year, members of my project community expressed interest in
my contributions. If you are the only developer in the project, please skip.
(based on [57])

A.4 Job Satisfaction

The following questions are from Job Satisfaction Scale questionnaire [50]. We
present the questionnaire as is in order to compare to previous results. In case
that you find some questions irrelevant, please skip them.

The questions in this section are in Likert scale where 1 is ‘Extremely dis-
satisfied’ and 7 is ‘Extremely satisfied’, as in the original survey [50].

The questions indicate level of satisfaction with the following:

1. Freedom to choose your own method of working

2. Amount of variety in your work

3. Physical working conditions

4. Opportunities to use your abilities

5. Your colleagues and fellow workers

6. Recognition you get for good work

7. Your hours of work

8. Your remuneration (payment)

9. Amount of responsibility you are given

10. Taking everything into consideration, how do you feel about your work?
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A.5 Demography

1. Country (Free text)

2. Age (0-100 selection)

3. Gender (Free text)

4. I work as a professional programmer (Yes/No)

5. Years of work experience (not including studies) (Free text)

6. Years of contribution to GitHub(0-15 selection)

7. Academic background (degree and graduation year) (Free text)

8. Git profile link (Free text) We would appreciate a link to your GitHub
profile in order to match your answers and GitHub activity (e.g., number
of commits, years in the repository). We are aware that the profile is
a personal identifier and we will keep it private and use it for research
purposes only. The results of analysis of the profile data will be reported
in aggregated form only. Of course, in case that you are not interested,
you can leave the field empty.

A.6 Open questions

1. Do you have any comments on the questionnaire or research? Are you
motivated due to a cause that we didn’t consider? Do you have a method
that increases your code quality? (Free text)

2. Thank you for answering our survey. If you would like to be informed in
the results of the research or to participate in the gift card lottery, please
enter your email and we will send it to you once completed. The email
will not be used for profile identification. (Free text)
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4.4 Motivation Research Using Labeling Functions

Published: Amit, Idan, and Dror G. Feitelson. ”Motivation Research Using Labeling

Functions.” Proceedings of the 28th International Conference on Evaluation and Assess-

ment in Software Engineering. 2024.

In this work we used labeling functions [62, 6] in order to investigate motivation

and its relation to behavior in real world activity. This adds a new method to the

toolbox of abstract concept investigation, common in social sciences. It allows large-

scale investigation over long periods, identification of rare patterns, quantification, and

reproducibility.

We used the answers to the motivation survey to show that our labeling functions are

weak classifiers for motivation. We further validated them at large scale on the GitHub

data using co-change, twins, and more, to show that they measure the same concept.

Applying this showed the impact of motivation of people in their natural behavior on a

massive scale, with data about more than 150 thousand developers, over years of activity.

Here are some examples of the results. The activity period in a project is longer, by up to

70%, given higher motivation as identified by any of the functions. Commit duration is

also higher, possibly indicating higher attention. But despite the extra time investment

in a single commit, the number of commits might be 4 times higher.

This completes the path of measuring software development, identifying relations

between concepts, and estimating the impact on performance.
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ABSTRACT
Motivation is an important factor in software development. How-
ever, it is a subjective concept that is hard to quantify and study
empirically. In order to use the wealth of data available about real
software development projects in GitHub, we represent the moti-
vation of developers using labeling functions. These are validated
heuristics that need only be better than a guess, computable on
a dataset. We define four labeling functions for motivation based
on behavioral cues like working in diverse hours of the day. We
validated the functions by agreement with respect to a developers
survey, per person behavior, and temporal changes. We then ap-
ply them to 150 thousand developers working on GitHub projects.
Using the identification of motivated developers, we measure devel-
oper performance gaps. We show that motivated developers have
up to 70% longer activity period, produce up to 300% more commits,
and invest up to 44% more time per commit.
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1 INTRODUCTION
Human aspects of software engineering are usually studied using
tools like experiments, case studies, interviews, and surveys. These
can be costly in money and effort to apply, limiting the data to only
a small number of samples. Machine learning on large datasets can
complement the research done using such methods and leverage
the data available in open-source code repositories. However, to
investigate a concept using such datasets one needs to identify it.
This is difficult to do when the concept is abstract and subjective,
such as motivation.

Machine learning copes with this problem by using labeled sam-
ples instead of a precise definition. A model that can predict the
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labels of unseen samples demonstrates that it has captured the
concept that they represent. In supervised learning, one builds the
model using labeled train samples. But we do not have enough
labeled samples to build a robust model.

The solution we propose is to use labeling functions as models.
Labeling functions are heuristics for generating labels, correlated
with motivation, and validated to predict it better than a guess [50].
In our case the labeling functions use developers’ behaviors to pre-
dict whether they are motivated. Even a single labeling function is
helpful, but it might be biased. By using multiple labeling functions
that capture diverse perspectives of motivation, we increase our
confidence in results that reproduce for all of them.

Our labeling functions include refactoring (investing in design
improvement reflects motivation) and working diverse hours (a
developer that occasionally works in late hours is assumed to be
motivated). Using them we quantify the behavior of developers
with and without motivation, reproduce prior work regarding its
benefits [13, 33, 38], and predict future developer retention.

Our main contributions are the following:

• We provide a newmethodology, complementing surveys and
experiments, to investigate motivation.

• The method enables large scale, long term, quantitative, and
reproducible investigation of motivation in actual behavior
in a natural setting.

• We provide and validate four labeling functions for motiva-
tion, two new and two from prior work.

• We show that our labeling functions can be used to predict
churn in advance, allowing intervention.

• We show that motivation is correlated with more activity,
more output, and investing more time in each task.

2 THE VISION: LABELING FUNCTIONS AS A
RESEARCH FRAMEWORK

The current toolbox of motivation researchers contains experiments
[13], interviews, surveys [44], and case studies [52]. While these
methods allow control, the cost of each sample is high, and therefore
there is a validity threat due to the small datasets [58]. This small
dataset problem can be solved by mining software repositories,
leveraging the millions of activities performed by many thousands
of developers.

However, to apply supervised learning and investigate a concept
(such as motivation), we need to label the data and distinguish cases
where the concept applies from those where it does not. Usually,
one can obtain labels for the concept using manual human work
(e.g., asking all the developers about their motivation). Manual
labeling is limited in capacity, preventing leveraging the power of
big data.
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Labeling functions, providing predictions that need be only
slightly better than a guess [50], provide an alternative to man-
ually labeling the concept. The use of multiple labeling functions
allows us to raise our confidence in the labeling when all or most
of them agree. Given a good enough representation of the concept,
one can investigate it at scale. This can provide supporting evi-
dence for relations of interest (e.g., activity period is longer given
all motivation functions).

Labeling functions are especially beneficial in concepts that are
not well defined. The essence of the difficulty is motivation being
an internal, subjective, hard to measure concept. Literature surveys
— including one spanning 75 years of motivation research — found
that there is no canonical method to measure motivation, and the
suggested methods have limited agreement [44, 54].

Hence, we do not aim to provide a new definition of motivation
or measure our work with respect to an existing one. Instead, we
evaluate our functions with respect to answers about motivation,
specifically self-reporting on motivation and working hours [16].

2.1 Labeling Functions
A labeling function [19] is a validated computable weak classifier,
a heuristic that one can apply computationally to a dataset and get
predictions that are better than a guess.

The concept of weak learnability [37], learning slightly better
than a guess, was suggested as a way to relax the high requirements
of PAC learning [56]. Surprisingly, it was shown that the concepts
are equivalent, and one can boost weak learners to regular PAC
learners [50]. Since then boosting became an important learning
method [29, 50]. Weak classifiers were also found powerful in cop-
ing with the lack of labeled data. They were part of both theoretical
and practical work like co-training [19] and weakly-supervised
learning [9, 11, 23].

Labeling functions can be either learned from a dataset or just
a fixed rule. An example of such a rule is “people that participate
in popular projects tend to be motivated by recognition”. This
rule is not perfectly accurate, yet it encapsulates knowledge which
improves our prediction. Given a single labeling function, one can
use it as a proxy for the concept. For example, the labeling function
of retention in a project can be used to investigate the concept of
motivation. Of course, the same investigation can also be framed
as the investigation of retention as an object of interest on its own.

Behavioral cues [25] and even labeling functions have been used
previously in motivation research, though not formally. For exam-
ple, coming to work in a snowstorm is predictive of high satisfaction
[52]. In open-source the projects’ license openness level is predic-
tive of the developer ideology-based motivation [18].

Our goal in this paper is not to reach the best predictive power,
but to find relations between motivation and performance. For this
it is beneficial to have different and diverse functions capturing
different aspects of motivation. An increase of a behavior of interest,
given an increase in a motivation labeling function, is a hint of
the relation between them. If the result reproduces for several
different motivation labeling functions, it increases the likelihood
that motivation indeed increases this behavior.

3 MOTIVATION LABELING FUNCTIONS AND
THE INTUITION BEHIND THEM

We looked for motivation labeling functions that represent activi-
ties which are not mandatory and require some cost. We looked for
actions for which usually there is no external enforcement. For ex-
ample, writing tests requires extra investment, but in many projects
they are enforced by cultural norms or technological means. There-
fore, tests may not be a good labeling function for motivation. Yet,
the length of the commit message documenting development can
be a good labeling function, since colleagues and managers usually
are not aware of the message length and therefore do not enforce
it.

We also wanted the functions to fit open-source development,
where many of the participants volunteer as a part-time hobby.
Thus, counting working days could be a labeling function for full
time employees, but it might underestimate the motivation of a
volunteer working on weekends.

We deliberately choose simple, one-variable binary functions.
We need a binary function to distinguish motivated from unmoti-
vated developers. Hence, we need to choose a cut-off value for the
continuous labeling functions. For simplicity, we uniformly use the
mean of each metric. In Section 6.1 we investigate the benefit of
using the raw metrics without a cut-off and show that there is no
major difference.

Last, we wanted the functions to be diverse and capture moti-
vation in different ways. By doing so we increase the robustness
of estimation and validity of relations. The labeling functions we
selected are retention in a project, working diverse hours, perform-
ing refactoring, and writing detailed commit messages. The first
two are based on prior work and the last two are new.

3.1 Retention
Out of a project’s developers in a given year, we define the retained
ones as those that continue in the next year. Given the prior work
supporting the relation between motivation and retention [12, 42,
49], we label retained developers to be motivated in the current
year and developers who did not continue as not motivated.

Argyle found modest correlation between job satisfaction and
retention, tending to be stronger among white collar workers. [12]

Note, though, that ending activity in a project due to reasons
not related to motivation poses a threat. Reasons to take a break
are personal in 78.3% of the cases, of which 36.2% are due to a life
event or a financial issue, unrelated to the developer’s desires or the
project [20]. To reduce external influence, we examine only active
projects, hence the reason for leaving the project is not project
termination.

Another problem is that retention is a binary function, so it lacks
the fidelity of a continuous function. For a developer working for
years in a project we can only claim a similar level of motivation in
the first years, and lower motivation in the last year. Continuous
labeling functions do not have this limitation and allow us to better
quantify the motivation level. Another limitation of retention as
a labeling function is that we can know it only in retrospect. In
research we can indeed use past data for investigation, but this
labeling function cannot help estimating the current motivation.
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Other than the developer, retention is influenced by the project
characteristics. The retention in large projects is 65% of the retention
in medium ones and only 18% of that in single person projects.
Retention in new projects is 25% higher than in old ones. The
retention in projects belonging to companies is 79% that in projects
owned by other organizations. Retention in extraordinarily popular
projects is 21% of that in projects of low popularity. All these effects
are not surprising, as they are associatedwith feelings of community
and ownership, known motivators — and thus retention [14, 38, 45].

Nevertheless, such influences of the project characteristics might
lead to systematic biases of the labeling function. To cope with this,
we first identify these biases. We use control variables to verify that
a behavior is not due to the control. We verify that the function is
predictive despite the biases, and we use several functions to have
diversity and reduce the impact of each specific bias.

3.2 Refactoring
While quitting a project can be a strong indication of lack of mo-
tivation, it is a binary indicator that usually happens only once.
We wanted the other functions to allow continuous monitoring of
motivation and its levels. Therefore, we base them on recurring
activities and measure the level of activity.

Refactoring is improvement of the design of code while keeping
the same functionality [26]. Since refactoring does not add func-
tionality, its value is not always seen from an external point of view
(e.g., of the developers’ managers or customers). Investing in refac-
toring therefore reflects motivation on the part of the developer. As
far as we know, we are the first to use refactoring as an indication
of motivation. However, it is known that improvement activities in
other contexts are hard and require motivation [39].

We identify refactoring activity using a linguistic-analysis-based
classifier applied to the commit messages documenting the change
done [6, 21]. In order not to be dependent on the number of commits,
we use the refactoring probability, namely the ratio of refactoring
commits to total commits [4].

In some of the use cases we need a binary function instead of a
continuous one. We turned all our activity-based labeling functions
into binary ones by comparing each developer’s activity to themean
activity in our survey dataset (See Section 5.1). For refactoring this
cut-off is at 20% refactoring probability, which is the 69𝑡ℎ percentile
of cases in GitHub. This threshold is chosen for its simplicity, and
we show in Sections 5.2 and 6.1 that the influence of the specific
threshold is limited.

Refactoring is also influenced by the project characteristics. The
refactoring probability in old projects is 37% higher than in new
ones. In large projects (with many developers), the refactoring
probability is 13% higher than in a single person project, and 37%
higher than in small ones. In extraordinarily popular projects, the
refactoring rate is 60% higher than in low popularity projects. We
use control variables to avoid false impact attribution.

3.3 Diverse Working Hours
A motivated worker might start working earlier or stay later when
needed. The correlation between motivation and overtime [16] also
supports this metric.

Using the commits’ timestamp, we identified each developer’s
working hours in a whole calendar year. We used the number of
distinct hours of the day in which commits were performed as our
metric. Hence the maximal value is 24 hours, and a single sleepless
working day should be enough to reach it. On the other hand, a
person working 9 to 5 will have the value of 8. We did not use the
sum of working hours since an unmotivated full-time employee
will probably still work more hours than a week-end motivated
hobbyist. The cut-off value for binarization (the mean) is working
at least 18 hours, reached at the 71𝑠𝑡 percentile.

The longer the period a person contributes to a project, the more
likely the person is to contribute in diverse hours, regardless of
motivation. This is supported by the Pearson correlation between
activity days and distinct hours, which is 0.59. The threat due to
this correlation increases since activity days also have 0.19 corre-
lation with retention. However, diverse hours have a higher 0.26
correlation with retention, so at least part of it is not due to activity
days.

Moreover, the activity in a specific hour of the day, per developer,
year, and project, is due to a single commit in 43% of the hours,
and at most two in 59%. Hence, the contribution in these hours is
very sensitive and a single commit might change the number of
distinct hours. Indeed, a single sleepless night is enough to reach
24 distinct hours. However, deciding to devote your sleepless night
to programming might be a strong indicator of motivation.

3.4 Long Commit Messages
Commit messages are used to document the change done when
committing code. The content of the message might contain the
change, the reason to perform it, administrative details, etc. [21]. As
far as we know, we are the first to use message length as an indicator
for motivation. Yet, documentation is considered to be a tedious
task and requires motivation [51]. We use the average length of the
messages as indication to the motivation and investment in writing
them. The cut-off value for high average message length is above
84 characters, reached at the 59𝑡ℎ percentile.

Note that messages can be very long. The 99𝑡ℎ percentile is 1,204
characters and there are also messages of millions of characters.
These are probably the result of mechanisms that automatically gen-
erate very long messages. In “Squash commits” the work in several
commits is aggregated into one and their messages are combined.
Some tools automatically add the “git diff”, the summary of the
modifications to the code. 9% of the messages above 10k characters
mention squash, compared to only 0.1% in shorter messages; diff is
mentioned in 37% compared to 1.2%. In such cases the long message
is not an indication of motivation and investing effort in writing it.
One could take it further and claim this is an indication of lack of
motivation to remove a “git log polluting” too long message.

Also, the average message length in single-developer projects is
47 characters, compared to the almost 3 times more (140 characters)
in others. This is probably since single developers write messages
for ‘future me’ while in larger projects the community needs and
enforces this documentation. In twins experiment, comparing the
same developer in a single developer project and larger ones, the
average length is shorter in the single developer project in 59% of
the cases.
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4 METHODOLOGY
4.1 Analysis
The goal of our methodology is to validate that we represent mo-
tivation well and capture the relations between motivation and
developer performance. We start by using 4 labeling functions, to
reduce the influence of a specific function’s artifacts. As ground
truth we use developers self-reporting on two motivation questions.
We verify that the functions weakly predict them. Once being weak
classifiers is established, we validate the functions on a large scale,
with respect to each other, using the following methods:

• We measure monotonicity with respect to retention.
• We validate agreement at the developer level using twin
experiments, showing that a higher value in one function
tends to agree with higher values in the others.

• We validate temporal agreement, that an improvement in
one function is predictive of improvements in the others, as
expected when measuring improvement in the same concept.

• We use control variables to verify that the relations are not
due to co-founding, both with a single control and with all
in a supervised model.

Once we validate the representation of motivation, we investi-
gate its relation to developer performance. We measure activity in
project, output, and process motivation [55], each with two met-
rics. We evaluate the relation between each of the metrics and the
functions. Other than predictive analysis, we used co-change and
twin analysis and the control variables. The redundancy in the
representation, and investigation in the population level, developer
level, and temporal level, reduce the threat of misidentification.

We use the following control variables. Age groups, divided into
projects before GitHub creation (before 2008), the oldest 25% (before
2014), the youngest 25% (since 2017), and the middle 50% [7]. Devel-
opers were grouped into ‘Single’, ‘Small’ (at most 10), ‘Medium’ (at
most 100) and ‘Large’. Popularity groups were divided into ‘Low’
(lowest 25%, at most 8 stars), ‘Medium’ (next 50%, at most 422 stars),
‘High’ (next 20%, at most 5027) and ‘Extraordinary’ for the top 5%.
Projects belonging to a company were identified by manually label-
ing the 100 users with most projects. For programming languages,
we control for: Python, JavaScript, Java, C++, PHP, and ‘other’.

4.2 Motivation Survey Dataset
As a first validation of the labeling functions, we wanted to compare
them to answers regarding motivation. We used a survey by Amit
and Feitelson asking various questions regarding motivation [8]. To
match the answers with the actual behavior the survey also asked
for the GitHub profile and projects.

The survey included 66 questions about motivation and software
development, covering 11 motivators as learning, recognition, etc.
Our goal here is to establish first the ability to measure motivation
and its influence in general. Therefore, we use only a few relevant
questions here and leave labeling functions for motivators (e.g.,
people in popular projects report high recognition motivation) to
future work.

The questions used in the labeling functions validation are:
• I regularly have a high level of motivation to contribute to
the repository (based on [46])

• How many hours a week do you work on the repository
(average)?

• I’m being paid for my work in this repository
The survey was conducted from December 2019 to March 2021.

It obtained 1,724 responses, 521 of them finished the survey. The
participants provided the names of 484 projects and 303 personal
GitHub profiles.

After a year, a follow-up survey was sent to the participants that
provided their emails in the original survey. In the follow up survey,
124 out of the 341 participants answered (36.3%).

4.3 GitHub Dataset
GitHub is a platform for source control and code development
projects, used by millions of users. Our dataset is based on the Big-
Query GitHub schema, which includes the commit history of select
projects. We start with all projects with 50 or more commits during
2021. We excluded forks, redundant projects, and non-software
projects [7], ending with 18,958 projects.

Many of the developers contributing to a project make only
occasional, sporadic contributions, sometimes a single commit. For
example, they may fix a bug found while working with the project
or add a small functionality for self-use. These developers do not
represent well the typical motivations of involved developers. Our
focus is on the developers who make significant contributions to
the project and are in some way invested in it. We choose to use
the threshold of 12 commits per year, an average of one commit per
month, as a lower bar for involvement [7]. While this omits 62% of
the developers, they are responsible for only 6% of the commits.

To reduce the threat of bots [31], we also filtered out developers
with 1,000+ commits per year, 0.04% of the developers. Note that
since we started with projects active during 2021 and examined
their history, none of the developers stopped working on a project
because the project was terminated.

5 VALIDATION OF LABELING FUNCTIONS
5.1 Labeling Functions Validation by the Survey
In this section we validate the labeling functions by comparison
to answers in the survey regarding motivation. We asked survey
respondents for their GitHub profile, which allows us to match
their actual behavior with their answers.

We perform the validation in a supervised learningmanner, using
a classifier to predict a concept. The ‘Concept’ column in Table 1
is the question for which we try to predict a high answer. We
used both the motivation question and the working hours question.
‘Classifier’ is the waywe predict the concept — by using a high value
in either a labeling function, or in the other motivation question
(That is, we used the motivation question to predict the working
hour question and vice versa). Also, we compared high answers to
motivation questions in the original and the follow-up surveys of
the same developer contributing to the same project.

It is generally accepted that motivated workers work longer
hours [16]. This result may be tainted by mixing data about paid de-
velopers with data about volunteers, both common in open-source
projects. We checked this by separating the groups using the survey
question about payment. For unpaid workers the reported average
working hours were 10.8 (high motivation) and 4.5 (low), while for
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Table 1: Validation of labeling functions using survey answers

Concept Classifier Cases Accuracy Accuracy Lift Precision Precision Lift
Retention 28 0.57 0.19 0.85 0.13
High Refactoring 28 0.54 0.15 0.83 0.11

Motivation Answer High Hours 28 0.68 0.27 0.88 0.17
Long Messages 28 0.43 0.04 0.78 0.04
Working Hours Answer 245 0.65 0.30 0.70 0.35

Motivation Answer Follow-Up Motivation Answer 46 0.72 0.47 0.63 0.45
Retention 21 0.52 0.05 0.56 0.06
High Refactoring 21 0.57 0.15 0.60 0.15

Working Hours Answer High Hours 21 0.52 0.05 0.55 0.04
Long Messages 21 0.52 0.07 0.60 0.15
Motivation Answer 245 0.65 0.30 0.56 0.35

Working Hours Answer Follow-Up Working Hours Answer 47 0.81 0.53 0.65 1.04

paid workers they were 27.9 (high) and 25.8 (low). Therefore in
Table 1 we used only the behavior of unpaid developers to compare
to the working hours question. In the rest of the analysis we do not
do this filtering and use all developers.

‘Cases’ is the number of developers whose data was used in each
row. When comparing questions, we have nearly 250 cases, and
when comparing to the follow-up we have nearly 50 cases. How-
ever, when comparing answers to actual behavior the numbers are
lower, since this requires a combination that occurs for only a small
fraction of the survey respondents: they need to both provide their
profile, and we need to have their project in our dataset. Note that
we reached these numbers from a relatively big survey completed
by 521 people with partial replies from 1,724 (a big drop due to
not contributing to GitHub). Hence, it will be hard to enlarge this
dataset significantly. Instead, to increase validity, we analyze in the
next sections the full GitHub dataset, having years of activity in
18,958 projects by 151,775 developers.

The analysis is in the supervised framework, and we present ac-
curacy, precision, and their lifts. The lift, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑏𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑟𝑜𝑏
(and likewise for precision with respect to positive rate), measures
how much larger the result is relative to the base probability. Note
that all labeling functions have positive accuracy lift and precision
lift with respect to both questions, thereby validating them.

As expected, comparing with questions leads to higher perfor-
mance than comparing with labeling functions; In particular, com-
paring with the same question in the follow-up survey leads to
the highest scores. This provides a benchmark with which to com-
pare the results for the labeling functions. While the performance
achieved by the labeling functions is lower, it is not too low, and it
is sufficient for the requirement from weak classifiers that can be
applied at scale.

5.2 Labeling Functions Validation by
Monotonicity

Correlation between two binary variables (e.g. high distinct hours
and retention) is indicative of agreement, since the probability of
accidental agreement decreases with the number of samples and
level of agreement. We use retention as a proxy for motivation
and compare the continuous labeling function to it. Retention has

Pearson correlation of 0.26 with hours, 0.006 with message length,
and 0.005 with refactoring probability. The first value is medium-
low and the last two are almost zero.

Monotonicity [35, 53] adds to correlation by requiring a step
by step increase and not only a general increase in both variables
together. This is since even when there is some correlation between
the variables, the probability of having an increase in every step by
mere chance is low.

Figure 1: Retention in next year given distinct hours worked
in the current one.

Figure 1 presents a “text-book graph” of the monotonicity of
working hours and retention probability. The probability of reten-
tion also increases with average message length, but only in the
lower part and then it is rather flat.

With refactoring there is no positive monotonicity. The differ-
ences in retention between deciles are small, sometimes decreasing,
and inconsistent.

Hence, we see monotonicity of retention with respect to diverse
working hours, partially with message length, but not with refac-
toring.

5.3 Labeling Functions Validation by Twins
Experiments

In Figure 1 we show correlation between working hours and reten-
tion, in the population. Twin experiments allow us to investigate
the correlation at the individual person level.
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When a person is motivated in a project, it might be due to the
person, the project, or the interaction between them. The ability to
factor out possible influencing variables, by equating them, helps
focusing on the other variables. A popular method for that in psy-
chology is “twin experiments” [57]. Identical twins have the same
genetic background, so a difference in their behavior is attributed
to another variable (e.g., being raised differently). This idea was
used in software to profile malware of the same developer [11], and
to investigate software quality [5, 7].

We analyze the results of two types of twin experiments, where
the twins differ in their retention. In the first one we observe the
same developer in the same year in two projects. We choose pairs
of projects such that in one the developer continued and in the
other the developer left. This setting factors out the developer, yet
the projects are different.

In the second type we observe the same developer in the same
project in two consecutive years: the developer’s last year in the
project, and the one before it. Here we factor out the developer and
the project, but not completely, because people and projects change
over time.

Table 2: Validation of labeling functions by same developer
twins experiments, using function agreement with retention
being more than 0.5

Refactor Distinct Msg.
Twins Type Devs. Pairs Prob. Hours Length
Same year, differ-
ent proj.

7,856 1,314,536 0.95 0.59 0.56

Same proj., con-
secutive years

42,087 51,549 0.58 0.68 0.49

Table 2 presents the twin experiments results. The columns
show the probability that the labeling function is at least as good
in the continuing case (indicating retention and implying higher
motivation). Taking no influence as the null hypothesis, we expect
a probability of 50%. Note that the probability is always higher,
other than for message length in consecutive years, which is close
to 50% from below. The very high probability of 95% for refactoring
in the same year is due to developers not doing refactoring in both
cases. When we ignore cases where both are zero the probability is
58%. The probability of equality was small in all other cases.

We also analyzed the twin experiments subject to the control
variables. In the ‘Same year’ case controlling for company, number
of developers, popularity, and programming language lead to the
same behavior as without controlling. In the ‘Consecutive years’
case we got the same behavior when controlling for age, number
of developers, and popularity. We sometimes got better message
length when controlling a company and a programming language.
Overall, this shows that the results are rather robust to the controls.

We also compared advantages in one continuous labeling func-
tion given advantage in another. In the first analysis we used twins
which were the same developer, in the same year, in different
projects, regardless of retention. For example, we check the prob-
ability of higher distinct hours in project A relative to project B,
given a higher refactoring probability in project A relative to project

B. In all cases there was a positive lift. Using controls, there was a
positive lift in 200 out of 210 cases. In a similar way, we analyzed the
same developer, in the same project, in consecutive years regardless
of retention. All cases had a positive precision lift too. 118 out of
126 controls had positive lift.

5.4 Labeling Functions Validation by
Co-Change

If a person becomes more motivated, we expect an improvement in
all our labeling functions. However, we cannot measure the person’s
motivation directly but only using our labeling functions. If all the
labeling functions reflect the person’s motivation, an increase in
one function is expected to correlate with an increase in the other
functions. In co-change analysis [5, 7], we check this expected
correlation between the labeling functions, omitting the person’s
motivation which is hidden from us.

We compare the change of two metrics on the same developer
in the same project in two consecutive years. We use an improve-
ment in one metric as a classifier predicting an improvement in the
other concept and measure the precision and precision lift. Metric
improvement is defined as an increase of our continuous labeling
functions.

Table 3 presents the results of the co-change analysis. ‘Classifier’
is the metric that improved. ‘Concept’ is the metric that we checked
its probability of improvement given an improvement in the clas-
sifier. In each cell we present the precision and in parenthesis the
precision lift. Note that precision lift is a symmetric function and
stays the same when replacing the classifier with the concept. The
diagonal is empty since it represents the comparison of a metric
with itself.

Table 3: Validation of labeling functions using co-change
precision (precision lift in parenthesis)

Classifier
Predicted concept Messages Refactoring Hours
Messages 0.20 (0.16) 0.46 (0.04)
Refactoring 0.65 (0.16) 0.45 (0.02)
Hours 0.58 (0.04) 0.18 (0.02)

In all cases the precision lift is positive, indicating an increased
probability of improvement in one metric, given an improvement
in the other. Using controls, out of the 186 control cases, only in 18
cases there was a negative lift. Hence, the co-change analysis also
shows high robustness with respect to controls.

5.5 Labeling Functions Reliability
We would like our functions to be reliable, returning similar results
when measuring the same entity again. However, we cannot mea-
sure the same labeling function on the same developer twice at the
same time.

As a second best, we compare the value of the labeling functions
for the same developer, in the same project, in consecutive years
[7]. Consecutive years are not the same time yet not too far from it.
Given the value in one year and the consecutive year, we compute
two metrics. Self-Pearson is the Pearson correlation of the pairs
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of metrics for all developers in all projects. Hence, it measures the
relative change in the developer ranking as time goes by. Relative
difference is the average of the difference between the metric values
in the consecutive years, divided by the value in the first year. This
metric ignores the rest of the population and measures the average
difference between two measurements. Hours had self Pearson of
0.59, and average relative difference of 5%. Refactoring had self
Pearson of 0.63, and average relative difference of -13%. Message
length had self Pearson of 0.11, rather low, and average relative
difference of 15%. Note that averagemessage length is very sensitive
and even a single long message can change it dramatically.

6 RESULTS
Given the labeling functions for motivation, we now turn to seeing
how they can be used with the GitHub dataset.

6.1 Predicting Retention
The first use is to predict the retention using the other labeling
functions. Early prediction of abandonment is important because it
allows intervention and possibly avoiding churn. Table 4 presents
retention probabilities given the labeling functions. The ‘Classifier’
column is a labeling function. The ‘Retention’ column is the preci-
sion of predicting the retention concept, given that the classifier
is high. In the ‘Two Years Retention’, we extend the co-change
analysis and the classifier is an improvement in the metric from
one year of a developer in a project to the next year; the column
shows the retention rate in the next year.

Table 4: Labeling functions’ predictions of retention

Retention Two Years Two Years
Classifier Retention Lift Retention Lift
None 71 -0.058 75 -0.073
High Refactoring 75 0.003 81 -0.001
Long Messages 77 0.025 81 0.009
High Hours 90 0.196 86 0.061
All 90 0.204 86 0.063
Positive Rate 75 0.0 81 0.0

The baseline for each analysis is the positive rate, the probability
of retention. In both cases, when none of the labeling functions
is high, the retention rate is lower, and when all are high it is the
highest. The lift of high hours is almost as high as for all labeling
functions together. Long messages have 2.5% lift in retention and
the lift in the other cases is close to zero.

To learn if the predictive power is due to the labeling functions
or the controls, we compared the performance of models built on
the functions, the controls, and both. Aiming for precision, logistic
regression models reached precision of 91% and recall of 21% on
both the labeling functions alone and when adding the controls.
Using the controls alone it reached precision of 90% yet with recall
of only 7%, hence the labeling functions have better predictive
power, above the contribution from the controls.

We also investigated if the prediction can be improved by using
the raw metrics and not the labeling functions (e.g., knowing of
24 distinct hours and not just a Boolean value). Logistic regression

had a precision of 89% (2 percentage points less) yet recall of 37%
(16 percentage points higher), higher Jaccard, and higher mutual
information. This indicates that their use might be beneficial in
some settings yet without a dramatic change.

Note that logistic regression is a low-capacity model and our
dataset is large, reducing the threat of over-fitting. We also checked
high-capacity models such as random forests, boosting, and neu-
ral networks to build models of higher representation ability and
performance. They had lower performance, indicating that repre-
sentation power is not the limiting constraint.

We used the ‘Two Years Retention’ to try to predict retention in
the second year. Our co-change analysis (Section 5.4) used a single
metric. We now apply the full power of supervised learning to
predict changes. We allow more inputs and provide the functions in
one year, the year afterwards, the difference (to ease representation),
and controls. On this dataset we can apply any supervised learning
classifier, learning complex and powerful representations. We were
able to reach precision of 92% with recall of 33%, higher than the
precision of 86% when all metrics improve. Hence, the application
of the more powerful method is beneficial, yet since the baseline
result is high it is not dramatic.

6.2 Developer Performance by Labeling
Functions

We next use the labeling functions to estimate the relation between
motivation and various metrics of developer performance. Table 5
has a ‘Metric’ column and a ‘Description’ column, explaining the
metrics. There is an additional column per labeling function. The
cell intersecting a labeling function column and a metric row repre-
sents 𝐴𝑣𝑔 (𝑚𝑒𝑡𝑟𝑖𝑐 | 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛=𝐻𝑖𝑔ℎ)

𝐴𝑣𝑔 (𝑚𝑒𝑡𝑟𝑖𝑐 | 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛=𝐿𝑜𝑤 ) , where 1.0 means similar averages.
Note that the labeling functions are weak classifiers, labeling some
motivated people as unmotivated and vice versa. Therefore the
results are not accurate yet indicate the nature of the relations with
motivation.

The first four rows match the labeling functions with each other.
When a column labeling function is high, the average of the other
labeling functions raw metrics is expected to be high, if they all
capture motivation. This indeed happens in all cases, except the
disagreement between hours and message length, providing an
additional validation of the functions.

We are interested in three performance aspects: activity, output,
and process motivation. We measure each aspect with two metrics
to reduce the influence of a single metric’s artifacts. Activity is
measured by activity days, and, to better fit work by both full-time
employees and volunteers, activity period. Output is measured by
commits and files as units of work. Commits and other output units
in software engineering are not of a single size (e.g., a commit
might represent different amounts of work). However, commits are
a common way to measure output [1]. We did not used issues or
pull requests, which are not available in our dataset, yet measuring
by either commits, issues, or pull requests tend to agree [7].

Developers might be driven by output motivation (wanting to
produce more) or process motivation (produce better) [55]. Correc-
tive commit probability is influenced by both the existence of bugs
and their detection effectiveness. Process motivation might lead
to investing more in detection effectiveness (e.g., by writing tests)
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Table 5: Developer performance by labeling functions

Metric Description Re
te
n.

H
ou

rs
M
sg
s.

Re
fa
ct
.

Retention Probability of continuing in
the next year

1.29 1.05 1.01

Commit
Hours

Number of distinct hours of
the day during a year

1.25 1.85 0.99 1.04

Message
Length

Average number of charac-
ters in a commit message

1.13 0.91 5.75 2.41

Refactor
Prob.

Attempt to improve the soft-
ware [6, 7]

1.04 1.12 2.02 6.70

Activity
Period

Days between the first and
last commits in a year

1.70 1.41 1.11 1.01

Activity
Days

Number of distinct days in
which a commit was made

2.09 4.06 0.79 1.03

Commits The number of commits,
modifications of the code

2.08 4.03 0.80 1.03

Files
Edited

Number of Files modified
(or created)

1.62 2.99 0.84 0.99

Commit
Duration

Average gross duration of a
commit [3, 5, 7]

1.07 1.26 1.44 1.19

Corrective
Commit
Prob.

The ratio of bug fixing com-
mits, Measures bug fixing
effort [7]

1.08 1.03 1.98 1.57

which can lead to finding more bugs. Core developers abandon-
ing the project (possibly lacking motivation) reduce effectiveness
[7]. Similarly, commit duration is influenced by productivity and
process, e.g., writing tests increase commit duration by 18% [3].

We expect that motivation will lead to higher involvement, as
reflected by a longer activity period, more distinct activity days,
more commits, and more files edited [55]. Our results indicate that
in general this indeed happens. Activity period is longer for all
functions. The increase in activity days is higher than the one of
activity period in all cases other than messages where it is even
lower than one. The ratios for commits are almost identical to those
of activity days. However, since commit duration is longer, more
time was invested to perform these commits. The ratios of files
edited are lower than for commits but follow a similar pattern.

When we look at the table with respect to the labeling functions,
metrics are always higher for retention and hours. For refactoring
it holds other than the 0.99 for files edited. Long messages have
a significant drop to 0.79 in activity days. Part of this is due to
confounding variables like the tendency to short messages and long
activity periods in projects of few developers. When controlling by
developer group, the activity period is higher given long messages.
Commits and files edited also have a drop yet per active day they
improve.

The results can also be used to address cases where motivation
can be hypothesized to have opposite effects [55]. For example, it
may be claimed that motivation compensates for the tedious effort
of fixing bugs, and therefore motivated individuals will perform

more bug fixing. Alternatively, motivated individuals might ap-
ply more attention to their work, increasing quality, and therefore
will have less bugs and require less bug fixes. The results indicate
that the first hypothesis dominates: using all four labeling func-
tions, higher motivation seems to go with higher corrective commit
probability.

The same goes for commit duration, which is longer for all func-
tions. One could expect a decrease due to output motivation and
higher productivity. An increase can be explained by process moti-
vation, higher attention and standards. Hence, our results better fit
process motivation, aiming to produce better, than they fit output
motivation, aiming to produce more [55].

As an additional validation, we compare the metrics in same-year
twins experiments, comparing a project in which the developer
continued to one abandoned. Commits are higher in the continued
project in 65% of the twins pairs, files edited in 56%, activity period
in 74%, activity days in 65%, and commit duration is higher in 55%
(at random 50% is expected). Opposed to the table, CCP is lower in
86%. Results hold when controlled by any of our control variables.

Co-change analysis showed the improvements in the labeling
functions lead to higher metric values for all the metrics. These
results are the same as in the table.

7 RELATEDWORK
Demarco and Lister [24], and also Frangos [27], claim that the
important software problems are human and not technological. So
there has been intensive investigation of motivation in software
engineering [17, 28, 40].

Our work, and specifically the labeling functions, were designed
to align with psychological motivation theories. Commits, refac-
toring, and hours are aligned with McClelland’s [45] affiliation
and achievement, and in certain contexts authority. Vroom’s Ex-
pectancy Theory [59] predicts higher outcome from refactoring
and documentation for motivated developers planning to stay. All
our functions are aligned with ownership (e.g., Motivation-Hygiene
Theory [34], others [14, 38]) and more motivators.

Open-source development is the collaborative development of
software that is free to use and further modify [48]. It is common
to develop open source software as a volunteer, which means that
salary is not a motivator [41]. Therefore, the motivation of open
source developers was investigated as a specific domain, in an effort
to uncover other motivators [22, 60].

Ownership and autonomy are important motivators [14, 38]. We
saw in Section 3.1 that retention is significantly higher in smaller
projects, in which ownership and autonomy are high. Recogni-
tion [30] is another motivator. Recognition is stronger in popular
projects that have lower retention. This is aligned with external
motivators like recognition being weaker than internal ones like
ownership [2].

Touré-Tillery and Fishbach distinguish between output moti-
vation (producing more) and process motivation (producing well)
[55]. We saw that commit duration increases, by all labeling func-
tions, indicating process motivation — giving more attention to
each commit instead of trying to finish them faster. They also claim
that motivation is demonstrated in choice, speed, and performance.
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8 THREATS TO VALIDITY AND LIMITATIONS
We discussed the limitations and biases of each labeling function
when presenting it.

We base our work on machine learning frameworks [10, 47, 50].
However, the application of these frameworks to motivation and
software engineering is new and therefore there are no benchmarks
or other labeling functions to which we can compare. Instead, we
validated the functions in many ways to reduce the risk of error.

Studying motivation poses a challenge since motivation is an
internal abstract concept.

For example, survey answers might have reliability problems
due to ego defenses [15], subjectivity, different personal scales, etc.
Comparison of self-rating to those of a related person (e.g., super-
visor, co-worker, or a spouse) showed only moderate correlation
[12, 36, 43]. Therefore, we also independently evaluated the actual
behavior working at GitHub on 151,775 developers.

The number of survey answers that were matched with the
behavior in GitHub is low. Note that this is despite the survey
itself being completed by 521 developers. Hence, there was a low
probability of being able to match a person. This led to threats of
both response bias [32] and incorrect statistical estimation problems
[58]. Since the survey is already large it seems it will be hard to do
a larger survey. Cooperation with companies, which have behavior
information and might agree to conduct surveys is a possible option.

Motivation might be due to many motivators, like enjoyment,
self-use, community, etc. We did not consider all these motiva-
tors and possible relations between them but only the outcome as
motivation. For example, it is possible that people motivated by
self-use will contribute only a single modification that helps them
and therefore retention is irrelevant to their motivation. The survey
we used included questions on 11 motivators and in future work we
can apply the same methodology and validate labeling functions
for specific motivators, getting a finer-grained picture of people’s
motivations.

A hard to notice threat is due to the motivation level. All the de-
velopers that we analyze contributed at GitHub hence are somewhat
motivated in the first place. Hence, instead of comparing motivated
and unmotivated people, we might have compared motivated and
highly motivated people. This might turn out to be a benefit since
members of organizations, and communities also have minimal
motivation, as in our scenario.

9 CONCLUSIONS
GitHub contains years of data on thousands of developers in their
natural every-day software development. We suggest four labeling
functions based on behavioral cues [25] which enable using this
data to study motivation and its effects in software development.

We first validated that the labeling functions are weak classifiers
by predicting developers’ answers to two motivation questions
from a survey. We then checked agreement between the functions,
monotonicity, agreement per person using twin experiments, and
temporal agreement using co-change. We used control variables,
alone and combined in a supervised learning model, to verify that
the labeling functions add predictive power beyond these variables.

Our results reproduce prior work on the positive impact of moti-
vation: the activity period is up to 70% longer, up to 44% higher time

investment in commit, and up to 300% more commits. We also built
models for developer retention. A high precision retention model
can be used to identify dedicated developers on which a project
can rely. A high recall model can be used to identify developers
lacking motivation (those not identified by the model), allowing
intervention that might increase it.

Our application of the methodology to motivation is just one
example. Additional labeling functions can be used to obtain even
better characterizations. Specifically, our survey included questions
about 11 motivators, for which labeling functions can be built al-
lowing a drill down into motivation details.

More importantly, the same methodology can be used for study-
ing other concepts, especially when one cannot obtain a precise
labeling of the concept due to its ambiguity, the cost of label-
ing, or noise. Using our methodology facilitates quantified, repro-
ducible, long-term investigation, based on large-scale data from
real projects.

EXPERIMENTAL MATERIALS
The replication package (DOI 10.5281/zenodo.10519880) can be
found at https://zenodo.org/records/10519880. Most up-to-date ver-
sion is available at https://github.com/evidencebp/motivation-labeling-
functions.
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4.5 Other Papers

In addition to the four papers included above, we wrote some other works that are not

part of this thesis yet contributed to it.

Linguistic analysis of commit messages was an important tool in our work. We worked

with Swanson’s commit taxonomy and defined commits as corrective (bug fix), adaptive

(adding a new feature), and perfective (refactor) [69]. We built a classifier for corrective

commits for the CCP investigation, and a perfective classifier for the refactoring investi-

gation. In “ComSum: Commit Messages Summarization and Meaning Preservation” [18]

we improved the classifiers (later used in Section 4.4).

“Software development task effort estimation” [1] was done while working at Acumen

and was submitted as a patent. We investigated in depth commit duration as a metric

for productivity. We showed that file reuse leads to higher bug detection efficiency and

lower CCP. Commit duration was used in the investigation of CCP and the influence of

motivation.

The use of static alerts assumes causality — improve the code by fixing the alert. In

“Follow Your Nose — Which Code Smells are Worth Chasing?” [3] we checked which

alerts indeed behave like that. We required predictive power, alone and when controlled

by the developer or file length, improvement when removed, and monotonicity. Out of

more than 170+ alerts provided by CheckStyle, less than 20% had such support. Only

5 had an advantage of more than 10%, needed to justify a practical use. This was a

systematic work going over all alerts of a static analyzer that further supported the

hypothesis that single interventions are limited in impact. From a methodological point

of view, we defined properties for causality and noted that most “best practices” are

not up to it. We showed the large influence of the developer and code length and the

importance of controlling them. The dataset that we built, and the small set of beneficial

alerts, allows an intervention experiment to settle the question of their causality. One can

choose a subset of the alerts, do a small change fixing them, and observe the outcome.

In “A fine-grained data set and analysis of tangling in bug fixing commits” [39] we

joined many other researchers and investigated tangling commits, serving multiple goals

in the same commit. The work provided insights and a dataset on the multiple purposes

of individual commits. Tangling commits might be a threat on commit analysis, and

therefore measuring how common they are and awareness in the design are important.

“Framework for semi-supervised learning when no labeled data is given” was done in

my work at Palo Alto Networks and was submitted as a patent [6]. The content was

cyber-security and the method was a way to represent fuzzy concepts (e.g., malicious-

ness) using labeling functions and finding a maximum likelihood estimation for them.

This method, known internally as Archimedes, structured the framework that we used.

Weak supervision is a framework where one is required to perform supervised learning
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yet with a limited number of labels or even none. The method minimizes disagreements

between unrelated labeling functions, which are only required to be weak classifiers. Min-

imizing the disagreements is done by minimizing the entropy of probability predictions of

a parametric model built upon the weak classifiers. Minimizing the entropy is equivalent

to finding a representative from the parametric family minimizing the Kullback–Leibler

divergence with the underlying distribution. In turn, minimizing the KL-divergence is

equivalent to finding the maximum likelihood estimation from the parametric family

(e.g., [34], page 148). This framework led to our use of labeling functions for motivation

and was extended (e.g., with co-change) to further validate that they measure a similar

concept.



Chapter 5

Discussion and Conclusions

5.1 Contributions

Quality and motivation are correctly considered to be important in software develop-

ment. Our first contribution was to show the large gaps in effort invested in bug cor-

rection. These gaps suggest that interventions to reduce bugs might be very beneficial.

Our research also supports “Quality is Free” which claims that investment in quality is

beneficial in general and leads to increased productivity [20].

The second contribution is providing simple ways for code improvement. Feedback

about the code, in many forms, is valuable for code improvement. Tests reduce time to

detect bugs, and so do many eyeballs [5]. Removal of Self Admitted Technical Debt (e.g.,

TODO), areas marked as problematic by a developer, is a beneficial refactoring. Code

review also increases the probability of beneficial refactoring [4]. Defensive program-

ming interventions (e.g., avoiding wide exception catching that might hide unexpected

exceptions) have properties indicating their benefit [3].

The way that software is composed is also an important factor. The benefit of short

source code files is well known, and we added co-change analysis to support it [3]. Reduc-

ing coupling is also beneficial. Following these two simple pieces of advice is enough to

have higher quality than the median [5]. Abstraction is another useful guideline. Refac-

toring done in order to improve software structure (e.g., reduce coupling) [4] and fixing

design static alerts [3] improves software quality.

Aesthetics is also an important guideline, yet it is hard to follow or investigate. 72%

of the developers in our survey answered at least ‘somewhat agree’ (9 on a scale of 1 to

11) on “I want my code to be beautiful” and 35% responded with the maximal answer.

Our personal experience, and many informal investigations, indicated the high benefit

of aiming for beautiful code and keeping the bar high despite deadlines, trade-offs, and

other constraints. Files involved in commits that had the word “ugly” appear in their

message have CCP 292% higher and their commit duration was 23% higher than the rest.

129
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Software is developed by millions of developers who do not tend to read software

engineering research papers. The concept of feedback is easy to understand, justify, and

apply. Composition into small parts is rather easy, abstraction is harder to interpret, and

aesthetics leaves the developer with guts feelings. The old recommendation of code reuse

(e.g., [14, 11, 29]) suggests how to achieve all of them.

The simplest justification of reuse is that a code reused is code not written again,

saving time, and giving less space for new bugs. Refactors that involve reuse are effective

in reducing future bug rate [4]. We also showed that file reuse leads to higher bug detection

efficiency and lower CCP [1]. Each new reuse case helps to differentiate between the code

needed to implement the new functionality and the code encapsulated in the reused

component, advocated by the single responsibility principle [52], increasing abstraction

and decomposition. Each reuse case is another pair of “eyeballs” that takes a look at the

reused component and provides feedback, and by Linus’s law [64] increases bug detection

efficiency [5]. Aesthetics is personal and subjective yet writing variants of the same logic

again and again is considered to be ugly. All this is avoided by reuse.

In the area of motivation, we showed that it can also lead to large performance gaps.

We showed that while common motivators indeed tend to be predictive and improvement

in them tends to lead to motivation improvement, their influence is limited. None of

the motivators is sufficient or necessary. Hence, this hints that one should check with

each developer how to increase their motivation. Recognition, and specifically expressing

interest, seems to be a general beneficial recommendation, which is easy to apply.

Software development aside, another major contribution is the methodology devel-

oped. Our methodology enables defining and quantifying vague concepts and evaluating

the definition’s reliability and validity. Given a set of concepts, we can investigate the

relations between them. We can also predict the outcome of changes by a reduction to

supervised learning. These abilities are valuable in many domains.

5.2 Future Work

We built a method to find beneficial recommendations for software improvement and

evaluate their value. This left important gaps: application of the method on a large

scale, and experimental evaluation of the causal relation.

In order to be able to investigate code patterns that were not suggested before, we

created a large dataset for end-to-end learning for software engineering [2]. It contains

the source code of 15k projects, fetched every two months from June 2021 to December

2022, along with process metrics. This allows “end-to-end” learning — use two versions

of the same file in different dates and use machine learning to find patterns that predict

improvement.
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We provided 4 labeling functions for motivation in open-source development, verified

with dozens of people. More labeling functions, for motivation and other concepts, should

be found. Different contexts will shed light on different aspects. Work on other areas will

show generalization. Work in companies can provide a stable similar context of employees’

work and reduce selection bias. Investigation of disagreements between labeling functions

(e.g., using [6]), can help to tune the functions.

We investigate causal relations using observational data. Our representation of change

might be limited by lacking data or inappropriate assumptions. However, once we have

a low number of potential patterns, we can use intervention experiments, the classical

testbed for causality (suggested in software improvement context in [3]). Open-source

projects provide plenty of intervention opportunities (e.g., files in which a static alert

appears). One can sample some of them, and intervene and fix them in a small, clean

change. Then one can wait and check the result of the intervention and compare it to

the outcome in the control group.

5.3 Conclusions

Our goal was to look for justifiable recommendations for software quality improvement.

For that, we developed a methodology for capturing and evaluating fuzzy concepts and

the relations between them. The methodology for defining concepts started in adjacent

years stability and validation by comments [5], was applied to evaluate survey validity

(Section 4.3), and further extended by simultaneous twin and co-change relations (Section

4.4).

We applied the methodology to evaluate software concepts like quality and human

concepts like motivation, showing large gaps in the metric values and their meaning in

software development. The method is applicable at high level as a project and low levels

as a file, providing different ways to benefit from it.

We found justifiable recommendations for quality improvement. While there is no

single silver-bullet, the influence of recommendations accumulates. In principle, the gap

of 650% that we found in the CCP distribution can be explained by 10 independent factors

contributing 20% each (ln(650)/ln(120)). And we indeed found some such factors. Some

influence program structure: code length, coupling, cohesion, and reuse. Others influence

feedback: tests, code review, defensive programming, and eyeballs. Additional factors

that are influential, though not actionable, are software complexity (domain and size)

and programming language. An early model based on some of these features predicted

CCP groups with 68% accuracy [5].

Of course, this is a too simplistic model; relations between these factors, other factors,

and quality are more complex. However, our current knowledge is already enough to
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make beneficial improvements. More than that, we provide a methodology that enables

the identification and evaluation of more recommendations.

We hope that the methodology will be further developed, that new justified recommen-

dations will be found, that people will apply them and benefit, and that the methodology

will contribute to more domains.
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למתאם,מעברביניהםהיחסיםאתלחקורנוכלהמושגיםהגדרותבהינתן
לפרויקט,אולאדםשינוייםלייחס
מוטיבציה).(לדוגמה,המקורבמושגשינויבהינתןביצועים)(לדוגמה,המטרהבמושגהשינויאתולחזות



תקציר
לשפרה.מעונייניםאנוולכןניכרתהשפעהבעלתהינהתוכנהאיכות

אותה.שמכמתיםמדדיםולספקאיכותמהילהגדירעלינוראשיתזאת,לעשותמנתעל
תוכנה.פיתוחשלטכנייםהיבטיםחקרנותחילה
תוכנה.פרויקטיביןגדוליםביצועיםפעריגילינו
בלבד.מתוןבאופןאךהביצועים,עלמשפיעיםרביםקודשמאפיינימצאנו
מפתחים.חקרנוכאשררקשבפרוייקטיםלאלודומיםבפעריםהבחנו
מוביל.כגורםשלהםובמוטיבציהבמפתחיםלהתמקדבחרנולכן,

תוכנה.בפיתוחהביצועיםעלהמוטיבציההשפעתאתוכימתנוהמוטיבציהלהגברתהמלצותמצאנו
המוטיבציה.שיפורדרךבתוכנהביצועיםלשפרדרךמספקיםאנוכך

פירוט.ביתרהעבודהאתנסבירכעת
מתןהמשתמש,רצוןשביעות(למשל,הסובייקטיביואופיהמורכבותהבשלאותהלכמתקשהאךרבים,היבטיםישקודלאיכות
שונים).להיבטיםראוימשקל

Codeכמונמוכה,איכותעלכמצביעיםהמקובליםאחריםדפוסיםבאמצעותעקיףבאופןמוערכתהקודאיכותלפעמים Smellsאו
Self Admitted Technical Debt.

באגים.חיזויעלהנרחבמהמחקרשעולהכפינמוכה,איכותעלמעידיםבאגיםשגםמוסכם
שונות.בוואריציותבעבר,לאיכותכאינדיקטורשימשובאגים

Correctiveהמדדאתפיתחנואנו Commit Probabilityאגנוסטיהואוכךהשינויים,במספרמנורמלהתיקוניםמספרבו
כהסתברות.ושימושילגודל
אחוזים.מאותהואפרויקטיםביןCCPב-ההבדל

code(לדוגמהמשובשלההשפעהאתחקרנופרוייקטים,ביןהאיכותפעריאתהמסביריםגורמיםחיפושבמהלך review(ומבנה
).couplingקבצים,(אורךהתוכנה
באגים.לתיקוניההסתברותאתמפחיתיםrefactoringסוגיאילוחקרנומכןלאחר
סטטיות.התראותסוגי170מ-למעלהחקרנוכןכמו

bestשהרבהמצאנו practicesבלבד.מתונההייתהמביניהםהמועיליםשלושההשפעהמועילים,אינם
supervisedל-ברדוקציהמשתמשיםאנוהאלו,ההשפעותאתלהעריךכדי learning,העבודהאתלמנףלנוהמאפשרת

זה.בתחוםשנעשתה
האובייקט.במשתנישינוייםלפיהמטרהבמדדהשינויחיזוי,co-changeב-המשתמשיםמודליםבנינו

אחרים.גורמיםבשלהינןשהתוצאותהסכנהאתלהפחיתמנתעלתאומיםוניסויי,controlsבמונוטוניות,גםהשתמשנו

בפרויקטים.כמוגדולים,ביצועיםפערימצאנומפתחיםחקרנוכאשררק
יותר.טוביםמפתחיםידיעלהיאיותרטוביםלביצועיםלהגיעפשוטהדרךלפיכך,

טובים.מפתחיםלמצואקשהזאת,עם
יוקרתיות.חברותעובדיושליוקרתיות,אוניברסיטאותבוגרישלהמתכנתים,כללשלהדומההביצועיםרמתהיאלכךאינדיקציה

ממוטיבציה.מאודמושפעיםביצועיםזאת,עםיחד
המוטיבציה.שיפורדרךעוברתהביצועיםאתלשפרשלנוהשיטהלפיכך,



פייטלסוןדרורפרופ'שלבהדרכתונעשתהזועבודה
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