//: C16:Getmem.h
// Function template for memory
#ifndef GETMEM_H
#define GETMEM_H
#include <cstdlib>
#include <cstring>
#include "../require.h"
template<class T>
void getmem(T*& oldmem, int elems) {
typedef int cntr; // Type of element counter
const int csz = sizeof(cntr); // And size
const int tsz = sizeof(T);
if(elems == 0) {
free(&(((cntr*)oldmem)[-1]));
return;
}
T* p = oldmem;
cntr oldcount = 0;
if(p) { // Previously allocated memory
// Old style:
// ((cntr*)p)--; // Back up by one cntr
// New style:
cntr* tmp = reinterpret_cast<cntr*>(p);
p = reinterpret_cast<T*>(--tmp);
oldcount = *(cntr*)p; // Previous # elems
}
T* m = (T*)realloc(p, elems * tsz + csz);
require(m != 0);
*((cntr*)m) = elems; // Keep track of count
const cntr increment = elems - oldcount;
if(increment > 0) {
// Starting address of data:
long startadr = (long)&(m[oldcount]);
startadr += csz;
// Zero the additional new memory:
memset((void*)startadr, 0, increment * tsz);
}
// Return the address beyond the count:
oldmem = (T*)&(((cntr*)m)[1]);
}
template<class T>
inline void freemem(T * m) { getmem(m, 0); }
#endif // GETMEM_H ///:~ //: C16:Getmem.cpp
// Test memory function template
#include <iostream>
#include "Getmem.h"
using namespace std;
int main() {
int* p = 0;
getmem(p, 10);
for(int i = 0; i < 10; i++) {
cout << p[i] << ' ';
p[i] = i;
}
cout << '\n';
getmem(p, 20);
for(int j = 0; j < 20; j++) {
cout << p[j] << ' ';
p[j] = j;
}
cout << '\n';
getmem(p, 25);
for(int k = 0; k < 25; k++)
cout << p[k] << ' ';
freemem(p);
cout << '\n';
float* f = 0;
getmem(f, 3);
for(int u = 0; u < 3; u++) {
cout << f[u] << ' ';
f[u] = u + 3.14159;
}
cout << '\n';
getmem(f, 6);
for(int v = 0; v < 6; v++)
cout << f[v] << ' ';
freemem(f);
} ///:~ //: C16:Applist.cpp
// Apply a function to a TStack
#include <iostream>
#include "TStack.h"
using namespace std;
// 0 arguments, any type of return value:
template<class T, class R>
void applist(TStack<T>& tl, R(T::*f)()) {
TStackIterator<T> it(tl);
while(it) {
(it.current()->*f)();
it++;
}
}
// 1 argument, any type of return value:
template<class T, class R, class A>
void applist(TStack<T>& tl, R(T::*f)(A), A a) {
TStackIterator<T> it(tl);
while(it) {
(it.current()->*f)(a);
it++;
}
}
// 2 arguments, any type of return value:
template<class T, class R, class A1, class A2>
void applist(TStack<T>& tl, R(T::*f)(A1, A2),
A1 a1, A2 a2) {
TStackIterator<T> it(tl);
while(it) {
(it.current()->*f)(a1, a2);
it++;
}
}
// Etc., to handle maximum probable arguments
class Gromit { // The techno-dog
int arf;
public:
Gromit(int arf = 1) : arf(arf + 1) {}
void speak(int) {
for(int i = 0; i < arf; i++)
cout << "arf! ";
cout << endl;
}
char eat(float) {
cout << "chomp!" << endl;
return 'z';
}
int sleep(char, double) {
cout << "zzz..." << endl;
return 0;
}
void sit(void) {}
};
int main() {
TStack<Gromit> dogs;
for(int i = 0; i < 5; i++)
dogs.push(new Gromit(i));
applist(dogs, &Gromit::speak, 1);
applist(dogs, &Gromit::eat, 2.0f);
applist(dogs, &Gromit::sleep, 'z', 3.0);
applist(dogs, &Gromit::sit);
} ///:~