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Abstract

In this paper we provide a stmple model for musical
sounds that accounts for timbre properties due to mi-
crofluctuations in the harmonics of the signal. When
considering a sound model that consists of an excita-
tion signal passing through a resonator filter, we find,
by means of higher order statistical analysis of the ex-
citation, a grouping of sounds according to common
mstrumental families of string, woodwind and brass
sounds. For resynthests purposes we model the exci-
tation by a family of stochastic, pulse train like func-
tions whose statistical properties resemble those found
m real signals. By introducing an idea of “effective
number of harmonics” that represents the number of
coupled, or statistically dependent harmonics among
the complete set of partials present in the signal, we
show that this number can be calculated directly form
the 3rd and 4th moments of the residual. Musically
speaking we suggest that microfluctuations administer
a sense of texture within timbre and these texture prop-
erties depend upon the concurrence/non concurrence
parameter of the random frequency deviations caused
by the jitter.

1 Introduction

The issue of timbre analysis of musical signals 1s ex-
tremely complicated due to the multiplicity of factors
that compete on the perception of timbre. Various
factors such as the formant structure, the waveform
of the signal together with its spectral contents, many
temporal features and others had been investigated in
detail both from the technical aspects and with respect

to their perceptual [ISSM95] and musical importance
[Slawson][Wessel].

Signal models of sound usually describe the behav-
ior of slowly time varying partials or model the gross
spectral envelopes of resonant chambers in musical in-
struments. Besides these macroscopic characteristics
there are microscopic deviations of frequency that con-
tribute to create the timbre of sound. These deviations
influence the perceived sound harmonicity, it’s coher-
ence and contribute to the sense of fusion/segregation
among partials [McAdams][Sandell].

In this work we show that higher order statis-
tics (HOS) analysis [Mendel][Nikias and Raghu-
veer][Dubnov et al., 1995b][Dubnov and Tishby 1994]
when applied to a residual signal [Dubnov and
Tishby96] are directly related to the number of cou-
pled harmonics and that this number could be analyt-
ically calculated by considering the average amount
of harmonicity apparent among triplets and larger
groups of partials in the signal. When frequencies of
the harmonics (of a perfectly periodic sound source)
are randomly disturbed by frequency modulation, the
harmonicity relations among the partials are hindered
and only those groups of partials which are subject to
the same random modulation (i.e having a concurrent
random modulation) retain harmonicity. We believe
that the “effective number” of harmonics is an acousti-
cally important factor ! and we use this “harmonicity

1In many sound synthesis programs the pitched input is cre-
ated by a “buzz” generator which is a band limited version of
a pulse train. In the following we shell create a stochastic ver-
sion of the pulse train by applying a random frequency jitter to
the harmonics and thus causing statistical independence among
them.



counting” property of HOS for pulse train like signals
to investigate the influence of jitter on timbre proper-
ties of sound.

2 Finding the excitation

Given a signal, we suggest that the next step be-
yond analyzing the spectral amplitude distribution
characterized by the filter, one should look at the prop-
erties of the inversely filtered result, or the so called
residual.
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Figure 1: The original Cello signal and its spectrum
(Top). The residual signal and its respective spectrum
(Bottom). Notice that all harmonics are present and
they have almost equal amplitudes, very much like the
spectrum of an ideal pulse train. The time domain
signal of the residual does not resemble pulse train at

all.

The effect of the spectral envelope, which contains
the information about the amplitudes of harmonics is
removed by inverse filtering of the signal by a filter
derived from its Ipc model. This action is taken in
order to consider only the effect of frequency devia-
tion caused by the jitter upon the excitation signal
(residual error) and statistically it amounts to low or-
der decorrelation of the signal. It is interesting to
note that investigation of the moments of decorre-
lated signals was widely used in the analysis of tex-
ture in images [Faugeras][Tsatsanis]. In the acous-
tic case we obtain a statistical interpretation of the
moments as probabilities for maintaining harmonicity
among groups of partials, that is for the case of pulse
train like signals with frequency modulating jitter ap-
plied to 1ts partials.

3  Some real sound examples

Before going further into modeling of the excitation
function we would like to demonstrate the bispectral
signatures of several musical signals and of their re-
spective residuals. In figure(2) we present the bispec-
tra of residual signals for three musical instruments:
Cello, Clarinet and Trumpet. Their original bispectra
(i.e. before the inverse filtering operation for spec-
trum normalization) are shown under each plots re-
spectively. The strong presence of the high harmonics
in the residual significantly effect the bispectral con-
tents. Notice that Cello residual still has only a few
peaks away from the origin.
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Figure 2: Bispectrum of a Cello residual signal (Top)
and the bispectrum of the original Cello sound (Bot-
tom). See text for more details.

How do we look at these signals 7 First, we must be
aware of the symmetries pertinent in the definition of
bispectrum. In the six fold symmetry it 1s sufficient to
consider a lower triangular part at the first quadrant
only. Similarly, in the trispectrum, we shell consider
only the lower tetrahedron in the positive octant of a
three dimensional space.

In the following we shall consider the bispectra
(trispectra) of residual signals (although it will not be
possible to represent them graphically.) The residuals
are not only properly normalized versions of the bis-
pectrum that compensate for the effect of resonance
spectral shape, but it also has the following important
properties:

e the area (volume) obtained by integrating over
the bispectral (trispectral) plane has a statistical



Clarinet residual bispectrum
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Figure 3: Bispectrum of a Clarinet residual signal
(Top) and the bispectrum of the original Clarinet
sound (Bottom). See text for more details.

interpretation as a count of harmonicity between
triplets (quadruples) of harmonics.

e the area (volume) equals to the moments of the
signal and thus it can be easily calculated by tak-
ing time averages of the signal to the 3rd and 4th
power.

As could be seen from the plots of the residual bis-
pectrum | the overall area under the three graphs is
significantly different 2.

Turning to real musical signals, we evaluate these
moments by empirically calculating the skewness and
kurtosis of various musical instrument sounds. These
moments are calculated for a group of 18 instru-
ments and they show a clear distinction between
string, woodwind and brass sounds. Representing
the sounds as coordinates in 'moments space’ lo-
cates the instrumental groups on ’orbits’ with vari-
ous distances around the origin, very much accord-
ing to the traditional, orchestration handbook practice

[Adler][Piston].

2Briefly we should mention that a common goal in a series of
our works was to define a function that would sensibly measure
the distance between musical signals [Gray] based on the bispec-
tral information [Dubnov et al. 1995a]. In the current work we
attempt to use the bispectral information for resynthesis also.
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Figure 4: Bispectrum of a Trumpet residual signal
(Top) and the bispectrum of the original Trumpet
sound (Bottom). See text for more details.

4  Stochastic pulse train model

In the ideal case, the residual is supposed to be a
low amplitude gaussian noise, with regularly spaced
peaks due to the pitch of the source signal, and is
totally characterized by its variance. We assume that
instead of the ideal pulse train, we have a sinusoidal
model approximation which consist of a sum of equal
amplitude cosines, with a random jitter applied to its
harmonics.

Q
z(t) = Z cos(2m fon -t + Jitter(t)) (1)
n=1
with fy being the fundamental frequency and ) the
number of harmonics.

The statistical properties of this model are analyzed
by calculating the third, fourth and possibly higher
order moments of the signal, and specifically we will
look at the skewness v3 = m3/o® of the signal which
is the ratio of the third order moment ms = F(x —
Ez)3 over the 3/2 power of the variance ¢? = ms and
kurtosis v4 = m4/04 which is the variance normalized
version of the fourth order moment ms = E(x — Ex)?
[Grigoriu].

5 Influence of frequency modulating
jitter on pulse train signal.

The influence of jitter upon higher order moments
is considered by its effect on harmonicity between har-
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Figure 5: Location of sounds in the 3rd and 4th nor-
malized moments plane. The value 3 1s subtracted
from the kurtosis so that the origin would correspond
to a perfect gaussian signal. Brass sounds are on the
perimeter. Strings are in the center.

monic triplets (quadruples) of the signal partials. Ba-
sically, the application of frequency modulating jit-
ter to harmonically related partials destroys the har-
monicity in case when the jitters are non concurrent
(independent) at each partial. Harmonicity is pre-
served on the contrary in the case when the same
jitter (concurrent modulation) is applied to the par-
tials. The vanishing of signal moments indicated that
the signal obeys Gaussian statistics. The relations
between Gaussianity and harmonicity is discussed at
length at the appendix.

Designating the deviation in frequencies by A, =
wonré, where &, = Mod,(t) is an uniformly dis-
tributed random variable between [—1, 1], with r being
the modulation depth and n the partial number, we
rewrite our stochastic pulse train model

Q
2(t) =Y cos((won + Aiy) - 1) (2)

The extent to which the random jitter causes degra-
dation in harmonicity of the signal is evaluated by
counting the number of triplets (quadruples) of par-
tials that retain harmonic relations after the applica-
tion of jitter.

This count is accomplished by measuring the third
(fourth) order moment of the signal

T
/ 3 (t)dt
0

Quo /Qwo
-Q JQ

ms =

TN

(@r)?

(3)

Xi(w) X (W)X} (w + w)dwdw

n=1m=1

(

S(w' = (mwo + Apy ) -
§(w+w') = ((n+m)wy + A(n+m)yi))dwdw/

This double integral amounts to the number of har-
monic triplets since a contribution of order one is ob-
tained for each harmonically related triplet. A similar
evaluation is applicable for the fourth order moment
and its respective trispectrum representation in the
frequency domain.

5.1 Finding the Effective Number of har-
monics

Let us assume that the first Q.;; partials of the
signal (n < Q.ps) are subject to concurrent modu-
lation jitter, while the partials above the threshold
(n > Qcs7) are modulated independently. In such a
case only partials below Q.f; contribute to the HOS
3

The theoretical calculation of the skewness and kur-
tosis is based upon a counting argument for the to-
tal number of peaks in the bispectral and trispectral
planes that occur due to partial numbers below Q.;;.
For the bispectral case a lattice of delta functions ex-
ists for partials (n,m) over the bifrequency triangle

0<n<Qerr, 0<mMm<Qesp, n+m< Qe (4)

in the positive quadrant of the bispectral plane. The
area (number of peaks) of this region equals %ngf.

A similar, although more tricky argument for the
trispectrum reveals that the area of the tetrahedron
limited by

0<n<Qepp, 0<m< Qeyy,
0<Z<Qeffa n—|—m+l<Qeff

()

equals to %Qg’ff. In the trispectral case one must take
into account also the number of possible choices of
triplets, which gives a factor 3 to the above. An addi-
tive factor of 3Q)? appear also due to the fact that for
Qecrr = 0 there are still peaks due to cancellations of

frequencies on the diagonal planes *.

3This assumption is based on empirical observations of bis-
pectrum plots of real musical signals (such as those demon-
strated in figure (2)) that demonstrate stronger bispectrum at
low bifrequencies and a decay in bispectral amplitude for higher
partials

“In the trispectrum expression we have the integrand ex-
pression H (w1 )H (w2)H (wa)H* (w1 + w2 + ws) which gives a §
function for the pair (wi,w2), w1 = —wsz, and there are three
choices for such a pair



Eventually, the normalization factor due to the
powerspectrum equals Q32 and Q? for the skewness
and kurtosis expressions respectively. The resulting
equations that relate the skewness v3 and kurtosis 74
to the effective number of coupled partials Q.5 are

12
_Qe
T3 = 2Q3/f2f (6)
13
_Qe
Ya = 2Q2ff—|-3

5.2 Simulation results

This theoretical result was tested on synthetic sig-
nals that were created by combination of equal am-
plitude cosine function oscillators with random jitter
applied to the frequencies of the oscillators. The sig-
nal generators were implemented in csound with the
parameters set in accordance to the jitter synthesis
method reported by McAdams [McAdams]. The jit-
ter depth was taken to be 0.01 of the partial frequency
and the jitter spectrum was approximately shaped to
have a -10 db cutoff at 30 Hz and a second cutoff to
zero at 150 Hz. The signal were generated at a pitch
of middle C and working with 16KHz sampling rate
this gives us the total of 30 harmonics (Q=30).
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Figure 6: Bispectra of two synthetic pulse train sig-
nals with frequency modulating jitter. Top: Qeff = 3.
Bottom: Qeft = 25. Notice the resemblance of the two
figures to the bispectral plots of the cello and trumpet
in figure (2). The Qeff values were chosen especially
to fit these instruments according to the skewness and
kurtosis values for the instrument in figure (3).

The following table compares the theoretical v; and

empirical §; values for skewness and kurtosis for dif-

ferent Q.ys’s.

Skewness and Kurtosis

Qers T3 | 7a—3 Y3 | va—3
3 0.055 | -0.128 0.027 | 0.015
6 0.150 | 0.113 0.109 | 0.120
10 0.413 | 0.345 0.304 | 0.555
15 0.731 | 1.407 0.685 | 1.875
20 1.037 | 2.755 1.217 | 4.444
25 1.579 | 5.790 1.902 | 8.680
30 2.859 15.5 2.738 15.0

6  Musical Significance

This research, as we saw, focused on a specific phe-
nomenon that contributes to timbre. The timbre, al-
though being an extremely complex from the acoustic
viewpoint, is perceived by the listener as an insepa-
rable event. Nevertheless one can still notice, even
inside the timbre, some microscopic happenings and
their amplification will lead to border area between
timbre (with a defined pitch) to noise and border be-
tween timbre and texture. General verbal characteri-
zations of sounds such as “focused”, “synthetic” ver-
sus “diffused”, “chorused” and etc. are caused by
the very same random fluctuations at the microscopic
level. A more precise formulation of the phenomenon
locates it on the axis between concurrence and non-
concurrence with respect to the random deviations in
frequencies of the harmonics. The principles behind
this phenomenon : border areas; concurrence and non-
concurrence; fusion/segregation; determinism and un-
certainty - are at the basis of musical activity in all
of its stages and in all levels of the musical material,
even in characteristics of musical style. This research
shows thus that the same principles we utilize for mu-
sical analysis in the “macro” level can be found in the
“micro”. Putting this into a broad perspective one
could state that the goal of this work are reciprocal:
the above mentioned basic principles help us to under-
stand the hidden microscopic phenomena and on the
other hand, the research into these phenomena shed a
new light on the principles. Moreover, these reciprocal
relation are important also for musical creation in our
days, where we have created an emphasis on the mo-
mentary events related to timbre and texture, instead
of the interval parameter and its derived schemes that
ruled the musical organization in tonal music.



6.1 Concurrence /Non-Concurrence

This term refers to the relation among units and
parameters. For instance a perfect concurrence be-
tween parameters of pitch and intensity occurs when
both change at the same time and with similar trends
(such as ascent in pitch concurrent with increase in
loudness). Non-concurrence has a plentitude of reve-
lations - it increases the complexity, the uncertainty
and even creates a tension and as such becomes an es-
sential parameter in the rules of musical organization
and characterizing of style (some of the counterpoint
rules of Palestrina refer to the prevention [Cohen71] of
non-concurrence and this accordingly to the stylistic
ideal of the era. On the other hand, in the music of
Bach we find revelation of non-concurrencies of many
types).

Here we have treated concurrence and non-
concurrence among partials with respect to their de-
fections in frequency.

6.2 Texture and the border areas be-
tween the interval, texture and tim-
bre.

In contrast to timbre and especially in contrast to
the interval the research on texture is scarce, although
many contemporary composers refer to it [Cohen and
Dubnov]. In tonal music texture appears mainly as
an aid that may support or contradict the interval or-
ganization while in our days it has an existence of its
own. Actually, most of the notation systems these
days refer to texture phenomena. Without going into
details of texture classification we shell note that the
main difference between texture and timbre is that the
texture 1s separable and usually relates to time scales
that are larger then those of timbre which can be iden-
tified for durations of less then 20 msec. during which
it remains inseparable to the listener. In comparison,
texture must contain some sort of separability in the
various dimensions - time, frequency or intensity. In
extreme cases where we are no longer able to separate
the simultaneous occurrences into its components, the
texture becomes timbre. Also for the opposite case,
when we sense the changes that occur in timbre, tim-
bre becomes closer to texture. There exists then a
grey area in the border between texture and timbre
and there is a similar border area between pitch (in-
terval) and texture. This applies to wide range of
other musical phenomena such as nuances of intona-
tion [Cohen69], “articulatory ornamentations” in non
western music and random modulations in electronic
music [Tenney and Polansky].

7  Conclusion

In this paper we presented
an analysis-classification-synthesis scheme for instru-
mental musical sounds. Specifically we focused on the
microfluctuations that occur during a sustained por-
tion of single tones and we have shown that an impor-
tant parameter in the characterization of microfluc-
tuations is the “effective number” (Q.z¢) of coupled
harmonics that exists in the sound. For modeling,
simulation and resynthesis purpose the coupling was
realized by application of concurrent frequency modu-
lating jitter to first ().;; partials and non concurrent
Jitter to the others. We present an analytic formula
that relates the higher order moments (actually the
skewness and kurtosis) of the sound to the number of
coupled harmonics. The classification results locate
the sounds in instrumental families of string, wood-
wind and brass sounds. This is graphically seen using
a cumulant space representation where the groups ap-
pear on different ’orbits’. The closer the ’orbit’ is to
the center, the more gaussian is the signal, and the
greater is the number of non concurrently modulated
harmonics that do not contribute to the moments and
draw such a signal towards gaussianity.

Although we have used a stochastic version of pulse
train, we shell note also that the above considerations
are not limited to symmetrical, pulse train like sig-
nals. Actually, any combinations of sine and cosine
functions with equal amplitudes are appropriate for
this kind of analysis. The reason that we were look-
ing at kurtosis was that for symmetrical signals, the
third moment vanishes, and in real condition the har-
monicity counts are better accomplished by looking at
groups of four partials, or equivalently, at the fourth
order moment. We note also that we are dealing with
stationary sounds only and neglect any non station-
ary or transitory phenomena which could not be con-
sidered as microscopic stationary fluctuations at the
sustained portion of a sound.

Appendix: Gaussianity of Signal Statis-
tics

Before proceeding to deal with the influence of jit-
ter on a perfectly periodic sound we would like to con-
sider briefly the statistical properties of non harmonics
pitched signals and show that their statistics approach
Gaussianity for large number of partials.

Given a signal z(t) = Z]Q:l ¢l the second order
time averaged correlation 1s

<a(t)-a(t+ 1) >=< (D0, e (T, et) >(7)
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which equals Q for 7 = 0 and is zero for harmoni-
cally related w;’s (w; = @ -wp), but generally is non
zero for an arbitrary set of w;’s. Thus, second order
statistics are non zero for both harmonic and non har-
monic sounds. The third order correlations though
are extremely sensitive to the existence of harmonic
relations since

<zt +m)e" 4+ m) >= (8)

Q ®
(/ ei(wj+wk—wl)tdt)
jki=1 7 —®©

—lWET1 ,— Wi T2

[ [

and the bracketed integral expression vanishes for non-
harmonic signals since w; 4+ wy = w; never occurs.
The vanishing of high order correlations means
that the signal statistics are Gaussian, which is easily
demonstrated for 7 = 0 by looking at the histograms
of harmonically and non-harmonically related signals.

The resulting summation signal
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Figure 7: Harmonic signal (left) and its histogram

(right).
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Figure 8: Inharmonic signal (left) and its respective
histogram (right).

In mixed harmonic/non-harmonic set of frequen-
cles wy, the third order moment equals to the effective
number of harmonic triplets found in the sounds’ spec-
trum.
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