
In
uence of Frequency Modulating Jitter on Higher OrderMoments of Sound Residual with Applications to Synthesis andClassi�cation.Shlomo Dubnov and Naftali TishbyInstitute for Computer Science andCenter for Neural ComputationHebrew University, Jerusalem 91904, IsraelandDalia CohenDepartment of MusicologyHebrew University, Jerusalem 91904, IsraelAbstractIn this paper we provide a simple model for musicalsounds that accounts for timbre properties due to mi-cro
uctuations in the harmonics of the signal. Whenconsidering a sound model that consists of an excita-tion signal passing through a resonator �lter, we �nd,by means of higher order statistical analysis of the ex-citation, a grouping of sounds according to commoninstrumental families of string, woodwind and brasssounds. For resynthesis purposes we model the exci-tation by a family of stochastic, pulse train like func-tions whose statistical properties resemble those foundin real signals. By introducing an idea of \e�ectivenumber of harmonics" that represents the number ofcoupled, or statistically dependent harmonics amongthe complete set of partials present in the signal, weshow that this number can be calculated directly formthe 3rd and 4th moments of the residual. Musicallyspeaking we suggest that micro
uctuations administera sense of texture within timbre and these texture prop-erties depend upon the concurrence/non concurrenceparameter of the random frequency deviations causedby the jitter.1 IntroductionThe issue of timbre analysis of musical signals is ex-tremely complicated due to the multiplicity of factorsthat compete on the perception of timbre. Variousfactors such as the formant structure, the waveformof the signal together with its spectral contents, manytemporal features and others had been investigated indetail both from the technical aspects and with respect

to their perceptual [ISSM95] and musical importance[Slawson][Wessel].Signal models of sound usually describe the behav-ior of slowly time varying partials or model the grossspectral envelopes of resonant chambers in musical in-struments. Besides these macroscopic characteristicsthere are microscopic deviations of frequency that con-tribute to create the timbre of sound. These deviationsin
uence the perceived sound harmonicity, it's coher-ence and contribute to the sense of fusion/segregationamong partials [McAdams][Sandell].In this work we show that higher order statis-tics (HOS) analysis [Mendel][Nikias and Raghu-veer][Dubnov et al., 1995b][Dubnov and Tishby 1994]when applied to a residual signal [Dubnov andTishby96] are directly related to the number of cou-pled harmonics and that this number could be analyt-ically calculated by considering the average amountof harmonicity apparent among triplets and largergroups of partials in the signal. When frequencies ofthe harmonics (of a perfectly periodic sound source)are randomly disturbed by frequency modulation, theharmonicity relations among the partials are hinderedand only those groups of partials which are subject tothe same random modulation (i.e having a concurrentrandom modulation) retain harmonicity. We believethat the \e�ective number" of harmonics is an acousti-cally important factor 1 and we use this \harmonicity1In many sound synthesis programs the pitched input is cre-ated by a \buzz" generator which is a band limited version ofa pulse train. In the following we shell create a stochastic ver-sion of the pulse train by applying a random frequency jitter tothe harmonics and thus causing statistical independence amongthem.



counting" property of HOS for pulse train like signalsto investigate the in
uence of jitter on timbre proper-ties of sound.2 Finding the excitationGiven a signal, we suggest that the next step be-yond analyzing the spectral amplitude distributioncharacterized by the �lter, one should look at the prop-erties of the inversely �ltered result, or the so calledresidual.
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Figure 1: The original Cello signal and its spectrum(Top). The residual signal and its respective spectrum(Bottom). Notice that all harmonics are present andthey have almost equal amplitudes, very much like thespectrum of an ideal pulse train. The time domainsignal of the residual does not resemble pulse train atall.The e�ect of the spectral envelope, which containsthe information about the amplitudes of harmonics isremoved by inverse �ltering of the signal by a �lterderived from its lpc model. This action is taken inorder to consider only the e�ect of frequency devia-tion caused by the jitter upon the excitation signal(residual error) and statistically it amounts to low or-der decorrelation of the signal. It is interesting tonote that investigation of the moments of decorre-lated signals was widely used in the analysis of tex-ture in images [Faugeras][Tsatsanis]. In the acous-tic case we obtain a statistical interpretation of themoments as probabilities for maintaining harmonicityamong groups of partials, that is for the case of pulsetrain like signals with frequency modulating jitter ap-plied to its partials.

3 Some real sound examplesBefore going further into modeling of the excitationfunction we would like to demonstrate the bispectralsignatures of several musical signals and of their re-spective residuals. In �gure(2) we present the bispec-tra of residual signals for three musical instruments:Cello, Clarinet and Trumpet. Their original bispectra(i.e. before the inverse �ltering operation for spec-trum normalization) are shown under each plots re-spectively. The strong presence of the high harmonicsin the residual signi�cantly e�ect the bispectral con-tents. Notice that Cello residual still has only a fewpeaks away from the origin.
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Original Cello bispectrumFigure 2: Bispectrum of a Cello residual signal (Top)and the bispectrum of the original Cello sound (Bot-tom). See text for more details.How do we look at these signals ? First, we must beaware of the symmetries pertinent in the de�nition ofbispectrum. In the six fold symmetry it is su�cient toconsider a lower triangular part at the �rst quadrantonly. Similarly, in the trispectrum, we shell consideronly the lower tetrahedron in the positive octant of athree dimensional space.In the following we shall consider the bispectra(trispectra) of residual signals (although it will not bepossible to represent them graphically.) The residualsare not only properly normalized versions of the bis-pectrum that compensate for the e�ect of resonancespectral shape, but it also has the following importantproperties:� the area (volume) obtained by integrating overthe bispectral (trispectral) plane has a statistical



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

0.2

0.4

Clarinet residual bispectrum

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

0.2

0.4

Original Clarinet bispectrumFigure 3: Bispectrum of a Clarinet residual signal(Top) and the bispectrum of the original Clarinetsound (Bottom). See text for more details.interpretation as a count of harmonicity betweentriplets (quadruples) of harmonics.� the area (volume) equals to the moments of thesignal and thus it can be easily calculated by tak-ing time averages of the signal to the 3rd and 4thpower.As could be seen from the plots of the residual bis-pectrum , the overall area under the three graphs issigni�cantly di�erent 2.Turning to real musical signals, we evaluate thesemoments by empirically calculating the skewness andkurtosis of various musical instrument sounds. Thesemoments are calculated for a group of 18 instru-ments and they show a clear distinction betweenstring, woodwind and brass sounds. Representingthe sounds as coordinates in 'moments space' lo-cates the instrumental groups on 'orbits' with vari-ous distances around the origin, very much accord-ing to the traditional, orchestration handbook practice[Adler][Piston].2Brie
y we shouldmention that a common goal in a series ofour works was to de�ne a function that would sensibly measurethe distance betweenmusical signals [Gray] based on the bispec-tral information [Dubnov et al. 1995a]. In the current work weattempt to use the bispectral information for resynthesis also.
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Original Trumpet bispectrumFigure 4: Bispectrum of a Trumpet residual signal(Top) and the bispectrum of the original Trumpetsound (Bottom). See text for more details.4 Stochastic pulse train modelIn the ideal case, the residual is supposed to be alow amplitude gaussian noise, with regularly spacedpeaks due to the pitch of the source signal, and istotally characterized by its variance. We assume thatinstead of the ideal pulse train, we have a sinusoidalmodel approximation which consist of a sum of equalamplitude cosines, with a random jitter applied to itsharmonics.x(t) = QXn=1 cos(2�f0n � t+ Jitter(t)) (1)with f0 being the fundamental frequency and Q thenumber of harmonics.The statistical properties of this model are analyzedby calculating the third, fourth and possibly higherorder moments of the signal, and speci�cally we willlook at the skewness 
3 = m3=�3 of the signal whichis the ratio of the third order moment m3 = E(x �Ex)3 over the 3/2 power of the variance �2 = m2 andkurtosis 
4 = m4=�4 which is the variance normalizedversion of the fourth order momentm4 = E(x�Ex)4[Grigoriu].5 In
uence of frequency modulatingjitter on pulse train signal.The in
uence of jitter upon higher order momentsis considered by its e�ect on harmonicity between har-
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Zoom InFigure 5: Location of sounds in the 3rd and 4th nor-malized moments plane. The value 3 is subtractedfrom the kurtosis so that the origin would correspondto a perfect gaussian signal. Brass sounds are on theperimeter. Strings are in the center.monic triplets (quadruples) of the signal partials. Ba-sically, the application of frequency modulating jit-ter to harmonically related partials destroys the har-monicity in case when the jitters are non concurrent(independent) at each partial. Harmonicity is pre-served on the contrary in the case when the samejitter (concurrent modulation) is applied to the par-tials. The vanishing of signal moments indicated thatthe signal obeys Gaussian statistics. The relationsbetween Gaussianity and harmonicity is discussed atlength at the appendix.Designating the deviation in frequencies by �n =!0nr�n where �n = Modn(t) is an uniformly dis-tributed random variable between [�1; 1], with r beingthe modulation depth and n the partial number, werewrite our stochastic pulse train modelx(t) = QXn=1 cos((!0n+�i;n) � t) (2). The extent to which the random jitter causes degra-dation in harmonicity of the signal is evaluated bycounting the number of triplets (quadruples) of par-tials that retain harmonic relations after the applica-tion of jitter.This count is accomplished by measuring the third(fourth) order moment of the signalm3 = 1T Z T0 x3(t)dt (3)= 1(2�)2 Z Q!0�Q Z Q!0Q Xi(!)Xi(!0)X�i (! + !0)d!d!0

� Z Z QXn=1 QXm=1 �(! � (n!0 +�n;i)) ��(!0 � (m!0 +�m;i)) ��((! + !0) � ((n +m)!0 +�(n+m);i))d!d!0This double integral amounts to the number of har-monic triplets since a contribution of order one is ob-tained for each harmonically related triplet. A similarevaluation is applicable for the fourth order momentand its respective trispectrum representation in thefrequency domain.5.1 Finding the E�ective Number of har-monicsLet us assume that the �rst Qeff partials of thesignal (n < Qeff ) are subject to concurrent modu-lation jitter, while the partials above the threshold(n > Qeff ) are modulated independently. In such acase only partials below Qeff contribute to the HOS3. The theoretical calculation of the skewness and kur-tosis is based upon a counting argument for the to-tal number of peaks in the bispectral and trispectralplanes that occur due to partial numbers below Qeff .For the bispectral case a lattice of delta functions ex-ists for partials (n;m) over the bifrequency triangle0 < n < Qeff ; 0 < m < Qeff ; n+m < Qeff (4)in the positive quadrant of the bispectral plane. Thearea (number of peaks) of this region equals 12Q2eff .A similar, although more tricky argument for thetrispectrum reveals that the area of the tetrahedronlimited by 0 < n < Qeff ; 0 < m < Qeff ; (5)0 < l < Qeff ; n+m+ l < Qeffequals to 16Q3eff . In the trispectral case one must takeinto account also the number of possible choices oftriplets, which gives a factor 3 to the above. An addi-tive factor of 3Q2 appear also due to the fact that forQeff = 0 there are still peaks due to cancellations offrequencies on the diagonal planes 4.3This assumption is based on empirical observations of bis-pectrum plots of real musical signals (such as those demon-strated in �gure (2)) that demonstrate stronger bispectrum atlow bifrequencies and a decay in bispectral amplitude for higherpartials4In the trispectrum expression we have the integrand ex-pression H(!1)H(!2)H(!3)H�(!1 + !2 + !3) which gives a �function for the pair (!1; !2); !1 = �!2, and there are threechoices for such a pair



Eventually, the normalization factor due to thepowerspectrum equals Q3=2 and Q2 for the skewnessand kurtosis expressions respectively. The resultingequations that relate the skewness 
3 and kurtosis 
4to the e�ective number of coupled partials Qeff are
3 = 12Q2effQ3=2 (6)
4 = 12Q3effQ2 + 35.2 Simulation resultsThis theoretical result was tested on synthetic sig-nals that were created by combination of equal am-plitude cosine function oscillators with random jitterapplied to the frequencies of the oscillators. The sig-nal generators were implemented in csound with theparameters set in accordance to the jitter synthesismethod reported by McAdams [McAdams]. The jit-ter depth was taken to be 0.01 of the partial frequencyand the jitter spectrum was approximately shaped tohave a -10 db cuto� at 30 Hz and a second cuto� tozero at 150 Hz. The signal were generated at a pitchof middle C and working with 16KHz sampling ratethis gives us the total of 30 harmonics (Q=30).
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Figure 6: Bispectra of two synthetic pulse train sig-nals with frequency modulating jitter. Top: Qe� = 3.Bottom: Qe� = 25. Notice the resemblance of the two�gures to the bispectral plots of the cello and trumpetin �gure (2). The Qe� values were chosen especiallyto �t these instruments according to the skewness andkurtosis values for the instrument in �gure (3).The following table compares the theoretical 
i and

empirical 
̂i values for skewness and kurtosis for dif-ferent Qeff 's.Skewness and KurtosisQeff 
̂3 
̂4 � 3 
3 
4 � 33 0.055 -0.128 0.027 0.0156 0.150 0.113 0.109 0.12010 0.413 0.345 0.304 0.55515 0.731 1.407 0.685 1.87520 1.037 2.755 1.217 4.44425 1.579 5.790 1.902 8.68030 2.859 15.5 2.738 15.06 Musical Signi�canceThis research, as we saw, focused on a speci�c phe-nomenon that contributes to timbre. The timbre, al-though being an extremely complex from the acousticviewpoint, is perceived by the listener as an insepa-rable event. Nevertheless one can still notice, eveninside the timbre, some microscopic happenings andtheir ampli�cation will lead to border area betweentimbre (with a de�ned pitch) to noise and border be-tween timbre and texture. General verbal characteri-zations of sounds such as \focused", \synthetic" ver-sus \di�used", \chorused" and etc. are caused bythe very same random 
uctuations at the microscopiclevel. A more precise formulation of the phenomenonlocates it on the axis between concurrence and non-concurrence with respect to the random deviations infrequencies of the harmonics. The principles behindthis phenomenon : border areas; concurrence and non-concurrence; fusion/segregation; determinism and un-certainty - are at the basis of musical activity in allof its stages and in all levels of the musical material,even in characteristics of musical style. This researchshows thus that the same principles we utilize for mu-sical analysis in the \macro" level can be found in the\micro". Putting this into a broad perspective onecould state that the goal of this work are reciprocal:the above mentioned basic principles help us to under-stand the hidden microscopic phenomena and on theother hand, the research into these phenomena shed anew light on the principles. Moreover, these reciprocalrelation are important also for musical creation in ourdays, where we have created an emphasis on the mo-mentary events related to timbre and texture, insteadof the interval parameter and its derived schemes thatruled the musical organization in tonal music.



6.1 Concurrence /Non-ConcurrenceThis term refers to the relation among units andparameters. For instance a perfect concurrence be-tween parameters of pitch and intensity occurs whenboth change at the same time and with similar trends(such as ascent in pitch concurrent with increase inloudness). Non-concurrence has a plentitude of reve-lations - it increases the complexity, the uncertaintyand even creates a tension and as such becomes an es-sential parameter in the rules of musical organizationand characterizing of style (some of the counterpointrules of Palestrina refer to the prevention [Cohen71] ofnon-concurrence and this accordingly to the stylisticideal of the era. On the other hand, in the music ofBach we �nd revelation of non-concurrencies of manytypes).Here we have treated concurrence and non-concurrence among partials with respect to their de-fections in frequency.6.2 Texture and the border areas be-tween the interval, texture and tim-bre.In contrast to timbre and especially in contrast tothe interval the research on texture is scarce, althoughmany contemporary composers refer to it [Cohen andDubnov]. In tonal music texture appears mainly asan aid that may support or contradict the interval or-ganization while in our days it has an existence of itsown. Actually, most of the notation systems thesedays refer to texture phenomena. Without going intodetails of texture classi�cation we shell note that themain di�erence between texture and timbre is that thetexture is separable and usually relates to time scalesthat are larger then those of timbre which can be iden-ti�ed for durations of less then 20 msec. during whichit remains inseparable to the listener. In comparison,texture must contain some sort of separability in thevarious dimensions - time, frequency or intensity. Inextreme cases where we are no longer able to separatethe simultaneous occurrences into its components, thetexture becomes timbre. Also for the opposite case,when we sense the changes that occur in timbre, tim-bre becomes closer to texture. There exists then agrey area in the border between texture and timbreand there is a similar border area between pitch (in-terval) and texture. This applies to wide range ofother musical phenomena such as nuances of intona-tion [Cohen69], \articulatory ornamentations" in nonwestern music and random modulations in electronicmusic [Tenney and Polansky].

7 ConclusionIn this paper we presentedan analysis-classi�cation-synthesis scheme for instru-mental musical sounds. Speci�cally we focused on themicro
uctuations that occur during a sustained por-tion of single tones and we have shown that an impor-tant parameter in the characterization of micro
uc-tuations is the \e�ective number" (Qeff ) of coupledharmonics that exists in the sound. For modeling,simulation and resynthesis purpose the coupling wasrealized by application of concurrent frequency modu-lating jitter to �rst Qeff partials and non concurrentjitter to the others. We present an analytic formulathat relates the higher order moments (actually theskewness and kurtosis) of the sound to the number ofcoupled harmonics. The classi�cation results locatethe sounds in instrumental families of string, wood-wind and brass sounds. This is graphically seen usinga cumulant space representation where the groups ap-pear on di�erent 'orbits'. The closer the 'orbit' is tothe center, the more gaussian is the signal, and thegreater is the number of non concurrently modulatedharmonics that do not contribute to the moments anddraw such a signal towards gaussianity.Although we have used a stochastic version of pulsetrain, we shell note also that the above considerationsare not limited to symmetrical, pulse train like sig-nals. Actually, any combinations of sine and cosinefunctions with equal amplitudes are appropriate forthis kind of analysis. The reason that we were look-ing at kurtosis was that for symmetrical signals, thethird moment vanishes, and in real condition the har-monicity counts are better accomplished by looking atgroups of four partials, or equivalently, at the fourthorder moment. We note also that we are dealing withstationary sounds only and neglect any non station-ary or transitory phenomena which could not be con-sidered as microscopic stationary 
uctuations at thesustained portion of a sound.Appendix: Gaussianity of Signal Statis-ticsBefore proceeding to deal with the in
uence of jit-ter on a perfectly periodic sound we would like to con-sider brie
y the statistical properties of non harmonicspitched signals and show that their statistics approachGaussianity for large number of partials.Given a signal x(t) = PQj=1 ei!j t, the second ordertime averaged correlation is< x(t) � x�(t+ � ) >=< (PQj=1 ei!j t)(PQk=1 ei!kt) >(7)



= lim�!1 12�PQj;k=1(R ��� ei(!j�!k)tdt)e�i!j�=PQj=1 e�i!j�which equals Q for � = 0 and is zero for harmoni-cally related !i's (!i = i � !0), but generally is nonzero for an arbitrary set of !i's. Thus, second orderstatistics are non zero for both harmonic and non har-monic sounds. The third order correlations thoughare extremely sensitive to the existence of harmonicrelations since< x(t)x(t+ �1)x�(t + �2) >= (8)lim�!1 12� QXj;k;l=1(Z ��� ei(!j+!k�!l)tdt)� e�i!k�1e�i!l�2and the bracketed integral expression vanishes for non-harmonic signals since !j + !k = !l never occurs.The vanishing of high order correlations meansthat the signal statistics are Gaussian, which is easilydemonstrated for � = 0 by looking at the histogramsof harmonically and non-harmonically related signals.
The sinusoids

The resulting summation signal

Q=1

Q=2

Q=3

Q=4

Q=5

Q=6

Q=7

Q=8Figure 7: Harmonic signal (left) and its histogram(right).
The sinusoids

The resulting summation signal

Q=1

Q=2

Q=3

Q=4

Q=5

Q=6

Q=7

Q=8Figure 8: Inharmonic signal (left) and its respectivehistogram (right).In mixed harmonic/non-harmonic set of frequen-cies !i, the third order moment equals to the e�ectivenumber of harmonic triplets found in the sounds' spec-trum.

Bibliography[Adler] S.Adler, The Study of Orchestration, Nortonand Co., 1989.[Cohen69] D. Cohen, Patterns and Frameworks of In-tonation, Journal of Music Theory, 1969.[Cohen71], D.Cohen, Palestrina Counterpoint - a mu-sical expression of unexited speech, Journal of MusicTheory, Vol.15, 8-111, 1971.[Cohen and Dubnov] D.Cohen, S.Dubnov, Di�erenceand Similarity in Texture: Characterization of Typesof Texture as One Manifestation of the Broad De�-nition of Timbre, Third International Symposium onSystematic Musicology, Wien, 1995.[Dubnov and Tishby 1996] S.Dubnov, N.Tishby Test-ing for Non linearity and Gaussianity in sustained por-tion of musical signals, to be published in the Proceed-ings of the Journees d'Informatique Musicale, Caen,1996.[Dubnov et al., 1995a] S.Dubnov, N.Tishby, D.Cohen,Clustering of Musical Sounds using Polyspectral Dis-tance Measures, Proceeding of the International Com-puter Music Conference, Ban�, 1995.[Dubnov et al., 1995b] S.Dubnov, N,Tishby, D.Cohen,Hearing beyond the spectrum, Journal of New MusicResearch, Vol. 24, No. 4, 1995.[Dubnov and Tishby 1994] S.Dubnov, N.Tishby, Spec-tral Estimation using Higher Order Statistics, Pro-ceedings of the 12th International Conference on Pat-tern Recognition, Jerusalem, Israel, 1994.[Faugeras] O.D.Faugeras, Decorrelation Mathods ofFeature Extraction, IEEE Transactions on PatternAnalysis and Machine Intelligence, Vol. 2, No.4, July1980.[Gray] A.H.Gray, J.D.Markel, Distance Measures forSpeech Processing, IEEE Transactions on Acoustics,Speech, and Signal Processing, vol. 24, No.5, October1976[Grigoriu] M. Grigoriu, Applied Non-Gaussian Pro-cesses, Prentice-Hall, 1995.[ISSM95], Special session on Sound (timbre) in Eu-



ropean and non-European Music, Third InternationalSymposium on Systematic Musicology, Wien, 1995.[McAdams] S. McAdams, Spectral Fusion, Spectralparsing and the Formation of Auditory Images, Ph.D.dissertation, Stanford University, CCRMA Report no.STAN-M-22, Stanford, CA., 1984.[Mendel] J.M. Mendel, Tutorial on Higher-OrderStatistics (Spectra) in Signal Processing and SystemTheory, Proceedings of the IEEE, Vol. 79, No. 3,July 1991[Nikias and Raghuveer], C.L. Nikias, M.R. Raghuveer,Bispectrum Estimation: A Digital Signal ProcessingFramework, Proceedings of the IEEE, Vol. 75, No. 7,July 1987[Piston] W.Piston, Orchestration, Gollancz Ltd., 1989.[Sandell] G.Sandell, Concurrent Timbres in Orches-tration: A Perceptual Study of Factors Determining\Blend", Ph.D. thesis, Northwesten University, 1991.[Slawson] A.W. Slawson, Sound Color, Berkely, CA,University of California Press, 1985.[Tenney and Polansky] J.Tenney, L.Polansky, Tem-poral Gestalt Perception in Music, Journal of MusicTheory 24, 205-41, 1980.[Tsatsanis] M.K.Tsatsanis, Object and Texture Clas-si�cation Using Higher Order Statistics, IEEE Trans-actions on Pattern Analysis and Machine Intelligence,Vol. 14, No.7, July 1992.[Wessel] D.Wessel, Timbre as a Musical Control Struc-ture, Computer Music Journal 3, No.2, 1979.


