
Margin Analysis of the LVQ Algorithm

Koby Crammer
kobics@cs.huji.ac.il

Ran Gilad-Bachrach
ranb@cs.huji.ac.il

Amir Navot
anavot@cs.huji.ac.il

Naftali Tishby
tishby@cs.huji.ac.il

School of Computer Science and Engineering and
Interdisciplinary Center for Neural Computation

The Hebrew University, Jerusalem, Israel

Abstract

One of the earliest and most powerful machine learning methods is the
Learning Vector Quantization (LVQ) algorithm, introduced by Kohonen
about 20 years ago. Still, despite its popularity, the theoretical justifi-
cation of this model is quite limited. In this paper we fill the gap and
provide margin based analysis for this model. We present a rigorous
bound on the generalization error which is independent of the dimension
of the data. Furthermore we show that LVQ is a family of maximal mar-
gin algorithms while the different variants emerge from different choices
of loss functions. These novel insights are a starting point for developing
a variety of new learning algorithms that are based on learning multiple
data prototypes.

1 Introduction

Learning Vector Quantization (LVQ) is a well known algorithm in pattern recognition and
supervised learning introduced by Kohonen [1]. LVQ is easy to implement, runs efficiently
and in many cases provides state of the art performance. The algorithm was originally
introduced as a labeled version of vector quantization, or clustering, and as such was closely
related to unsupervised learning algorithms. Since the original introduction of LVQ the
theory of supervised learning algorithms has been further developed and it provides more
effective rigorous bounds on the generalization performance. Such analysis has not been
done so far for the LVQ algorithm despite its very wide usage. One of the key theoretical
(as well as practical) elements in the analysis of successful supervised learning algorithms
is the concept of margin.

In this paper we apply margin analysis to provide theoretical reasoning for the LVQ algo-
rithm. Roughly speaking margins measures the level of confidence a classifiers has with
respect to it’s decisions. Margin analysis has become a primary tool in machine learning
during the last decade. Two of the most powerful algorithms in the field, Support Vector
Machines (SVM) [2] and AdaBoost [3] are motivated and analyzed by margins. Since the
introduction of these algorithms dozens of paper were published on different aspect of mar-
gins in supervised learning [4, 5, 6]. Buckingham and Geva [7] were the first to suggest



that LVQ is indeed a maximum margin algorithm. They presented a variant named LMVQ
and analyzed it. As in most of the literature about LVQ they look at the algorithm as trying
to estimate a density function (or a function of the density) at each point. After estimating
the density the Bayesian decision rule is used. We take a different point of view on the
problem. We look at the geometry of the decision boundary induced by the decision rule.
Note that in order to generate good classification the only significant factor is where the
decision boundary lies (It is a well known fact that classification is easier then density esti-
mation [8]). Hence we define a geometrically based margin, similar to SVM [2] and use it
for our analysis.

Summery of the Results In section 2 we present the model and outline the LVQ family
of algorithms. A discussion and definition of margin is provided in section 3. The two
fundamental results are a bound on the generalization error and a theoretical reasoning for
the LVQ family of algorithms. In section B we present a bound on the gap between the
empirical and the generalization accuracy. This provides a guaranty on the performance
over unseen instances based on the empirical evidence. Although LVQ was designed as an
approximation to Nearest Neighbor the theorem suggests that the former is more accurate
in many cases. Indeed a simple experiment shows this prediction to be true.

In section 5 we show how LVQ family of algorithms emerge from the previous bound.
These algorithms minimize the bound using gradient descent. The different variants cor-
respond to different tradeoff between opposing quantities. In practice the tradeoff is con-
trolled by loss functions.

2 Problem Setting and the LVQ algorithm

The framework we are intersted in is supervised learning for classification problems. In
this framework the task is to find a map from Rn into a finite set of labels Y . The model we
focus on is a classification functions of the following form: The classifiers are parameter-
ized by a set of points �1; : : : ; �k 2 Rn which we refer to as prototypes. Each prototype is
associated with a label y 2 Y . Given a new instance x 2 Rn we predict that it has the same
label as the closest prototype, similar to the 1-nearest-neighbor rule (1-NN). We denote the
label predicted using a set of prototypes f�jgkj=1 by �(x). The goal of the learning process
in this model is to find a set of prototypes which will predict accurately the labels of unseen
instances.

The Learning Vector Quantization (LVQ) family of algorithms works in this model. The
algorithms get as an input a labeled sample S = f(xl; yl)gml=1, where xl 2 Rn and yl 2 Y
and use it to find a good set of prototypes. All the variants of LVQ share the following
common scheme. The algorithm maintains a set of prototypes each is assigned with a
predefined label, which is kept constant during the learning process. It cycles through the
training data S and in each iteration modifies the set of prototypes in accordance to one
instance (xt; yt). If the prototype �j has the same label as yl it is attracted to xt but if the
label of �j is different it is repelled from it. Hence LVQ updates the closest prototypes toxt according to the rule: �j  �j � �t(xt � �j) ; (1)

where the sign is positive if the label of xt and �j agree, and negative otherwise. The
parameter �t is updated using a predefined scheme and controls the rate of convergence
of the algorithm. The variants of LVQ differ in which prototypes they choose to update in
each iteration and in the specific scheme used to modify �t.
For instance, LVQ1 and OLVQ1 updates only the closest prototype to xt in each itera-
tion. Another example is the LVQ2.1 which modifies the two closest prototypes �i and �j
to xt. It uses the same update rule (1) but apply it only if the following two conditions hold :



1. Exactly one of the prototypes has the same label as xt, i.e. yt.
2. The ratios of their distances from xt falls in a window: 1=s � kxt � �ik = kxt � �jk � s,

where s is the window size.
More variants of LVQ can be found in [1]. We now turn to discuss the notion of margins
and describe their applications in our setting.

3 Margins

Margins play an important role in current research in machine learning. It measures the
confidence a classifier has when making its predictions. One approach is to define margin
as the distance between an instance and the decision boundary induced by the classification
rule as illustrated in figure 1(a). Support Vector Machines [2] are based on this definition of
margin, which we reffer to as Sample-Margin. However, an alternative definition of margin
can be defined, Hypothesis Margin. In this definition the margin is the distance that the
classifier can travel without changing the way it labels any of the sample points. Note that
this definition requires a distance measure between clasifiers. This type of margin is used
in AdaBoost [3] and is illustreated in figure 1(b).

(a) (b)

Figure 1: Sample Margin (fig-
ure 1(a)) measures how much can
an instance travel before it hits
the decision boundary. On the
other hand Hypothesis Margin (fig-
ure 1(b)) measures how much can
the hypothesis travel before it hits
an instance.

It is possible to apply these two types of margin
in the context of LVQ. Recall that in our model a
classifer is defined by a set of labeled prototypes.
Such a classifier generates a decision boundary by
Voronoy tessellation. Although using sample mar-
gin is more natural as a first choice, it turns out
that this type of margin is both hard to compute
and numerically unstable in our context, since
small reloactions of the protopyes might lead to a
dramatic change in the sample margin. Hence we
focus on the hypothesis margin and thus have to
define a distance measure between two classifers.
We choose to define it as the maximal distance
between prototypes pairs as illustrated in figure 2.
Formally, let � = f�jgkj=1 and �̂ = f�̂jgkj=1 de-
fine two classifers, then� (�; �̂) = kmaxi=1 k�i � �̂ik2 :
Note that this definition is not invariant to per-
mutations of the prototypes but it upper bounds
the invariant definition. Furthermore, the induced
margin is easy to compute (lemma 1) and lower
bounds the sample-margin.

Lemma 1 Let � = f�jgkj=1 be a set of prototypes. Let x be sample point then the hypoth-

esis margin of � with respect to x is � = 12 (k�j � xk � k�i � xk) where �i is the closest
prototype to x with the same label as x and �j is the closest prototype with alternative
label.

Lemma 2 Let S = fxlgml=1 be a sample and � = (�1; : : : ; �k) be a set of prototypes.

sample-marginS(�) � hypothesis-marginS(�)
Lemma 2 shows that if we find a set of prototypes with large hypothesis margin then it has
large sample margin as well.



4 Margin Based Generalization Bound

Figure 2: The distance measure on
the LVQ hypothesis class. The dis-
tance between the white and black
prototypes set is the maximal dis-
tance between prototypes pairs.

In this section we prove bound on the general-
ization error of LVQ type of classifiers and draw
some conclusions.

When a classifier is applied to a training data it
is natural to use the training error as a predic-
tion to the generalization error (the probability of
misclassification of an unseen instance). In proto-
type based hypothesis the classifier assigns a con-
fidence level, i.e. margin, to it’s predictions. Tak-
ing into account the margin by counting instances
with small margin as mistakes gives a better pre-
diction and provide a bound on the generalization
error. This bound is given in terms of the num-
ber of prototypes, the sample size, the margin and
the margin based empirical error. The following
theorem states this result formally.

Theorem 1 In the following setting:� Let S = fxi; yigmi=1 2 fRn �Ygm be a training sample drawn by some underly-
ing distribution D.� Assume that 8i kxik � R.� Let � be a set of prototypes with k prototypes from each class.� Let 0 < � < 1=2.� Let ��S(�) = 1m ��fi : margin�(xi) < �g��.� Let eD(�) be the generalization error: eD(�) = Pr(x;y)�D [�(x) 6= y].� Let Æ > 0.

Then with probability 1� Æ over the choices of the training data:8� eD � ��S(�) +s 8m �d log2 32m�2 + log 4Æ� (2)

where d is the VC dimension:d = min�n+ 1; 64R2�2 � 2kjYj log ek2 (3)

This theorem leads to a few interesting observations. First, note that the bound is dimen-
sion free, in the sense that the generalization error is bounded independently of the input
dimension (n) much like in SVM. Hence it makes sense to apply these algorithms with
kernels.

Second, note that the VC dimension grows as the number of prototypes grows (3). This
suggest that using too many prototypes might result in poor performance, therefore there
is a non trivial optimal number of prototypes. One should not be surprised by this result as
it is a realization of the Structural Risk Minimization (SRM) [2] principle. Indeed simple
experiment shows this prediction to be true. Hence not only that prototype based methods
are faster than Nearest Neighbor, they are more accurate as well. Due to space limitations
proofs are provided in the full version of this paper only.



5 Maximizing Hypothesis Margin Through Loss Function

Once margins are properly defined it is natural to ask for algorithms that maximize margin.
We will see that this is exactly what LVQ does. Before going any further we have to
understand why maximizing the margin is a good idea.

In theorem 1 we saw that the generalization error
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Figure 3: Different loss functions.
SVM, LVQ1 and OLVQ1 use the
“hinge” loss: (1 � �)+. LVQ2.1
uses the broken linear: min(2; (1 �2�)+). AdaBoost use the exponen-
tial loss (e��).

can be bounded by a function of the margin � and
the empirical �-error (�). Therefore it is natural to
seek prototypes that obtain small �-error for a large�. We are faced with two contradicting goals: small�-error verses large �. A natural way to solve this
problem is through the use of loss function.

Loss function are a common technique in machine
learning for finding the right balance between op-
posed quantities [9]. The idea is to associate a mar-
gin based loss (a “cost”) for each hypothesis with
respect to a sample. More formally, let L be a func-
tion such that:

1. For every �: L(�) � 0.
2. For every � < 0: L(�) � 1.

We use L to compute the loss of an hypothesis with
respect to one instance. When a training set is avail-

able we compute the loss of the hypothesis with respect to the training data by summing
over the instances: L(�) = Pl L(�l) where �l is the margin of the l’th instance in the
training data. The two axioms of loss functions guarantee that L(�) bounds the empirical
error.

It is common to add more restrictions on the loss function, such as requiring that L is a non-
increasing function. However, the only assumption we make here is that the loss functionL is differentiable.

Different algorithms use different loss functions [9]. AdaBoost uses the exponential loss
function L(�) = e��� while SVM uses the “hinge” loss L(�) = (1� ��)+, where � > 0
is a scaling factor. See figure 3 for a demonstration of these loss functions.

Once a loss function is chosen, the goal of the learning algorithm is finding an hypothesis
that minimizes it. Gradient descent is a natural simple choice for the task. Recall that in
our case �l = (kxl � �ik � kxl � �jk)=2 where �j and �i are the closest prototypes to xl
with the correct and incorrect labels respectively. Hence we have that 1d�ld�r = Sl(r) xl � �rkxl � �rk
where Sl(r) is a sign function such thatSl(r) = ( 1 if �r is the closest prototype with correct label.�1 if �r is the closest prototype with incorrect label.0 otherwise.

Taking the derivative of L with respect to �r using the chain rule we obtaindLd�r =Xl dL(�l)d�l Sl(r) xl � �rkxl � �rk (4)1Note that if xl = �j the derivative is not defined. This extreme case does not affect our conclu-
sions, hence or the sake of clarity we avoid the treatment of such extreme cases in this paper.



Algorithm 1 Online Loss Minimization.
Recall that L is a loss function, and 
t varies to zero as the algorithm proceeds.

1. Choose an initial positions for the prototypes f�jgkj=1.

2. For t = 1 : T ( or1)
(a) Receive a labeled instance xt; yt
(b) Compute the closest correct and incorrect prototypes to xt: �j ; �i, and the

margin of xt, i.e. �t = 1=2(k�j � xtk � k�i � xtk)
(c) Apply the update rule for r = i; j:�r  �r + 
t dL(�t)d� Sl(r) xt � �rkxt � �rk

By comparing the derivative to zero we get that the optimal solution is achieved when�r =Xl wrl xl
where �rl = dL(�l)d�l Sl(r)kxl��rk and wrl = �rlPl �rl . This leads to two conclusions. First, the

optimal solution is in the span of the training instances. Furthermore, from its definition
it is clear that wrl 6= 0 only for the closest prototypes to xl. In other words, wrl 6= 0 if
and only if �r is either the closest prototype to xl which have the same label as xl, or the
closest prototype to xl with alternative label. Therefore the notion of support vectors [2]
applies here as well.

5.1 Minimizing The Loss

Using (4) we can find a local minima of the loss function by a gradient descent algorithm.
The iteration in time t computes:�r(t+ 1) �r(t) + 
tXl dL(�l)d� Sl(r) xl � �r(t)kxl � �r(t)k
where 
t approaches zero as t increases. This computation can be done iteratively where
in each step we update �r only with respect to one sample point xl. This leads to the
following basic update step�r  �r + 
t dL(�l)d� Sl(r) xl � �rkxl � �rk
Note that Sl(r) differs from zero only for the closest correct and incorrect prototypes to xl,
therefore a simple online algorithm is obtained and presented as algorithm 1.

5.2 LVQ1 and OLVQ1

The online loss minimization (algorithm 1) is a general algorithm applicable with differ-
ent choices of loss functions. We will now apply it with a couple of loss functions and
see how LVQ emerges. First let us consider the “hinge” loss function. Recall that the
hinge loss is defined to be L(�) = (1 � ��)+. The derivative 2 of this loss function is2The “hinge” loss has no derivative at the point � = 1=�. Again as in other cases in this paper,
this fact is neglected.
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dL(�)d� = � 0 if � > 1=��� otherwise

If � is chosen to be large enough, the update rule in
the online loss minimization is�r = �r � 
t� xt � �rkxt � �rk
This is the same update rule as in LVQ1 and OLVQ1

algorithm [1] beside the extra factor of �kxt��rk How-

ever, this is a minor difference since �= kxt � �rk is
just a normalizing factor. A demonstration of the af-
fect of OLVQ1 on the “hinge” loss function is pro-
vided in figure 4. We applied the algorithm to a sim-

ple toy problem consisting of three classes and a training set of 1000 points. We allowed
the algorithm 10 prototypes for each class. As expected the loss decreases as the algorithm
proceeds. For this perpose we used the lvq pak package[10].

5.3 LVQ2.1

The idea behind the definition of margin, and especially hypothesis margin was that a
minor change in the hypothesis can not change the way it labels an instance which had a
large margin. Hence when making small updates (i.e. small 
t) one should focus only on
the instances which have margins close to zero. The same idea appeared also in Freund’s
boost by majority algorithm [11].

Kohonen adapted the same idea to his LVQ2.1 algorithm [1]. The major difference between
LVQ1 and LVQ2.1 algorithm is that LVQ2.1 updates �r only if the margin of xt falls inside
a certain window. The suitable loss function for LVQ2.1 is the broken linear loss function
(see figure 3). The broken linear loss is defined to be L(�) = min(2; (1 � ��)+). Note
that for j�j > 1=� the loss is constant (i.e. the derivative is zero), this causes the learning
algorithm to overlook instances with too high or too low margin. There exist several dif-
ferences between LVQ2.1 and the online loss minimization presented here, however these
differences are minor.

6 Conclusions and Further Research

In this paper a theoretical reasoning for the LVQ type of algorithms has been presented. We
have shown that it generates a large margin classifier. We have also shown how different
choices of margin-based loss functions yield different flavors of the algorithm.

This formulation allows easy generating of other similar algorithms in several different
ways. The first and most obvious one is by using other loss functions such as the expo-
nential loss. The second and more interesting way is by using other classification rule.
Assume that one would like to replace the 1-NN rule with another classification rule during
the generalization stage. k-NN, parzan window or any other prototypes based classifica-
tion function are examples of possible choices. The proper way to adapt the algorithm to
the chosen classification rule is by defining a suitable margin, and then adapting the min-
imization process that is done during the training stage accordingly. We have constructed
some basic experiments using the k-NN rule. However the performance we have got did
not exceed those of the 1-NN rule. We suggest the following explanation of these results.
Usually the k-NN rule perform better than the 1-NN rule as it filters noise better, and in the
LVQ setting the noise filtering is already achieved by using a small number of prototype.



A third extension can be devised by replacing the gradient descent that is used for the
minimization of the loss function with other minimization techniques such as annealing. As
different minimization methods give different trade off between computational complexity
and accuracy, a wise choice can be made for a specific task. Another extension is using
a different distance measure instead of the l2 norm. This may result in more complicated
formula of the derivative of the loss function, but may improve the results significantly in
some cases. One specific interesting distance measure is the Tangent Distance [12].

We also presented a generalization guarantee for LVQ. The bound of the generalization
error is based on the margin training error and is dimension free. This means that the al-
gorithm can work well for high dimensional problems, and suggests that kernel version of
LVQ may yield good performance. A kernel version is possible as the algorithm can be
expressed as function of the inner product of couples of sample points only. We have im-
plemented such kernel version and performed some initial experiments. It seems that using
kernel does improve the results when is used with small number of prototypes. However,
using the standard version with more prototypes achieve the same improvement.

A possible explanation of this phenomenon is the following. Recall that a classifier is a set
of labeled prototypes that define a Voronoy tessellation. The decision boundary of such a
classifier is built of some of the lines of the Voronoy tessellation. In standard version these
lines are straight lines. In the kernel version these lines are smooth non-linear curves. As
the number of prototypes grows, the decision boundary consists of more, and shorter lines.
Now, if we remember the fact that any smooth curve can be approximated by a broken
linear line, we come to the conclusion that any classifier that can be generated by the kernel
version, can be approximated by one that is genereted by the standard version, when is
applied with more prototypes. However, more intensive experiments should be conducted
before drawing solid conclusions.
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A Lemmas on LVQ margin

In this appendix we provide the proofs for two lemmas on LVQ margin.

Lemma 3 Let S = fxigmi=1 be a sample and � = (�1; : : : ; �k) be a set of prototypes.

sample-marginS(h�) � hypothesis-marginS(h�)
Proof: Let � be greater than the Sample Margin of �. I.e. there exists xi 2 S and x̂ such thatkxi � x̂k � � but xi and x̂ are labeled differently by �. Since they are labeled differently, the closest
prototype to xi is different then the closest prototype to x̂. W.L.G let �1 be the closest prototype toxi and �2 be the closest prototype to x̂.

Let w = xi � x̂ then kwk � �. Define 8j �̂j = �j + w. We claim that �̂2 is the closest prototype
to xi in �̂. This follows sincekxi � �̂jk = kxi � (�j + w)k = kx̂� �jk
Hence �̂ assigns xi a different label and also �(�; �̂) = kwk � � and therefore the hypothesis margin
is less then �.

Since this result holds for any � greater than the sample margin of � we conclude that the hypothesis
margin of � is less then or equal to it’s sample margin.

Lemma 4 Let � = f�jgkj=1 be a set of prototypes. Let x be an instance then the hypothesis margin

of � with respect to x is � = 12 (k�j � xk � k�i � xk) where �i is the closest prototype to x and �j
is the closest prototype to x with different label then �i .

Proof: Let �; x; �i and �j be as defined in the statement of the lemma. Let �̂ = (�̂1; : : : ; �̂k) be
such that �(�; �̂) < �. Therefore from the triangle inequality k�̂i � xk � k�i � xk+ k�̂i � �ik <k�i � xk+ �.

On the other hand for any index r we have that k�̂r � xk � k�r � xk � k�̂r � �rk > k�r � xk��. From the definition of �̂r we have that if the label of �r is different then the label of �i thenk�r � xk � k�j � xk and so k�̂r � xk > k�j � xk � �.

Finally, we have k�̂i � xk < k�i � xk+ � = k�j � xk� � < k�̂r � xk for any r such that �r has
different label then �i and therefore the hypothesis margin of � is at least �.

For any � > 0 define �̂ as follows: For any index l define wl = x��lkx��lk (if kx� �lk = 0 chosewl to be any unit vector) hence kwlk = 1. Now for any r such that the label of �r is different
then that of �i define �̂r = �r + (� + �)wr . If the label of �s is the same as that of �i define�̂s = �s � (� + �)ws. It is easy to verify that �(�; �̂) = � + �.
On the other hand, for any prototype �̂s which has the same label as �i we have thatkx� �̂sk = 



(x� �s)�1 + � + �kx� �sk�



= kx� �sk+ � + �
If �̂r has different label then �i then using the same calculation we get that kx� �̂rk = kx� �rk���� and therefore �̂j is the closest prototype to x and it labels it differently. Therefore the hypothesis
margin is less then � + � for any � > 0 and so we conclude that the margin is exactly �.



B Analysis of LVQ

In this section we present some theoretical results concerning the LVQ type algorithms. We show
a bound on the fat-shattering dimension [13] of the algorithm. The bound is independent of the
dimension of the problem. We use this bound to show a bound on the generalization error of the
algorithm. This bound holds for all margin based classifiers. We show the theorems for binary
problems, although they hold for the general case as well.

The following definition will assist us in the discussion:

Definition 1 (�-error) Let h be a classifier and S = f(xi; yi)gmi=1 be a labeled sample. The �-error
of h with respect to S is the portion of the sample points on which h errs or makes a prediction with
margin less then �. This can be defined using the following formula"�S(h) = �����i : �signed-margin�

xi

	(h) < �������m
Note that this definition works with respect to both types of margins and according to the choice of
margin one interprets the term marginfxig(h).
Theorem 2 presents a bound on the VC dimension (or fat-shattering dimension) of LVQ classifiers.

Theorem 2 Assume we have k prototypes for each class. Assume that the sample points come from
a ball of radius R. Then the largest sample that can be shattered with margin � is smaller thenmin�n+ 1; R2�2 � 2k2 log2 ek2 where n is the input dimension.

Before proving the theorem we show that each LVQ rule can be decomposed into a set of linear
classifiers. Each LVQ rule can be defined as a two layer network where the input level has k2 linear
separators (perceptrons) and the output is a predefined binary rule. For each couple of prototypes�+ and �� which have different labels we define a perceptron that tags the instances closer to �+
by “+1” and instances closer to �� by “-1”. Given a point x, we apply the k2 perceptrons. Note,
if �+ is the closest prototype to x then all the perceptrons which are associated with �+ will tag it+1. In this case the output layer outputs +1. Similarly if �� is the closest prototype then all the
perceptrons associated to it outputs �1 and so the output of the network is �1. Therefore the choice
of k2 prototypes fully determines the output of the network.

If a set of prototypes generates an hypothesis with hypothesis margin of � then due to lemma 2,
we know that the distance between every sample point to the decision boundary is at least �. This
means that if �+ is the closest prototype to x then the distance between x to any of the perceptrons
associated with �+ is at least �. Thus we now define threshold perceptron as a ternary function. Let(w; b) define a perceptron such that kwk = 1. The distance between x to the decision boundary of(w; b) is jw � x+ bj. We define:h(w;b)(x) = ( 1 if w � x+ b > ��1 if w � x+ b < ��? otherwise

We now turn to prove theorem 2:

Proof: We may assume that all the perceptrons in LVQ are threshold perceptrons since we are inter-
ested in the � margin shattering.

Next we ask, how many different outputs can different threshold perceptrons give on a sample of sizem. Let x1; : : : ; xm be a sample of size m. We say that h(w;b) and h(ŵ;b̂) are the same on this sample

if for any xi such that h(w;b); h(ŵ;b̂) 6= ? we have that h(w;b) = h(ŵ;b̂) i.e. on all the points which

both classifiers have margin greater then �, they agree on the label. We say that h(w;b) is maximal if
it gives the minimal number of ? from all the threshold-perceptrons which outputs the same labels.

We are interested in the number of different label sequences such perceptrons can assign tox1; : : : ; xm. Therefore we may assume that all the perceptrons are maximal perceptrons since the
output level of LVQ ignores perceptrons with margin less them �.



Counting the number of maximal labellings of x1; : : : ; xm is done by repeating Sauer’s lemma [14].
Define d to be the maximal size of sample that can be shattered by threshold classifiers, i.e. for which
the number of different labellings is 2d. Note that in this case such labels can not include any ?. From

[2] we know that for threshold perceptrons d � min�R2�2 ; n+ 1� and by repeating Sauer’s lemma

we get that the number of maximal labellings is bounded by
� emd �d. Taking into account all the k2

perceptrons, they can not generate more than then
� emd �dk2 outputs. Choosing m � 2dk2 log2 ek2

we get
� emd �dk2 < 2m and hence a sample of such size can not be shattered.

The next theorem shows that if LVQ has small �-error then it has small generalization error with
high probability. The proof follows the double sample technique introduced in [15]. This method has
already been used with margins in [16]. We repeat the argument for the sake of completeness. Note
that this argument works for any margin classifier. Before introducing the theorem we will define
covering number of hypothesis class.

Definition 2 Let S = fx1; : : : ; xmg be a sample. Let H be an hypothesis class and h 2 H . Assume
that there is a margin defined, either hypothesis margin or sample margin. For a choice of yi 2 Y let�i(h) be the signed margin of h with respect to (xi; yi).
We define the distance � between h1; h2 2 H with respect the sample to be�S(h1; h2) = mmaxi=1 maxyi2Y j�i(h1)� �i(h2)jN(H; �; (x1; : : : ; xm)) is the minimal number of hypothesis h1; : : : ; hN 2 H such that for anyh 2 H there exists hi such that �(h; hi) < �N(H; �;m) = maxx1;:::;xmN(H; �; (x1; : : : ; xm))
Note that in the case that we are working with hypothesis margin, we already have a distance measure� on the hypothesis class. This new distance measure � is different then �, however it is easy to verify
that �S(h1; h2) � �(h1; h2) for all choices of h1; h2 and S.

Theorem 3 Let H be an hypothesis class. Let D be a distribution on the sample space X . Let"D(h) be the generalization error of h. Given a sample S1 of size m � 16=�2 . We have that:PrS1�Dm �9h 2 H : "D(h) > �+ "�S1(h)� �2N �H; �2 ; 2m� e�m �28
Proof: We define the event A as follows:A = �S1 2 Xm : 9h "D(h) > �+ "�S1(h)	
Then our goal is to bound PrS1�Dm [A]. We introduce the event BB = fS1; S2 : 9h "D(h) > �+ "�S1(h)

and "D(h) � �2 + "S2(h)g
From Chernoff’s bound PrS1;S2�D2m [BjA] � 1 � e�m�2=8 and for m � 16�2 we have thatPr[BjA] � 0:5.

Since B � A we have that Pr[B] = Pr[B;A] = Pr[BjA]Pr[A] � 0:5Pr[A] and thereforePr[A] � 2Pr[B]. From now on we focus on bounding the probability of the event B.



Let S be a sample of size 2m. Let S1 and S2 be a split of S into two parts of size m each. Assume

that (S1; S2) 2 B so there exists h 2 H which demonstrates the event B. Let ĥ be �=2 close to h.

It follows that "�=2S1 (ĥ) < "D(h)� � and "�=2S2 (ĥ) � "D(h)� �=2.

We define a new probability space. We split S = f(xi; yi)g2mi=1 into S1 and S2 according to the
following rule: for each 1 � i � m with probability 1=2 we have that xi 2 S1 and xm+i 2 S2, also
with probability 1=2 xm+i 2 S1 and xi 2 S2.

We define a random variable zi for 1 � i � m such that zi = +1 if ĥ makes �=2-error on only
one of xi and xi+m and this mistake is in S2. If there is only one error among xi and xi+m and this
mistake is in S1 we assign the value �1 to zi, in any other case zi = 0.

A few facts about the random variables zi:
1. For any i it is clear that E [zi] = 0 and therefore E �P zi� = 0.

2.
P zi counts the difference between the number of �=2-errors ĥ makes on S2 and the
number of such mistakes on S1.

3. "�=2S1 (ĥ) � "D(h)� � and "�=2S2 (ĥ) � "D(h)� �=2 only if
P zi � m�=2.

Since the zi’s are independent bounded random variables applying Chernoff’s bound again reveals

that the probability that ĥ will have a big gap between it’s error on S2 and S1 is bounded by e�m�2=8
Using the union bound on the elements of a �=2 covering set of H with respect to x1; : : : ; x2m
we have that the probability that any element in the covering set will have a gap between the
number of �=2 errors it makes on S2 and on S1 which is greater then m�=4 is bounded byN(H; �=2; 2m)e�m�2=8. But this also bounds the probability that the event B happens over the
splits of S into S1 and S2.

Since this is true for all the choices of S it is also true if we randomly select S according to the

distribution D2m. And so we conclude that PrS1;S2 [B] � N(H; �=2; 2m)e�m�2=8 and sincePrS1 [A] � 2PrS2 [B] the statement follows.

Combining theorems 2 and 3 we get a bound on the generalization of the LVQ algorithm.

Theorem 4 Assume that the instances fxi; yigmi=1 for training were drawn by some underlying dis-
tribution D, furthermore assume that xi � R for every i. Let � be the proportion of the training data
for which the decision rule induced by the prototypes yields a decision with margin smaller then � or
a mistake for some 0 < � < 1=2. Let eD be the generalization error of the chosen prototypes with
respect to the density D.

For every Æ > 0, with probability 1� Æ over the choices of the training data:eD � �+r 8m �d log2 32m�2 + log 4Æ� (5)

where d is the VC dimension:d = min�n+ 1; 64R2�2 � 2kjYj log ek2 (6)

Proof: In [13] it is proved that N(F; 
;m) � 2� 4m
2 �d log(2em=(d
))
where d is the fat 
=4 dimen-

sion of F for a class of function that it’s output is in the range [a; a+ 1]. Since � � 0:5 we can cut
all signed-margins we use in the range [0; 1]. The statement now follows from theorems 2 and 3.


