

Topics in Performance Evaluation

Dror Feitelson
Hebrew University

Lecture 9 – Networking and the Internet

Communication protocols and Internet applications
should be evaluated in their natural habitat

Their natural habitat is the Internet

Evaluations in Internet context are hard to do

Two approaches:
● The ns2/ns3 network simulator
● The PlanetLab testbed

Why It Is HARD

 Paxson & Floyd, Difficulties in simulating the Internet.
IEEE/ACM T. Networking 9(4) Aug 2001

Simulating the Internet is hard because
● It is very big
● It is very heterogeneous
● It keeps changing

1990s:
● Growth from essentially nothing to 100,000,000
computers

● Growth rate estimated at 100% a year
● Traffic also grows exponentially, with reports
ranging from 50% a year to doubling every 7-8
weeks

2000s:
● Nobody even tries to measure how big it is (home
computers with intermittent connectivity, NATs
multiplex addresses, ISPs hide data, etc.)

● Tens of thousands of autonomous systems
(ISPs, companies, government, universities)
each with many routers and many many
computers

The effect of scale:

● Protocols may work fine on small or medium size
networks, but fail on a really large one

- use of flooding to find info
- use of superlinear algorithms

● In a large enough network, rare events will occur
regularly

- flash crowds
- various failures and error conditions

Heterogeneity: the Internet is by definition
composed of multiple diverse networks, providing
uniform connectivity but not uniform behavior

Highly variable topology with no single
representative structure, and dynamically
changing routing

Links range from modems to high-speed fiber
optics (huge bandwidth gaps), direct connections
to broadcast and wireless (way different
congestion and loss properties), terrestrial to
satellite (differences in latency)

Protocols are standard but subject to variations
(different implementations, different bugs), e.g.
hundreds of variants of TCP congestion control

Traffic patterns of different applications are distinct
- Plus shaping due to congestion control
- Plus adaptiveness at the application
- Plus various load levels and resulting

congestion

Unpredictable changes:

Exponential growth over time (size, connections,
traffic volume)

Big changes in statistics, e.g. instability of median
ftp connection size

Complete change in dominant use: email, ftp,
Mbone, web, P2P file sharing, media streaming

Evolution of protocols and technology – not only
the one you are studying, but also all the rest of
the Internet

Expected surprises:
● More use of wireless
● More use of native multicast
● Adoption of differentiated services (QoS)
● New "killer apps" arrive
● New business models and changes in pricing
(leading to changes in usage)

● New technology such as scheduling in routers

Strategy I: look for invariants
things that empirically hold for a wide range of
conditions

● Diurnal activity patterns (hours to days)
● Self similar traffic (sub-second to minutes)
● Poisson session arrivals (independent users)
● Heavy-tailed distributions
● Invariant aspects of topology (distances between
continents/cities)

Strategy II: explore design space
Maybe use some factorial design – e.g. change
one parameter at a time

But this may miss (nonlinear) interactions
● Protocol parameters and behavior
● Technological variations (router queue behavior)
● Different congestion levels
● Different network topologies
● Different traffic mixes
Note that parameter value ranges may span
orders of magnitude

The ns2 Network Simulator

 http://nsnam.isi.edu/nsnam/

Why simulate:
● Unlike measurements, can explore new
architectures

● Unlike analysis, works with complex scenarios
rather than (over)simplified models

- complex topologies
- complex traffic patterns
- adaptive congestion control

In Internet context: simulating new architectures
may help avoid "success disasters" – when a
design becomes widespread before being fully
developed and debugged

Pitfalls:
● Difficulty of verifying that the simulation indeed
reflects the intended model

● Subject to all the problems listed above
- Need to simulate multiple heterogeneous

scenarios, as none is fully representative
- Cannot anticipate innovations that will need

to be considered in the future

Community effort:
● Uniform methodology allows for easier
comparison of results

● Higher quality and more features than a single
group can accomplish

● Create a pool of detailed models that can be
used by others

- Topology generators that create realistic
complex topologies

- Implementations of routing algorithms and
protocols, including importing real
implementations

Additional benefits:
● Users can focus on their networking research
and avoid repeated investment in infrastructure

- For example, study multi-protocol interactions
without having to implement all those
protocols

● Comparisons against previous work can use the
original implementation of that previous work

- Compare against the right version
- Compare against a good implementation of

the competition

Scaling by abstraction: trade off simulation
accuracy for reduced simulation time

● Default simulation is detailed hop-by-hop packet
forwarding and dynamic routing changes

● Centralized routing just computes route changes
and does not simulate route-change messages

● Session-level packet forwarding replaces hop by
hop simulation by precomputed propagation
delays

● Tree-based routing instead of shortest paths
reduces memory requirements

Validation: compare simulated results with
measurements on an experimental testbed

Validate small-scale abstract model and only then
scale up

Small
testbed

measurement

Small
detailed

simulation

Small
abstract

simulation

Large
abstract

simulation

Predicted
large detailed

results

Scale up

Use
as

Validate

Large
testbed

measurementimpossible

impossible

Emulation mode: pass real
network traffic through the
simulator

Can be used as part of a
real-world measurement
study to create controlled
network behavior that
would be impossible to
control and reproduce

- Packet reordering
- Packet drops
- Specific delays

NIC

OS

Network
simulation

ns

Real network

Packet
capture/

generation

Split-programming approach:
● Core simulation engine written in C++ and
compiled for best performance

- includes packet forwarding
- includes detailed models for protocols and

traffic
● Configuration for specific simulation described
using a Tcl script

- allows iterative refinement without
recompilation

set ns [new Simulator]
#Create two nodes and a link
set n0 [$ns node]
set n1 [$ns node]
$ns duplex-link $n0 $n1 1Mb 10ms DropTail
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create null agent as data sink
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
#Connect the two agents
$ns connect $udp0 $null0
#Set timing for activity
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
$ns at 5.0 "finish"
$ns run

nam: network animation during the simulation
Xgraph: plot of output performance data

PlanetLab

 http://www.planet-lab.org/

Observation: new world-wide distributed services
are emerging as the way to go

Hard to design due to distribution and scale
Hard to evaluate due to
size/heterogeneity/changes of the Internet

Hard to deploy because counter to current
technology

Same problems apply to the Internet's own
architecture and protocols

The solution: use a planetary scale overlay
network

Started in summer of 2002 with 100 nodes
In 2014: 1188 nodes at 587 sites

A virtual testbed
where new ideas
can be deployed

unilaterally

Flexibly allows
each experiment to

use a distinct
architecture

Distributed virtualization: provide users with a
"virtual Internet", complete with real latencies,
real competing/cross traffic, etc.

● A VMM on each node supports multiple virtual
machines

● A set of virtual machines across multiple nodes is
a slice

● Combine centralized control and allocation with
local policies restricting resource use

● Infrastructure services also run in a slice, rather
than being bundled with the underlying kernel

Linux-based VMM

Node
mngr

Local
admin

slices

- resource alloc
- sensors
- auditing
- slice bootstrap

- resource limits
- kill process

Use unbundled management:
● Having management functions run in a slice
allows for faster evolutionary development

● Alternative control functions can be implemented
and compete with each other

● Requires mechanism to allow one slice to
selectively manage another slice

- allocate resources
- kill processes

The need for isolation:
● Isolate slices from each other, so that each user
can deploy an independent service and conduct
independent research

● Isolate PlanetLab activities from the host, so as
not to disrupt the host's activities

● Isolate PlanetLab as a whole from the Internet,
so that experiments/services do not escape and
cause global problems

PlanetLab also provides a deployment path for
new services

● Services within PlanetLab itself are built this way
● PlanetLab-based services can be used by
anyone throughout the Internet

● By really building and deploying a service under
real conditions you find out what really matters

- Engineering tradeoffs in the design
- What users really want from the service

Evaluation as in a field experiment, as opposed
to simulation or a controlled lab experiment

Lessons learned:
● Using a real system exposes "unimportant"
assumptions, leads to new research opportunities

● In a real system you need to balance objectives,
not optimize one thing as much as possible (as
you would for publishing a paper)

● Robust reasonably good systems are better than
complicated fragile excellent systems

● Real implementations foster iterative refinement
beyond the first idea

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

