

Topics in Performance Evaluation

Feedback and User-Based
Workload Models

Dror Feitelson
Hebrew University

Workload
modeling
based on
trace data:

Typical attributes modeled by distributions:
● Job arrival times
● Job runtimes
● Job sizes (resource requirements)

Model of arrival times is open:
jobs arrive from an infinite population of users,
independent of system state

Also applies to re-playing a job trace

new arrivals terminations

Alternative is a closed model:
jobs only arrive when a previous one terminates, so
completely dependent on system state

Neither model is very realistic:
● open model ignores effect of system on new

arrivals – they continue to arrive even if the
system is overloaded

● closed model assumes the number of jobs is
always constant

A more realistic approach: generative modeling

● Do not model the workload as it is observed
● Instead, model the process that generates the

workload
● Process is not oblivious, and may include

interactions with the system

Leads to site-level simulations:
to evaluate a system, we also need to simulate
its environment (=its users)

Specific example: user-based modeling
● Model the behavior of users as they generate the

workload
● Including how users adapt their behavior in

response to system performance
● This requires feedback from the system
● Also model the dynamics of the user population

Another example: network traffic modeling
● Model behavior of TCP as it sends packets over

the network
● Includes sliding window and congestion control
● Called “modeling at the source”

Generative model is often hierarchical
● Web usage

– User session (arrivals, length)
– Requests for pages (sequence, links)
– Requests for embedded objects (bursts)

● Database usage
– Enterprise-level application logic
– High level queries
– Bursts of I/O operations

● User population, sessions, and activity
[elaborated below]

Site-Level Simulation

 Shmueli and Feitelson, Using site-level modeling to evaluate the
performance of parallel system schedulers. 14th MASCOTS, Sep 2006

Conjecture:
● If the system performs well, users will submit

more jobs
● If the system performance is lousy, users will

refrain from submitting additional jobs

So systems are expected to display self-throttling:
submission rate is dictated by system load and its
ability to cope with that load
and not by predefined timestamps

[Following examples from parallel job scheduling]

Evidence:

To introduce feedback, need model of user
behavior in an interactive session

Learn about this from traces of real systems

In particular, look at distribution of think times (from
termination of one job to arrival of the next one)

Surprise: many are negative

Conclusion: users submit jobs in
batches

Need data about batch widthbatch width

Think timesThink times between batches
(this is where feedback comes)

Inter-arrivalsInter-arrivals within each batch

time

Complete site-level simulation:

job submission
 model
S

W

job
attributes

 model

user 1

job submission
 model
S

W

job
attributes

 model

user N wait queue

scheduler

feedback

submit/waitjobs

Importance of Feedback

 Shmueli and Feitelson, Using site-level modeling to evaluate the
performance of parallel system schedulers. 14th MASCOTS, Sep 2006

Conjecture: a workload trace reflects
1) The behavior of the scheduler that was used on

the traced system
2) The interaction between the scheduler and the

users

So using such a trace to simulate another scheduler
leads to unreliable results!

We'll demonstrate this using traces generated using
site-level simulation

Step 1: generate traces

FCFS – a simple scheduler that cannot support a
high load
EASY – a more efficient backfilling scheduler

site-level simulation

FCFSusers low load
trace

Avg. wait
1:35 hr

site-level simulation

EASYusers high load
trace

Avg. wait
0:38 hr

Step 2: switch traces and use in regular simulation

simulate FCFS with high-load trace generated using
EASY
simulate EASY with a low-load trace generated
using FCFS

regular simulation

FCFS

low load
trace

Avg. wait
22:30 hr

regular simulation

EASY

high load
trace

Avg. wait
0:23 hr

Comparison of results:

So results of regular simulations based on a trace
from another scheduler are unreliable
(assuming you accept that site-level simulations
are reliable)

DifferenceWrong trace Site-levelScheduler

+1345%22:3001:35FCFS
-38%00:2300:38EASY

Additional problem: violation of dependencies
between jobs

Assuming the batch submissions model, the jobs in
each batch depend on those in the previous batch

But in trace-based simulations these dependencies
may be violated: a job's arrival timestamp is before
termination of previous job

May even arrive before previous job was started!

This happens more often when the load is
increased by reducing interarrival times

User-Based Workload Model

Typical workload models characterize the jobs
directly. This leads to several problems:
1) Not parametric (needed for tuning to specific

conditions)
2) No good way to manipulate load
3) Do not provide locality of sampling (regularity

and predictability)
4) No daily/weekly cycle
5) No self similarity (burstiness at different time

scales)
6) No support for feedback
7) Do not support unique behavior and anomalies

(flurries)

The alternative: a user-based generative model

Three level user-based generative model:

1) User population model
How new users arrive and depart the system

2) User sessions model
The activity patterns of a single user, including
the daily cycle

3) User activity model
How users submit jobs within a session
[this is the part we did before]

Combines open and closed system models

Goals of the user population model:

User arrivals and departures cause fluctuations in
load – not always the same number of active users

User arrivals and departures cause changes in
workload patterns, as different users have different
personalities

Provide some control over load (more users
→higher load)

The overall mix should reflect variability seen in real
systems

Specifics of the user population model:

Match data regarding new user arrivals

Match data regarding user residence times
(implies user departure times)

Match data regarding mix of user personalities
(activity on workdays or nights/weekends, level of
activity, etc.)

Allow for unique/abnormal users (e.g. flurries, bots)

Goals of user sessions model:

Create realistic fluctuations in load
(heavy-tailed session times/breaks lead to self
similarity)

Align activity of different users
(all relate to the same daily cycle)

Incorporate some feedback
(aborted sessions due to bad performance)

Specifics of user sessions model:

Session starts should match data, and may be
different for different user personalities

A session can end for one of 3 reasons:
1) It is the end of the work day and time to go home
2) The session has been going on for a long time

and the user is tired
3) The system's performance is not good and the

user gave up
[note that this implies feedback]

Goals of user activity model:

Create (short term) realistic fluctuations in load

Create locality due to repeated actions of users
(important for predictability and evaluation of
adaptive systems)

Incorporate main feedback effects

Specifics of user activity model: locality of sampling

Users tend to repeat the same work over and over
again

Therefore workloads are actually much more
predictable than we may think

This is important for adaptive systems that learn
about their environment and optimize their behavior
for it

So workload models must include repetitions too

Specifics of user activity model:
Realistic user think times: what do users care
about?

Average think times grow with response time!

An Alternative: Workload Resampling

N. Zakay and D. G. Feitelson, Workload resampling for performance
Evaluation of parallel job schedulers. 4th ICPE, Apr 2013.

Resampling vs. Modeling
● Modeling is hard

– Multiple models (population, sessions, activity)
– Multiple distributions and parameters
– Important things may be left out

● Alternative is resampling
– Break log into small pieces
– Resample from pool of pieces to create new

workload
– Can do this many times with variations

Granularity of Resampling
● Individual jobs

– Retain correlations of job attributes
– Mix job order, lose locality
– Need to model arrivals, sessions

● User sessions
– Retain locality in sessions
– Need to model activity patterns

● Complete user activity
– Retain all locality and patterns
– Need to adjust arrivals to allow for feedback

We chose
User-level
resampling

User Classification
● Long-term users

– Continuously active throughout the log
– Should be continuously active in simulations

● Temporary users
– Only appear for a limited time
– Can be resamples several times in simulation

● Special users (e.g. flurries or bots)
– Can be removed to simulate normal users only
– Can be amplified to see their effect

Applications
● Extend log by continued resampling to enable

longer simulation
● Perform multiple similar repetitions and

compute confidence intervals on metrics
● Change load by having more or less users
● Combine data from multiple logs for better

representativeness
● Remove or emphasize special users

Repeated Simulations
● Verification: resulting

load should be similar
– Sometimes it tends to

be lower or higher
● Results: use

distribution of
performance metrics
– Simulation with original

log may not be very
representative

Increased Load

● Individual runs will have slightly different loads
● At high loads simulation may be unstable

– Detect unstable simulations by increasing queue
length

– Discard results

Feedback and Evaluations

Feedback effects determine the load that will be
placed on a system:

generated load

re
sp

on
se

 ti
m

e

performance as
function of load

generated jobs
as function of
response time

steady
state

Feedback effects on the use of performance
metrics:

with feedbackobliviousmetric
metric of performanceload

metric of performancedictated by arrivalsthroughput

metric of performanceresponse time

represented by throughput

should match offered
load

misleading without noting
throughput

represented by response
time

user
satisfaction

Conservative Modeling and Daily Cycles

Feitelson and Shmueli, A case for conservative workload modeling: parallel
job scheduling with daily cycles of activity.17th MASCOTS, Sep 2009

A workload model should include all important
workload features

What is important?

● Everything that you know of
● Everything that actually affects the evaluation

The best practical approach is to be conservative

Understanding user behavior enables user
cognizant system design
● Low response times lead to low think times
● Low think times mean longer sessions
● Longer sessions mean more jobs
● More jobs mean higher overall throughput

Jobs should be prioritized by their expected Jobs should be prioritized by their expected
response timeresponse time

● The assumed user behavior
– Probability to break session is proportional to

response time
● The CREASY scheduler

– Priority order for scheduling is proportional to
expected response time = criticality

 (shorter response times get higher priority)
– Similar to SJF, but short jobs that wait lose their

advantage
– This is combined with wait time to prevent

starvation

Simulation results: CREASY has no advantage
over EASY

● The assumed user behavior
– Probability to break session is proportional to

response time
– Users exhibit a daily cycle of activity and go to

sleep at night
● The CREASY scheduler

– Priority order for scheduling is proportional to
expected response time = criticality

 (shorter response times get higher priority)
– Similar to SJF, but short jobs that wait lose their

advantage
– This is combined with wait time to prevent

starvation

Simulation results: with daily cycles CREASY has
an advantage that depends on the relative weight
of the criticality consideration

?!?

● EASY is based on FCFS
● CREASY strongly prefers short response times

– During the day, accumulates long jobs in queue
– At night runs them using idle resources, thus

increasing throughput and utilization
– Can't do this if there is no idle time at night!

EASY CREASY

Summary:

Feedback is an important aspect of computer
workloads

It can have profound effects on system behavior
and should not be ignored in evaluations

Evaluations based on a generative workload model
are more reliable than evaluations based on
replaying a job trace

Model should be conservative and include all
workload features

Mini-project:
● Define criteria for extracting feedback from logs

– Each job may depend on a previous job by the
same user

– But which one?
– And when should it be considered to be

independent?
● Write program to add dependency information

to job logs
● Evaluate by comparing distributions of session

length etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

