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Workload 
modeling 
based on 
trace data:



  

Typical attributes modeled by distributions:
● Job arrival times
● Job runtimes
● Job sizes (resource requirements)

Model of arrival times is open:
jobs arrive from an infinite population of users, 
independent of system state

Also applies to re-playing a job trace

new arrivals terminations



  

Alternative is a closed model:
jobs only arrive when a previous one terminates, so 
completely dependent on system state

Neither model is very realistic:
● open model ignores effect of system on new 

arrivals – they continue to arrive even if the 
system is overloaded

● closed model assumes the number of jobs is 
always constant



  

A more realistic approach: generative modeling

● Do not model the workload as it is observed
● Instead, model the process that generates the 

workload
● Process is not oblivious, and may include 

interactions with the system

Leads to site-level simulations:
to evaluate a system, we also need to simulate 
its environment (=its users)



  

Specific example: user-based modeling
● Model the behavior of users as they generate the 

workload
● Including how users adapt their behavior in 

response to system performance
● This requires feedback from the system
● Also model the dynamics of the user population

Another example: network traffic modeling
● Model behavior of TCP as it sends packets over 

the network
● Includes sliding window and congestion control
● Called “modeling at the source”



  



  

Generative model is often hierarchical
● Web usage

– User session (arrivals, length)
– Requests for pages (sequence, links)
– Requests for embedded objects (bursts)

● Database usage
– Enterprise-level application logic
– High level queries
– Bursts of I/O operations

● User population, sessions, and activity 
[elaborated below]



  

Site-Level Simulation

 Shmueli and Feitelson, Using site-level modeling to evaluate the
performance of parallel system schedulers. 14th MASCOTS, Sep 2006



  

Conjecture:
● If the system performs well, users will submit 

more jobs
● If the system performance is lousy, users will 

refrain from submitting additional jobs

So systems are expected to display self-throttling:
submission rate is dictated by system load and its 
ability to cope with that load
and not by predefined timestamps

[Following examples from parallel job scheduling]



  

Evidence:



  

To introduce feedback, need model of user 
behavior in an interactive session

Learn about this from traces of real systems

In particular, look at distribution of think times (from 
termination of one job to arrival of the next one)

Surprise: many are negative



  

Conclusion: users submit jobs in 
batches

Need data about batch widthbatch width

Think timesThink times between batches
(this is where feedback comes)

Inter-arrivalsInter-arrivals within each batch

time



  

Complete site-level simulation:
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Importance of Feedback

 Shmueli and Feitelson, Using site-level modeling to evaluate the
performance of parallel system schedulers. 14th MASCOTS, Sep 2006



  

Conjecture: a workload trace reflects
1) The behavior of the scheduler that was used on 

the traced system
2) The interaction between the scheduler and the 

users

So using such a trace to simulate another scheduler 
leads to unreliable results!

We'll demonstrate this using traces generated using 
site-level simulation



  

Step 1: generate traces

FCFS – a simple scheduler that cannot support a 
high load
EASY – a more efficient backfilling scheduler

site-level simulation

FCFSusers low load
trace

Avg. wait
1:35 hr

site-level simulation

EASYusers high load
trace

Avg. wait
0:38 hr



  

Step 2: switch traces and use in regular simulation

simulate FCFS with high-load trace generated using 
EASY
simulate EASY with a low-load trace generated 
using FCFS

regular simulation

FCFS

low load
trace

Avg. wait
22:30 hr

regular simulation

EASY

high load
trace

Avg. wait
0:23 hr



  

Comparison of results:

So results of regular simulations based on a trace 
from another scheduler are unreliable
(assuming you accept that site-level simulations 
are reliable)

DifferenceWrong trace Site-levelScheduler

+1345%22:3001:35FCFS
-38%00:2300:38EASY



  

Additional problem: violation of dependencies 
between jobs

Assuming the batch submissions model, the jobs in 
each batch depend on those in the previous batch

But in trace-based simulations these dependencies 
may be violated: a job's arrival timestamp is before 
termination of previous job

May even arrive before previous job was started!

This happens more often when the load is 
increased by reducing interarrival times



  

User-Based Workload Model



  

Typical workload models characterize the jobs 
directly. This leads to several problems:
1) Not parametric (needed for tuning to specific 

conditions)
2) No good way to manipulate load
3) Do not provide locality of sampling (regularity 

and predictability)
4) No daily/weekly cycle
5) No self similarity (burstiness at different time 

scales)
6) No support for feedback
7) Do not support unique behavior and anomalies 

(flurries)

The alternative: a user-based generative model



  

Three level user-based generative model:

1) User population model
How new users arrive and depart the system

2) User sessions model
The activity patterns of a single user, including 
the daily cycle

3) User activity model
How users submit jobs within a session
[this is the part we did before]

Combines open and closed system models



  

Goals of the user population model:

User arrivals and departures cause fluctuations in 
load – not always the same number of active users

User arrivals and departures cause changes in 
workload patterns, as different users have different 
personalities

Provide some control over load (more users 
→higher load)

The overall mix should reflect variability seen in real 
systems



  

Specifics of the user population model:

Match data regarding new user arrivals

Match data regarding user residence times
(implies user departure times)

Match data regarding mix of user personalities 
(activity on workdays or nights/weekends, level of 
activity, etc.)

Allow for unique/abnormal users (e.g. flurries, bots)



  

Goals of user sessions model:

Create realistic fluctuations in load
(heavy-tailed session times/breaks lead to self 
similarity)

Align activity of different users
(all relate to the same daily cycle)

Incorporate some feedback
(aborted sessions due to bad performance)



  

Specifics of user sessions model:

Session starts should match data, and may be 
different for different user personalities

A session can end for one of 3 reasons:
1) It is the end of the work day and time to go home
2) The session has been going on for a long time 

and the user is tired
3) The system's performance is not good and the 

user gave up
[note that this implies feedback]



  

Goals of user activity model:

Create (short term) realistic fluctuations in load

Create locality due to repeated actions of users
(important for predictability and evaluation of 
adaptive systems)

Incorporate main feedback effects



  

Specifics of user activity model: locality of sampling

Users tend to repeat the same work over and over 
again

Therefore workloads are actually much more 
predictable than we may think

This is important for adaptive systems that learn 
about their environment and optimize their behavior 
for it

So workload models must include repetitions too



  

Specifics of user activity model:
Realistic user think times: what do users care 
about?

Average think times grow with response time!



  

An Alternative: Workload Resampling

N. Zakay and D. G. Feitelson, Workload resampling for performance
Evaluation of parallel job schedulers.  4th ICPE, Apr 2013. 



  

Resampling vs. Modeling
● Modeling is hard

– Multiple models (population, sessions, activity)
– Multiple distributions and parameters
– Important things may be left out

● Alternative is resampling
– Break log into small pieces
– Resample from pool of pieces to create new 

workload
– Can do this many times with variations



  

Granularity of Resampling
● Individual jobs

– Retain correlations of job attributes
– Mix job order, lose locality
– Need to model arrivals, sessions

● User sessions
– Retain locality in sessions
– Need to model activity patterns

● Complete user activity
– Retain all locality and patterns
– Need to adjust arrivals to allow for feedback

We chose
User-level
resampling



  

User Classification
● Long-term users

– Continuously active throughout the log
– Should be continuously active in simulations

● Temporary users
– Only appear for a limited time
– Can be resamples several times in simulation

● Special users (e.g. flurries or bots)
– Can be removed to simulate normal users only
– Can be amplified to see their effect



  



  

Applications
● Extend log by continued resampling to enable 

longer simulation
● Perform multiple similar repetitions and 

compute confidence intervals on metrics
● Change load by having more or less users
● Combine data from multiple logs for better 

representativeness
● Remove or emphasize special users



  

Repeated Simulations
● Verification: resulting 

load should be similar
– Sometimes it tends to 

be lower or higher
● Results: use 

distribution of 
performance metrics
– Simulation with original 

log may not be very 
representative



  

Increased Load

● Individual runs will have slightly different loads
● At high loads simulation may be unstable

– Detect unstable simulations by increasing queue 
length

– Discard results



  

Feedback and Evaluations



  

Feedback effects determine the load that will be 
placed on a system:

generated load

re
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on
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 ti
m

e

performance as
function of load

generated jobs
as function of
response time

steady
state



  

Feedback effects on the use of performance 
metrics:

with feedbackobliviousmetric
metric of performanceload

metric of performancedictated by arrivalsthroughput

metric of performanceresponse time

represented by throughput

should match offered 
load

misleading without noting 
throughput

represented by response 
time

user 
satisfaction



  

Conservative Modeling and Daily Cycles

Feitelson and Shmueli, A case for conservative workload modeling: parallel
job scheduling with daily cycles of activity.17th MASCOTS, Sep 2009



  

A workload model should include all important 
workload features

What is important?

● Everything that you know of
● Everything that actually affects the evaluation

The best practical approach is to be conservative



  

Understanding user behavior enables user 
cognizant system design
● Low response times lead to low think times
● Low think times mean longer sessions
● Longer sessions mean more jobs
● More jobs mean higher overall throughput

Jobs should be prioritized by their expected Jobs should be prioritized by their expected 
response timeresponse time



  

● The assumed user behavior
– Probability to break session is proportional to 

response time
● The CREASY scheduler

– Priority order for scheduling is proportional to 
expected response time = criticality

   (shorter response times get higher priority)
– Similar to SJF, but short jobs that wait lose their 

advantage
– This is combined with wait time to prevent 

starvation



  

Simulation results: CREASY has no advantage 
over EASY



  

● The assumed user behavior
– Probability to break session is proportional to 

response time
– Users exhibit a daily cycle of activity and go to 

sleep at night
● The CREASY scheduler

– Priority order for scheduling is proportional to 
expected response time = criticality

   (shorter response times get higher priority)
– Similar to SJF, but short jobs that wait lose their 

advantage
– This is combined with wait time to prevent 

starvation



  



  

Simulation results: with daily cycles CREASY has 
an advantage that depends on the relative weight 
of the criticality consideration

?!?



  

● EASY is based on FCFS
● CREASY strongly prefers short response times

– During the day, accumulates long jobs in queue
– At night runs them using idle resources, thus 

increasing throughput and utilization
– Can't do this if there is no idle time at night!

EASY CREASY



  

Summary:

Feedback is an important aspect of computer 
workloads

It can have profound effects on system behavior 
and should not be ignored in evaluations

Evaluations based on a generative workload model 
are more reliable than evaluations based on 
replaying a job trace

Model should be conservative and include all 
workload features



  

Mini-project:
● Define criteria for extracting feedback from logs

– Each job may depend on a previous job by the 
same user

– But which one?
– And when should it be considered to be 

independent?
● Write program to add dependency information 

to job logs
● Evaluate by comparing distributions of session 

length etc.
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