

Parallel Job Scheduling
and Workloads

Dror Feitelson

Hebrew University

Parallel Jobs

• A set of processes that cooperate to solve a
problem
– Example: weather forecast, industrial/military

simulation, scientific discovery

• Processes run in parallel on distinct
processors, communicate using high-speed
network

• Run to completion on dedicated processors to
avoid memory problems

• Require rectangle in processorsXtime space

Parallel Job Scheduling

• Each job is a rectangle

• Given many jobs, we must schedule them to
run on available processors

• This is like packing the rectangles

• Want to minimize space used, i.e. minimize
used resources and fragmentation

• On-line problem: don’t know future arrivals or
runtimes

Workloads

• System performance depends on the
workload
– Analogy: algorithm performance depends on the

input

• Evaluation workload should be representative
of real workloads

• In our case, the workload is a sequence of
jobs to run

• Can use data from system accounting logs

Workloads

• System performance depends on the
workload
– Analogy: algorithm performance depends on the

input

• Evaluation workload should be representative
of real workloads

• In our case, the workload is a sequence of
jobs to run

• Can use data from system accounting logs

• Job arrival patterns
• Job resource demands
(processors and
runtime)

Parallel Workloads Archive

• All large scale supercomputers maintain
accounting logs

• Data includes job arrival, queue time,
runtime, processors, user, and more

• Many are willing to share them

(and shame on those who are not)

• Collection at
www.cs.huji.ac.il/labs/parallel/workload/

• Uses standard format to ease use

 18:16:3710/19/93248232cmd1user2

18:16:2310/19/93100nshuser2

18:12:2810/19/93111cmd2user2

18:11:5910/19/93191cmd2user2

18:11:3610/19/9316564cmd11intel0

18:08:2710/19/9351pwdsysadmin

18:06:5710/19/93161pwdsysadmin

18:06:1010/19/93311cmd33user8

timedateruntmproccmduser

Example: NASA iPSC/860 trace

Using Traces

• In simulations, traces can be used directly to
generate the input workload
– Jobs arrive according to timestamps in the trace
– Each job requires the number of processors and

runtime specified in the trace

• Used to evaluate new schedulers

• Can also be used as data for workload
models

Outline

• Background: backfilling

• Conflicting performance results

• Explanation of results
• Accuracy of user runtime estimates

• Effect of inaccurate estimates

Outline

• Background: backfilling

• Conflicting performance results

• Explanation of results
• Accuracy of user runtime estimates

• Effect of inaccurate estimates

EASY Backfilling

• Early parallel machines used FCFS
scheduling
– Large jobs need to wait for many processors to

become available

– Leads to low utilization

• In 1993 Argonne Natl. Lab. receives IBM SP
machine with 128 nodes
– Develop extensible Argonne scheduling system

– Uses backfilling to fill in holes in the schedule

EASY Inputs
• List of running jobs

– Number of
processors they use

– Expected termination

• List of queued jobs
– How many

processors they need
– How long they are

expected to run
– Sorted in order of

arrival

pr
oc

es
so

rs

time

1st 2nd 3rd 4th

now

EASY Operation

• Schedule jobs on
available processors
in FCFS order

• Make reservation for
first job that cannot
run

• Schedule additional
jobs provided they do
not conflict with this
reservation

pr
oc

es
so

rs

time

1st 2nd 3rd 4th

EASY Operation

• Schedule jobs on
available processors
in FCFS order

• Make reservation for
first job that cannot
run

• Schedule additional
jobs provided they do
not conflict with this
reservation

pr
oc

es
so

rs

time

1st 2nd 3rd

EASY Operation

• Schedule jobs on
available processors
in FCFS order

• Make reservation for
first job that cannot
run

• Schedule additional
jobs provided they do
not conflict with this
reservation

pr
oc

es
so

rs

time

1st 2nd 3rd

This is called
“backfilling”

Backfilling Conditions

1. Backfill job will
terminate before
reservation time

OR

5. Backfill job uses
only “extra”
processors

pr
oc

es
so

rs

time

pr
oc

es
so

rs

time

Delay

• EASY only makes 1
reservation

• Other jobs may be
delayed without
bound

• But there is no
starvation
– Each job eventually

becomes first in
queue

pr
oc

es
so

rs

time

1
2

3

pr
oc

es
so

rs

time

1
2

3

FCFS

EASY ba
ck

fill

delay

Conservative Backfilling

• Reservations for all jobs
– Provide guaranteed start times for all jobs
– Later jobs cannot delay earlier jobs

• Maintain profile of planned schedule

• New jobs need to fit in the profile

Conservative Operation

1.Make reservation for
each job that cannot
start now

2.Avoid conflict with
previous reservations

3.Backfill jobs that can
start and have no
conflicts

pr
oc

es
so

rs

time

1st 2nd 3rd

Outline

• Background: backfilling

• Conflicting performance results

• Explanation of results
• Accuracy of user runtime estimates

• Effect of inaccurate estimates

Alternatives

• EASY uses aggressive backfilling
– Backfilled jobs run earlier
– But may cause delays for other jobs

• Conservative backfilling is an alternative
– Less benefits from backfilling
– But avoid delays for other jobs

Which approach is better?

Simulations

• Compare EASY and conservative
• Use different workload traces

– CTC
– SDSC

• Also use workload models
– Jann (based on CTC)
– Feitelson

• And different metrics of performance
– Response time
– Bounded slowdown

Workloads

• CTC: IBM SP at Cornell
– 430 node machine
– June 1996 to May 1997

– 79,000 jobs

• SDSC: IBM SP at San Diego
– 128 node machine

– April 1998 to April 2000
– 73,500 jobs

Models

• Jann
– Based on CTC data
– Log-uniform distribution of sizes

– Hyper-Erlang distribution of runtimes

• Feitelson
– Based on several traces

– Modal distribution of sizes
– Hyper-exponential distribution of runtimes
– Correlation between them

Metrics

• Response time: from arrival to termination

• Bounded slowdown:

b sld={
wr
r

r10

wr
10

r10

Simulation Results

• Results depend on interaction of
– Metrics
– Workloads
– Schedulers

• Specifically, comparing EASY and
conservative backfilling with CTC and Jann
workloads using response time and
slowdown metrics produces conflicting
results

• Recall that Jann model is based on CTC
data…

Results CTC

• EASY better for response time

• Largely the same for slowdown

Results Jann

• EASY better for response time

• Conservative better for slowdown

Results Feitelson

• Largely the same for both metrics

• Similar results for SDSC

Job Classes

• Backfilling depends on job characteristics
– Size
– (Expected) length

• Slowdown is sensitive to short jobs

• So let’s look at different job classes
independently
– Short jobs <= 1 hour

– Long jobs > 1 hour

Jann vs. CTC

28.414.51749715465All

1.651.473776333867Long

45.422.846323785ShortCTC

71.192.82731323901All

2.321.856517352655Long

10914364048015ShortJann

consEASYconsEASY

SlowdownResponse timeJob
class

Work-
load

Jann vs. CTC

28.414.51749715465All

1.651.473776333867Long

45.422.846323785ShortCTC

71.192.82731323901All

2.321.856517352655Long

10914364048015ShortJann

consEASYconsEASY

SlowdownResponse timeJob
class

Work-
load

Explanation

• With CTC all job classes behave consistently,
and EASY is better

• With Jann job classes are different:
– Conservative is better for short jobs

– EASY is better for long jobs

• Overall average of slowdowns dominated by
short jobs -> favors conservative

• Overall average of response times dominated
by long jobs -> favors EASY

But...

• We found the mechanism that produces
conflicting results from consistent data

• But why the difference between short and
long jobs with Jann?

• Look at details of workload

Workload Details

• Jann has very short jobs that suffer very high
slowdowns

• Jann has very long jobs that cause longer
delays to other jobs

• Job sizes in Jann are not powers of 2, so do
not pack so well

• System size for Jann is not power of 2

(BTW, most long jobs are serial)

Root Causes

• All these hypotheses were checked by
controlled modifications to the workload
– E.g., remove all very short/long jobs

• Cause of results is not differences in the
workload

• So look for clues in backfilling behavior

Results and Questions

• Under Jann, EASY does more backfilling of
long jobs

• Conservative does less backfill of long jobs
• Why does this happen?

• How does this lead to better performance of
short jobs?

Outline

• Background: backfilling

• Conflicting performance results

• Explanation of results
• Accuracy of user runtime estimates

• Effect of inaccurate estimates

Runtime Estimates

• When users submit jobs, they provide
– The number of processors to use
– An estimate of the job runtime

• Estimates are used to predict when
processors will become free for reservation

• Also used to verify that backfill job will
terminate before reservation

• If it does not, it will be killed

The Theory

• If runtime estimate is low, job has a better
chance to backfill

• If it is too low, job will be killed
• So users are motivated to provide accurate

estimates

The Reality

Explanation of Results

• The Jann model assumes accurate
runtime estimates
– Leaves few holes in the schedule
– Harder to backfill long serial jobs
– EASY backfills anyway and delays later short

jobs; slowdown is sensitive to such delays
– Conservative cannot delay and therefore does

not backfill; this leads to lower slowdowns

Explanation of Results

• In CTC estimates are grossly inaccurate
– This leads to holes in the schedule and

additional backfilling opportunities
– Both EASY and conservative achieve similar

backfilling

Verification

• Re-run CTC simulations
using accurate runtime
estimates

• Leads to results like Jann

Summary

A triple interaction:
• The CTC workload includes user estimates of

runtime. The Jann model does not.
• Using accurate estimates in Jann causes

conservative to achieve less backfilling of
long serial jobs. This is good for short jobs
that do not get delayed by them.

• Response time is dominated by long jobs, so
favors EASY. Slowdown is dominated by
short jobs, so favors conservative.

What about Feitelson?

• Jann is specifically modelled after CTC

• Shares the same distributions, especially the
long single-node jobs

• Feitelson does not have many such jobs

• So the whole interaction does not occur

Verification

• Modify Feitelson model to create many
single-node long jobs

• Also use non-power-of-two nodes

Summary of All Results

• No long serial jobs:

=> EASY and conservative are similar
• Have long serial jobs (as in CTC):

=> EASY and conservative are different
– User runtime estimates inaccurate:

=> EASY better
– User runtime estimates accurate:

=> EASY better for response time

=> conservative better for slowdown
– difference grows when machine size not power of 2

Conclusions

• Workloads and metrics may play a larger role
than expected

• Interactions can be complicated
• Seemingly benign assumptions can be

crucial

Outline

• Background: backfilling

• Conflicting performance results

• Explanation of results
• Accuracy of user runtime estimates

• Effect of inaccurate estimates

The Questions

What is the effect of inaccurate user runtime
estimates?

Can we generate more accurate predictions?

Will it improve performance?

The Experiments

• Replace user estimates with synthetic
estimates with controlled accuracy
– For a given inaccuracy factor f ≥1,

and a job with real runtime r,

generate an estimate in the range [r, f*r]

• Run the simulations again to assess effect

The Surprise
• Inaccurate runtime estimates lead to improved

performance
• Also better than the original user estimates

0

5000

10000

15000

20000

25000

30000

orig 1 2 4 11 31 101 301

re
s

p
o

n
s

e
 t

im
e

 [
s

]

CTC
KTH
SDSC

Exploiting this Result

• User estimates are inaccurate

• Inaccurate estimates lead to better
performance

• So why not make user estimates even less
accurate?

• Idea: multiply user estimates by 2

Outcome: indeed improves performance…

But why does it work?

A Defect in the Model

• Synthetic estimates based on the real
runtime convey considerable information
about the real runtime
– Even with f=10, a short job will have a short

estimate
– And a long job will have a long estimate

• Real estimates convey much less information
– Many simply use the maximal allowed value
– They are rounded to the nearest 5/15/30/60 min,

so jobs that are actually different become
indistinguishable

A Better Model

• Increased inaccuracy does not mean
multiplying by a larger factor

• Instead, it means more modal estimates
– More jobs use the maximal estimate value

– More jobs use estimates like 30 min or 2 hr

• This provides less information

• And indeed leads to degraded performance

The Dynamics of Backfilling

• With inaccurate estimates jobs will terminate
much earlier than expected

• Thus there will often be holes in the schedule
• These holes can be used for backfilling

• As we near the reservation for the first
queued job, the holes will become shorter

• This leads to preferential backfilling of short
jobs, or an SJF-like schedule

• Which leads to better performance

now

earliest job 3 can start

re
al

ru
nt

im
e

ov
er

es
tim

at
e

now

time “stolen”
from job 3

now

now

A Better Scheduler

• Doubling user estimates is a scheduler policy
that helps because it implicitly leads to an
SJF-like schedule

• This implicitly trades off fairness for
performance

• It would be better to do this explicitly
– Explicit SJF to reduce average response time
– Acknowledge the effect on fairness, and decide

whether it is worth it

• Compromise: backfill short jobs first

Results

Even better results achieved with historically
based runtime predictions

-21%102130BLUE

-11%102114KTH

-10%1921CTC

– 361363SDSC

Better bySJBF avg
wait time

EASY avg
wait time

Trace

History-Based Predictions

• Users often repeat work

• Successive jobs are similar

• So historical data is useful for predictions
– E.g. use average of last 2 jobs by same user

• Problem: this could be an underestimate
– System will kill job
– Users will be mad

The Solution

• Estimates have two uses:
1. Convey information about expected resource

usage to scheduler

2. Contract with user: job will be killed after this
time

• Predictions based on history replace only the
first use

• Also use prediction correction: if prediction is
too short, replace with original estimate

Results

Even better results for slowdown

-33%87130BLUE

-17%95114KTH

-33%1421CTC

-10% 327363SDSC

Better byEASY++ avg
wait time

EASY avg
wait time

Trace

	Parallel Job Scheduling and Workloads
	Parallel Jobs
	Parallel Job Scheduling
	Workloads
	Slide 5
	Parallel Workloads Archive
	Slide 6
	Using Traces
	Outline
	Slide 10
	EASY Backfilling
	EASY Inputs
	EASY Operation
	Slide 14
	Slide 15
	Backfilling Conditions
	Delay
	Conservative Backfilling
	Conservative Operation
	Slide 20
	Alternatives
	Simulations
	Slide 23
	Models
	Metrics
	Simulation Results
	Results CTC
	Results Jann
	Results Feitelson
	Job Classes
	Jann vs. CTC
	Slide 32
	Explanation
	But...
	Workload Details
	Root Causes
	Slide 36
	Results and Questions
	Slide 39
	Runtime Estimates
	The Theory
	The Reality
	Explanation of Results
	Slide 44
	Verification
	Summary
	What about Feitelson?
	Slide 48
	Summary of All Results
	Conclusions
	Slide 51
	The Questions
	The Experiments
	The Surprise
	Exploiting this Result
	Slide 55
	Slide 56
	A Defect in the Model
	Slide 58
	A Better Model
	The Dynamics of Backfilling
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	A Better Scheduler
	Results
	History-Based Predictions
	The Solution
	Slide 70

