Topics in Performance Evaluation

Dror Feitelson
Hebrew University

Experimental Design and Analysis of Variation

The questions:

1) What system configurations to simulate
2) What do the measurement results mean

Factorial Design

- A Factor - something that affects performance
- The model of the CPU
- The amount of memory you have
- Which benchmark is being measured
- A level - one of the values assumed by a factor
- Pentium Pro, Pentium III, or Pentium IV
- $256 \mathrm{MB}, 512 \mathrm{MB}$, or 1 GB
- Sorting, FFT, compilation, copying a file
- A design - setting the number of experiments, and which combination of levels will be used in each one

Simple factorial design

- Select a base configuration and measure it
- For each factor independently, set the different levels and perform measurements
- With k factors and n_{i} levels, the number of experiments is

$$
1+\sum_{i}^{k}\left(n_{i}-1\right)
$$

- Problem: does not identify interactions among the factors
- Example: different benchmarks may have different sensitivity to memory size

Full factorial design

- Measure all possible combinations of levels of the different factors
- With k factors and n_{i} levels, the number of experiments is

$$
\prod_{i}^{k} n_{i}
$$

- Provides full information about all interactions at the price of more work

Fractional factorial design

- Measure a subset of the possible combinations
- Attempt to obtain the most information for the minimal work
- Will be able to identify some interactions
- But cannot distinguish sets of interactions

- Common designs
- 2^{k} design: a full design of k factors with 2 levels each
- $2^{k} r$ design: same as 2^{k}, but each experiment is repeated r times
- 2^{k-p} design: a partial design with k factors but performing less experiments

Analyzing a 2^{2} Design
$2^{2}: 2$ factors, each has 2 levels

- For example, the first factor can be memory
- Call this factor X_{A}
- Its levels are 256 MB and 1 GB
- Let the second factor be cache size
- Call this factor X_{B}
- Let its levels be 16 KB and 32 KB

The levels need to span the relevant range
(this may change with time / technology)

- Perform a full factorial design, that is measure all 4 combinations
- Results can be shown in a table:

	memory	
	256 MB	1 GB
Cache		
16 KB	15	45
32 KB	25	75

- Assume a model with 4 unknowns:

$$
y=q_{0}+q_{A} X_{A}+q_{B} X_{B}+q_{A B} X_{A} X_{B}
$$

Abstracting the results (with levels ± 1)

$$
\begin{array}{|l|l|l|l|}
x_{B} & -1 & y_{1} & y_{2} \\
\hline & 1 & y_{3} & y_{4} \\
\hline
\end{array}
$$

And model

$$
y=q_{0}+q_{A} X_{A}+q_{B} X_{B}+q_{A B} X_{A} X_{B}
$$

Leads to 4 equations with 4 unknowns

$$
\begin{aligned}
& y_{1}=q_{0}-q_{A}-q_{B}+q_{A B} \\
& y_{2}=q_{0}+q_{A}-q_{B}-q_{A B} \\
& y_{3}=q_{0}-q_{A}+q_{B}-q_{A B} \\
& y_{4}=q_{0}+q_{A}+q_{B}+q_{A B}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=q_{0}-q_{A}-q_{B}+q_{A B} \\
& y_{2}=q_{0}+q_{A}-q_{B}-q_{A B} \\
& y_{3}=q_{0}-q_{A}+q_{B}-q_{A B} \\
& y_{4}=q_{0}+q_{A}+q_{B}+q_{A B}
\end{aligned}
$$

Summing them up leads to
$y_{1}+y_{2}+y_{3}+y_{4}=4 q_{0}+0 q_{A}+0 q_{B}+0 q_{A B}$
that is, $\quad q_{0}=\frac{1}{4}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)$

Similar algebraic manipulations lead to the solutions

$$
\begin{aligned}
q_{0} & =\frac{1}{4}\left(y_{1}+y_{2}+y_{3}+y_{4}\right) \\
q_{A} & =\frac{1}{4}\left(-y_{1}+y_{2}-y_{3}+y_{4}\right) \\
q_{B} & =\frac{1}{4}\left(-y_{1}-y_{2}+y_{3}+y_{4}\right) \\
q_{A B} & =\frac{1}{4}\left(y_{1}-y_{2}-y_{3}+y_{4}\right)
\end{aligned}
$$

For the example

	memory	
		256 MB
	1 GB	
	16 KB	15
	45	
32 KB	25	75

This procedure leads to the model

$$
y=40+20 X_{A}+10 X_{B}+5 X_{A} X_{B}
$$

(that is

$$
\left.q_{0}=40, q_{A}=20, q_{B}=10, q_{A B}=5\right)
$$

A sign table can be used for the computation:

	I	A	B	$A B$	Y
	1	-1	-1	1	15
	1	1	-1	-1	25
	1	-1	1	-1	45
	1	1	1	1	75
Sum	160	80	40	20	
Sum $/ 4$	40	20	10	5	
	q_{0}	q_{A}	q_{B}	$q_{A B}$	

For larger designs, find the appropriate table, plug in the results, and get the answer

Interpretation of these results:

- $q_{0}=40$: the average of all 4 measurements is 40
- $q_{A}=20$: the memory factor has an effect of ± 20
- $q_{B}=10$: the cache factor has an effect of ± 10
- $q_{A B}=5$: the interaction has an effect of ± 5

Each of these effects is an average over all the levels of the other factors

$\mathrm{q}_{0}=40$: the average of all 4 measurements is 40

average $=20$
average $=60$
$q_{A}=20$: the memory factor has an effect of ± 20

$q_{B}=10$: the cache factor has an effect of ± 10

$q_{A B}=5$: the interaction has an effect of ± 5

What do interactions mean?

- Consider two balanced systems
- The CPU and I/O subsystem are both adequate
- Or alternatively, two unbalanced systems
- Fast CPU and slow I/O
- Slow CPU and fast I/O
- Evaluate them using two programs
- A compute-intensive application
- An I/O-intensive application

Balanced	application	
Systems	CPU	1/0
CPU A I/O A	37	37
$\begin{aligned} & \text { CPU B } \\ & \text { I/O B } \end{aligned}$	35	43

$l\|l\|$ Unbalanced application Systems	CPU	I/O
Fast CPU	10	68
Slow I/O		
Slow CPU	62	12
Fast I/O		

- Same q_{0} (overall average)
- Same q_{A} (difference between left and right)
- Same q_{B} (difference between top and bottom)
- But very different $q_{A B}$ (diagonals): with unbalanced systems, matching the benchmark to the system is meaningful

Allocation of variation

- $\mathrm{SST}=$ sum squares total $=\sum\left(y_{i}-\bar{y}\right)^{2}$
- $\operatorname{SSA}=4 \mathrm{q}_{\mathrm{A}}{ }^{2}$
- $\mathrm{SSB}=4 \mathrm{q}_{\mathrm{B}}{ }^{2}$
- $S S A B=4 q_{A B}^{2}$
- Surprise: SST = SSA + SSB + SSAB

Explanation:

$$
\begin{aligned}
\sum\left(y_{i}-\bar{y}\right)^{2}= & \sum\left(q_{A} x_{A}+q_{B} x_{B}+q_{A B} x_{A} x_{B}\right)^{2} \\
= & \sum\left(q_{A} x_{A}\right)^{2}+\sum\left(q_{B} x_{B}\right)^{2} \\
& +\sum\left(q_{A B} x_{A} x_{B}\right)^{2} \\
& + \text { cross terms }
\end{aligned}
$$

the cross terms cancel out because the x's are ± 1 in all possible combinations

$$
\sum\left(q_{A} x_{A}\right)^{2}=q_{A}^{2} \sum x_{A}^{2}=4 q_{A}^{2}
$$

Allocation of variation

- SST = sum squares total $=\sum\left(y_{i}-\bar{y}\right)^{2}$
- $\operatorname{SSA}=4 \mathrm{q}_{\mathrm{A}}{ }^{2}$
- $\mathrm{SSB}=4 \mathrm{q}_{\mathrm{B}}{ }^{2}$
- $S S A B=4 q_{A B}{ }^{2}$
- Surprise: SST = SSA + SSB + SSAB
- So we can allocate the part of the variation due to each factor and to the interaction:

$$
\frac{S S A}{S S T} \quad \frac{S S B}{S S T} \quad \frac{S S A B}{S S T}
$$

Example

$\bar{y}=q_{0}=40 \quad$ Cache | | 256 MB | 1 GB |
| :--- | :--- | :--- |
| 16 KB | 15 | 45 |
| 32 KB | 25 | 75 |

$S S T=(15-40)^{2}+(45-40)^{2}+(25-40)^{2}+(75-40)^{2}$
$=(-25)^{2}+5^{2}+(-15)^{2}+35^{2}$
$=2100$
$\frac{S S A}{S S T}=\frac{4 \cdot 20^{2}}{2100}=\frac{1600}{2100}=76 \%$
$\frac{S S B}{S S T}=\frac{4 \cdot 10^{2}}{2100}=\frac{400}{2100}=19 \%$
$\frac{S S A B}{S S T}=\frac{4 \cdot 5^{2}}{2100}=\frac{100}{2100}=5 \%$

Reservations

- The relative importance of the different factors is exaggerated due to squaring
- The values depend on the specific measurements, which depend on the specific levels used
- Also depends on the model

An alternative: a multiplicative model

- Take the log of the results before analyzing

$$
\ln \left(y_{i}\right)=q_{0}+q_{A} X_{A}+q_{B} X_{B}+q_{A B} X_{A} X_{B}
$$

- The model then becomes

$$
y_{i}=e^{q_{0}} \cdot e^{q_{A} X_{A}} \cdot e^{q_{B} X_{B}} \cdot e^{q_{A B} X_{A} X_{B}}
$$

- The choice of model should depend on an understanding of the domain
- In particular, a multiplicative model is appropriate if the combined effect of the factors is expected to be multiplicative
- Example:
- Factor A is the CPU speed (or slowness) in cycles-per-instruction
- Factor B is the program length
- Execution time is their product
- A high interaction $\left(\mathrm{q}_{\mathrm{AB}}\right)$ may indicate that a multiplicative model should be checked

Fractional Design

- A full factorial design with 7 factors and 2 levels requires $2^{7}=128$ experiments
- A fractional design like 2^{7-4} can reduce this to a much lower number: $2^{3}=8$
- The question is how to select the combinations of levels to use
- The answer: try to reduce "confounding"

General procedure for 2^{k-p} fractional design:

- Create a sign table for a $2^{\text {d }}$ full design, where $d=k-p$
- This has one column of all 1 s
$-d$ columns for the d factors
$-2^{\mathrm{d}}-d-1$ columns of interactions
- Use the d factor columns for the first d factors
- Use $k-d$ of the interaction columns for the remaining factors
- Set the factor levels in each experiment (line) according to the signs of the different factor columns

Example: a 2^{7-4} fractional design

The sign table for a 2^{3} full design is

I	A	B	C	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-10	1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1
Replace 4							
interactions							
with the							
missing							
factors							

Example: a 2^{7-4} fractional design

The new sign table is

- The problem: confounding
- Each column no longer represents a single factor or interaction
- Example: the last column was ABC, and now it has the added role of G , and a few others
- With 7 factors, there are 128 q's representing factors and interactions
- But we only make 8 measurements
- So each one represents the combined effect of 16 factors and interactions!

Another example: a 2^{4-1} fractional design
The sign table for a 2^{3} full design is

I	A	B	C	$A B$	$A C$	$B C$	$A B C$
1	-1	-1	-1	1	1	1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	-1	1	-1	1
1	1	1	-1	1	-1	-1	1
1	-1	-1	1	1	-1	-1	1
1	1	-1	1	-1	1	-1	-1
1	-1	1	1	-1	-1	1	-1
1	1	1	1	1	1	1	1
ones							
Need to							
replace							
only 1							
interaction							

Another example: a 2^{4-1} fractional design Let's select the ABC column

I	A	B	C	AB	AC	BC	D	
1	-1	-1	-1	1	1	1	-1	
1	1	-1	-1	-1	-1	1	1	But each
1	-1	1	-1	-1	1	-1	1	column
1	1	1	-1	1	-1	-1	-1	actually
1	-1	-1	1	1	-1	-1	1	represents
1	1	-1	1	-1	1	-1	-1	two effects!
1	-1	1	1	-1	-1	1	-1	
1	1	1	1	1	1	1	1	

The confounding in this example is

	1 A	B	C	$A B$	$A C$	BC	C D	
	$A B C D B C D$	ACD	ABD	$C D$	BD	AD	D ABC	
	1 -1	-1	-1	1	1	1	1 -1	
Average confounded with $4^{\text {th }}$ order interaction	11	-1	-1	-1	-1		11	$2^{\text {nd }}$ order interactions confounded with each other
	1 -1	1	-1	-1	1		11	
	11	1	-1	1	-1	-1	1 -1	
	1 -1	-1	1	1	-1	-1	11	
	11	-1	1	-1	1	-1	1 -1	
	1 -1	1	1	-1	-1	1	1 -1	
	11	1	1	1	1	1	11	
	Ma confou order	in eff	fects with action				Assum order weake	g that higher eractions are this is good

But if we select the $A B$ column

	I	A	B	C	D	$A C$	$B C$	$A B C$
	$A B D$	$B D$	$A D$	$A B C D$	$A B$	$B C D$	$A C D$	$C D$
	1	-1	-1	-1	1	1	1	-1
Average	1	1	-1	-1	-1	-1	1	1
confounded	1	-1	1	-1	-1	1	-1	1
with 3rd								
order								
interaction	1	1	1	-1	1	-1	-1	-1
	1	-1	-1	1	1	-1	-1	1
	1	-1	1	-1	1	-1	-1	
	1	1	1	1	-1	-1	1	-1
	1	1	1	1				

Some main effects confounded with $2^{\text {nd }}$ order interactions

Assuming that lower order interactions are stronger, this is worse

But how do we find the confoundings?

- Columns of interactions are derived by point multiplication of the columns of the effects
- So need to find all the different
 combinations that give the same result

Repeated measurements

- A $2^{k} r$ design implies r repetitions of each experiment
- This enables an assessment of the experimental error
- And calculation of confidence intervals for the q's

The model with an error is

$$
y=q_{0}+q_{A} X_{A}+q_{B} X_{B}+q_{A B} X_{A} X_{B}+e
$$

- The average result of each experiment is

$$
\bar{y}_{i}=\frac{1}{r} \sum_{j} y_{i j}
$$

And this is used to calculate the effects

- In addition, we have the errors

$$
e_{i j}=y_{i j}-\bar{y}_{i}
$$

- By definition, the sum of errors in each experiment is 0
- But the sum of the squares of the errors is not

$$
S S E=\sum_{i} \sum_{j} e_{i j}^{2}
$$

- The fraction of the variation due to errors is then $\frac{S S E}{S S T}$
- To calculate confidence intervals, we need a model of the variance of each effect
- Assume that the $y_{i j}$ s are normally distributed with variance σ^{2}
- q_{0} is the sum of many such random variables

$$
q_{0}=\frac{1}{4 \mathrm{r}} \sum_{i j} y_{i j}
$$

- So it is also normally distributed, with variance

$$
\frac{\sigma^{2}}{4 \mathrm{r}}
$$

- Empirically, this variance is related to the variation allocated to the error

$$
s_{e}^{2}=\frac{S S E}{4(r-1)}
$$

- Therefore the estimate for the variance of q_{0} is

$$
s_{q_{0}}^{2}=\frac{s_{e}^{2}}{4 \mathrm{r}}
$$

- And the confidence interval is

$$
q_{0} \pm t_{1-\frac{\alpha}{2}, 4(r-1)} \cdot \frac{s_{e}}{\sqrt{4 \mathrm{r}}}
$$

