
  

Topics in Performance Evaluation

Dror Feitelson
Hebrew University

Experimental Design and Analysis of Variation



  

The questions:

1) What system configurations to simulate

2) What do the measurement results mean



  

Factorial Design



  

● A Factor – something that affects performance
– The model of the CPU

– The amount of memory you have

– Which benchmark is being measured

● A level – one of the values assumed by a factor
– Pentium Pro, Pentium III, or Pentium IV

– 256MB, 512MB, or 1GB

– Sorting, FFT, compilation, copying a file

● A design – setting the number of experiments, 
and which combination of levels will be used in 
each one



  

Simple factorial design
● Select a base configuration and measure it
● For each factor independently, set the different 

levels and perform measurements
● With     factors and      levels, the number of 

experiments is

● Problem: does not identify interactions among 
the factors
– Example: different benchmarks may have different 

sensitivity to memory size
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Intel Pentium

PowerPC
sortFFT

256MB

1GB
Base:Pentium + 256MB + sort

PowerPC + 256MB + sort

Pentium + 256MB + FFT

Pentium + 1GB     + sort



  

Full factorial design
● Measure all possible combinations of levels of 

the different factors
● With     factors and      levels, the number of 

experiments is

● Provides full information about all interactions 
at the price of more work
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Intel Pentium

PowerPC
sortFFT

256MB

1GB
Pentium + 256MB + sort

PowerPC + 256MB + sort

Pentium + 1 GB    + sort

Pentium + 1 GB    + FFT

PowerPC + 256MB + FFT

PowerPC + 1 GB    + sort

PowerPC + 1 GB    + FFT

Pentium + 256MB + FFT



  

Fractional factorial design
● Measure a subset of the possible combinations
● Attempt to obtain the most information for the 

minimal work
● Will be able to identify some interactions
● But cannot distinguish sets of interactions



  

Intel Pentium

PowerPC
sortFFT

256MB

1GB

Pentium + 256MB + sort

Pentium + 1 GB    + FFT

PowerPC + 256MB + FFT

PowerPC + 1 GB    + sort



  

● Common designs
● 2k design: a full design of k factors with 2 levels 

each
● 2kr design: same as 2k, but each experiment is 

repeated r times
● 2k-p design: a partial design with k factors but 

performing less experiments



  

Analyzing a 22 Design



  

22: 2 factors, each has 2 levels
● For example, the first factor can be memory

– Call this factor XA

– Its levels are 256MB and 1GB

● Let the second factor be cache size

– Call this factor XB

– Let its levels be 16KB and 32KB

The levels need to span the relevant range

(this may change with time / technology)



  

● Perform a full factorial design, that is measure 
all 4 combinations

● Results can be shown in a table:

● Assume a model with 4 unknowns:

memory

1GB256MB

451516KBCache
752532KB

y=q0qA X AqB X Bq AB X A X B



  

Abstracting the results

(with levels ±1)

And model

Leads to 4 equations with 4 unknowns

1-1

-1

1

XA

y2y1XB

y4y3

y=q0qA X AqB X Bq AB X A X B

y1=q0−qA−qBqAB
y2=q0qA−qB−qAB
y3=q0−qAqB−qAB
y4=q0qAqBqAB



  

Summing them up leads to

that is,

y1=q0−qA−qBqAB
y2=q0qA−qB−qAB
y3=q0−qAqB−qAB
y4=q0qAqBqAB

y1 y2 y3 y4 = 4 q00q A0qB0qAB

q0 =
1
4

 y1 y2 y3 y4 



  

Similar algebraic manipulations lead to the 
solutions

q0 =
1
4

 y1 y2 y3 y4 

q A=
1
4

−y1 y2− y3 y4 

qB =
1
4

−y1− y2 y3 y4 

q AB=
1
4

 y1− y2− y3 y4 



  

For the example

This procedure leads to the model

(that is                                                   )

memory

1GB256MB

451516KBCache
752532KB

y = 4020 X A10 X B5 X A X B

q0=40,q A=20,qB=10,q AB=5



  

A sign table can be used for the computation:

For larger designs, find the appropriate table, plug 
in the results, and get the answer

YABBAI
151-1-11
25-1-111
45-11-11
751111

204080160Sum
5102040Sum/4

q0 qA qB qAB



  

Interpretation of these results:

● q0=40 : the average of all 4 measurements is 40

● qA=20 : the memory factor has an effect of ±20

● qB=10 : the cache factor has an effect of ±10

● qAB=5 : the interaction has an effect of ±5

Each of these effects is an average over all the 
levels of the other factors



  

15 45

25 75

Factor A
memory

Factor B
cache

256MB 1GB

16KB

32KB



  

15 45

25 75

Factor A
memory

Factor B
cache

256MB 1GB

16KB

32KB

average=40

q0=40 : the average of all 4 measurements is 40



  

15 45

25 75

Factor A
memory

Factor B
cache

256MB 1GB

16KB

32KB

average=20

qA=20 : the memory factor has an effect of ±20

average=60



  

15 45

25 75

Factor A
memory

Factor B
cache

256MB 1GB

16KB

32KB

average=30

qB=10 : the cache factor has an effect of ±10

average=50



  

15 45

25 75

Factor A
memory

Factor B
cache

256MB 1GB

16KB

32KB

average=35

qAB=5 : the interaction has an effect of ±5

average=45



  

What do interactions mean?
● Consider two balanced systems

– The CPU and I/O subsystem are both adequate

● Or alternatively, two unbalanced systems
– Fast CPU and slow I/O

– Slow CPU and fast I/O

● Evaluate them using two programs
– A compute-intensive application

– An I/O-intensive application



  

● Same q0 (overall average)

● Same qA (difference between left and right)

● Same qB (difference between top and bottom)

● But very different qAB (diagonals): with 
unbalanced systems, matching the benchmark 
to the system is meaningful

applicationBalanced
I/OCPUSystems

3737CPU A
I/O A

4335CPU B
I/O B

applicationUnbalanced
I/OCPUSystems

6810Fast CPU
Slow I/O

1262Slow CPU
Fast I/O



  

Allocation of variation
● SST = sum squares total = 

● SSA = 4 qA
2

● SSB = 4 qB
2

● SSAB = 4 qAB
2

● Surprise: SST = SSA + SSB + SSAB

∑  y i−y 
2



  

∑  y i−y 
2
= ∑ q A x AqB xBq AB x A xB 

2

= ∑ qA x A
2
∑ qB x B

2

∑ qAB xA x B
2

cross terms

Explanation:

the cross terms cancel out because the x's are ±1 
in all possible combinations

∑ qA x A
2 = q A

2 ∑ xA
2 = 4qA

2



  

Allocation of variation
● SST = sum squares total = 

● SSA = 4 qA
2

● SSB = 4 qB
2

● SSAB = 4 qAB
2

● Surprise: SST = SSA + SSB + SSAB
● So we can allocate the part of the variation due 

to each factor and to the interaction:

∑  y i−y 
2

SSA
SST

SSB
SST

SSAB
SST



  

Example

memory

1GB256MB

451516KBCache
752532KBy=q0=40

SST = 15−40
2
45−40

2
25−40

2
75−40

2

= −25
2
52

−15
2
352

= 2100

SSA
SST

=
4⋅202

2100
=

1600
2100

= 76

SSB
SST

=
4⋅102

2100
=

400
2100

= 19

SSAB
SST

=
4⋅52

2100
=

100
2100

= 5

%

%

%



  

Reservations
● The relative importance of the different factors 

is exaggerated due to squaring
● The values depend on the specific 

measurements, which depend on the specific 
levels used

● Also depends on the model



  

An alternative: a multiplicative model

● Take the log of the results before analyzing

● The model then becomes

ln y i = q0qA X AqB X BqAB X A X B

y i = eq0⋅eq AX A⋅eqB X B⋅eq AB X A X B



  

● The choice of model should depend on an 
understanding of the domain

● In particular, a multiplicative model is 
appropriate if the combined effect of the factors 
is expected to be multiplicative

● Example:
– Factor A is the CPU speed (or slowness) in 

cycles-per-instruction

– Factor B is the program length

– Execution time is their product

● A high interaction (qAB) may indicate that a 
multiplicative model should be checked



  

Fractional Design



  

● A full factorial design with 7 factors and 2 levels 
requires 27=128 experiments

● A fractional design like 27-4 can reduce this to a 
much lower number: 23=8

● The question is how to select the combinations 
of levels to use

● The answer: try to reduce “confounding"



  

General procedure for 2k-p fractional design:
● Create a sign table for a 2d full design, where 

d=k-p
– This has one column of all 1s

– d columns for the d factors

– 2d – d – 1 columns of interactions

● Use the d factor columns for the first d factors
● Use k-d of the interaction columns for the 

remaining factors
● Set the factor levels in each experiment (line) 

according to the signs of the different factor 
columns



  

Example: a 27-4 fractional design

The sign table for a 23 full design is

A B CB CA CA BCBAI
-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111

ones
factors interactions

Replace 4 
interactions 

with the 
missing 
factors



  

Example: a 27-4 fractional design

The new sign table is

GFEDCBAI
-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111

ones
factors Here we use all the

interaction columns



  

● The problem: confounding
● Each column no longer represents a single 

factor or interaction
– Example: the last column was ABC, and now it has 

the added role of G, and a few others

● With 7 factors, there are 128 q's representing 
factors and interactions

● But we only make 8 measurements
● So each one represents the combined effect of 

16 factors and interactions!



  

Another example: a 24-1 fractional design

The sign table for a 23 full design is

A B CB CA CA BCBAI
-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111

ones
factors interactions

Need to 
replace 
only 1 

interaction



  

Another example: a 24-1 fractional design

Let's select the ABC column

DB CA CA BCBAI
-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111

But each 
column 
actually 

represents 
two effects!



  

The confounding in this example is

Average 
confounded 

with 4th 
order 

interaction

Main effects 
confounded with 3rd 
order interactions

2nd order 
interactions 
confounded 

with each other

Assuming that higher
order interactions are
weaker, this is good

DB CA CA BCBAI
A B CA DB DC DA B DA C DB C DA B C D

-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111



  

But if we select the AB column

Average 
confounded 

with 3rd 
order 

interaction

Some main effects 
confounded with 2nd 
order interactions

Assuming that lower
order interactions are
stronger, this is worse

A B CB CA CDCBAI
C DA C DB C DA BA B C DA DB DA B D
-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111



  

But how do we find 
the confoundings?
● Columns of 

interactions are 
derived by point 
multiplication of 
the columns of the 
effects

● So need to find all 
the different 
combinations that 
give the same 
result

DB CA CA BCBAI
A B CA DB DC DA B DA C DB C DA B C D

-1111-1-1-11
11-1-1-1-111
1-11-1-11-11
-1-1-11-1111
1-1-111-1-11
-1-11-11-111
-11-1-111-11
11111111



  

Repeated measurements



  

● A 2kr design implies r repetitions of each 
experiment

● This enables an assessment of the 
experimental error

● And calculation of confidence intervals for the 
q's

The model with an error is

y = q0qA X AqB X BqAB X A X Be



  

● The average result of each experiment is

And this is used to calculate the effects

● In addition, we have the errors

● By definition, the sum of errors in each 
experiment is 0

● But the sum of the squares of the errors is not

● The fraction of the variation due to errors is 
then

y i =
1
r
∑ j

y ij

eij= yij−yi

SSE=∑i∑ j
e ij

2

SSE
SST



  

● To calculate confidence intervals, we need a 
model of the variance of each effect

● Assume that the y
ij
s are normally distributed 

with variance σ2

● q
0
 is the sum of many such random variables

● So it is also normally distributed, with variance

q0 =
1
4r

∑ij
yij


2

4r



  

● Empirically, this variance is related to the 
variation allocated to the error

● Therefore the estimate for the variance of q
0
 is

● And the confidence interval is

se
2
=

SSE
4 r−1

sq0

2 =
se

2

4r

q0 ± t
1−



2
, 4 r−1 

⋅
se

 4r


