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Previous lecture:
● Representativeness of workloads
● Workload data and cleaning
● Heavy tails

This lecture:
● Burstiness and self similarity
● Locality of sampling



  

Burstiness and Self-Similarity



  

Let's make the following assumptions about how 
new work (jobs, packets, requests) arrives at a 
computer system:
● Work items arrive independently of each other
● They can arrive at any instant with uniform 

probability
● We measure time at fine granularity, so at each 

instant at most one arrives

This defines a Poisson process



  

Implications of a Poisson process:
● Work arrives uniformly over time

– No large bursts of sudden activity

– No cycles of activity

● Inter-arrival times are exponentially distributed
– Allows for easy simulation of arrivals without 

deciding in advance how many will arrive

● Merging multiple Poisson processes is also a 
Poisson process

● Relative variability is reduced with aggregation
– If we look at a longer time, periods with more 

activity cancel out with periods with less activity



  

Checking experimentally that arrivals are 
Poisson:
● Verify that distribution of inter-arrivals is indeed 

exponential
– Compare to exponential distribution with same 

average arrival rate

● Verify that successive inter-arrivals are 
independent of each other
– Look at correlation of successive inter-arrivals

● Verify that when aggregated the relative 
variance is reduced



  

Poisson arrivals aggregated



  

Real arrivals aggregated
The term "self-similar"

derives from the fact that
this looks like itself

at all different scales
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Another visualization using texture plots

This defines a time unit u, and plots each datum 
at  X = t / u  and  Y = t mod u



  

● Results: arrivals are often not Poisson
– Packets in a communication network

– Jobs to a parallel supercomputer

● But sometimes they are
– New flows on a network

● This has implications for system capacity
– Network buffers need to be large enough for bursts 

of activity

● Also need to consider other effects, e.g. the 
daily work cycle



  

The R/S metric and Hurst Parameter



  

How do you quantify self-similarity?
● Successive items are correlated (including 

long-range correlations)
● So if you sum them up, you will get large 

deviations from the average
● Deviations larger than those of summing 

random independent items indicate self-
similarity
– Leads to larger relative variability than Poisson

– Leads to “random walk” that moves farther from the 
origin



  

● Start with a time series X1, X2, X3, ...

For example, Xi can be the number of packets that 
arrived in second i

● Center the data by subtracting its average, 
giving 

● Now create the sum of the first n items, for all n

Note that Yn = 0

● Finally, look at the range covered by these

Z i = X i− X

Y j =∑i=1

j
Z i

Rn = max jY j−min jY j

steps

random walk

range covered
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● The magnitude of Rn is related to

– The number of consecutive steps in each direction

– The size of each step

● To remove the second effect and focus on the 
first one, we divide by the standard deviation

● The model is that this grows as a power law

● By taking the log, we get

 RS n = C n
H 0≤H≤1

log  RS n ∝ H log n



  

What happens for a random walk?

● Each step is Xi = +1 or Xi = -1

● The expected distance squared is 

● So the root-mean-square distance is

● And indeed we get H = 0.5

E [Y j
2
] = E [Y j−1X j

2
]

= E [Y j−1
2 ]2 E [Y j−1 X j]E [X j

2]

= E [Y j−1
2

]1
= j

RMS Y n = n
0.5



  

For self-similar data:
● Collect data for many different sizes n
● For each one, look at many different subsets of 

this length

● Calculate (R/S)n for each one

● Draw a pox-plot: the measured (R/S)n as a 
function of n on log-log axes

● Expect to get a straight line, with slope 
proportional to the Hurst parameter H



  



  



  

Locality of Sampling



  

● Common model of workload generation is 
sampling from a distribution
– Implied in fitting distributions to data and random 

variate generation in simulations

– Implied in definition of arrival and service 
distributions in queueing analysis

● This requires a stationarity assumption
● But real workloads are non-stationary

– Daily/weekly cycles

– Workload evolution as usage changes

– Locality in user behavior: repeated activity + shifting 
focus with time



  

Locality reduces randomness
● Important for adaptive systems

– Can learn about the workload

– Can make predictions for the future

● Important for performance evaluations
– Randomness is good because things tend to 

average out

– Lack of randomness is harder to handle



  

"Locality of sampling"
● Assume an underlying stationary distribution

– e.g. empirical distribution from a long data log

● Workload is generated by a 2-level sampling 
process
– Select a location within the distribution

– Sample multiple items from this location

● Generative model of user behavior
– At a given time, users focus on a certain project

– While working on this project they repeatedly do the 
same thing



  



  



  



  

Quantifying locality of sampling:

0.Create histogram of global data, and partition 
into r equally likely ranges

1.Partition the log into slices that are long enough 
to contain sufficient data (>5r items)

2.For each slice i find number of items in each 
range o

j
, and compute

4.Find median of all the m
i

The idea: quantify concentration of values in one 
range of the global  distribution

mi=
max j {∣o j−ei∣}

N i−ei



  
Example results



  

Are the results significant? Could they occur 
randomly?

Test using the bootstrap method:
● Assume the global distribution
● Draw random samples according to the number 

of samples in each slice

● Calculate m
i
 for each, and find median

● Repeat all this 1000 times and find distribution 
of medians

● Does the empirical result agree with this 
distribution?



  
Significance of results



  

Modeling locality of sampling:
● Empirical data: job repetitions are heavy tailed
● Top level of model: choose a job
● Bottom level: repeat it according to Zipf 

distribution
● Tail parameter of distribution allows control 

over the level of locality
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