Experimental Approaches in Computer Science

> Dror Feitelson Hebrew University

Lecture 6 – Experimental Design and Analysis of Variation The questions:

- 1) What system configurations to measure
- 2) What do the measurement results mean

Factorial Design

- A Factor something that affects performance
 - The model of the CPU
 - The amount of memory you have
 - Which benchmark is being measured
- A level one of the values assumed by a factor
 - Pentium Pro, Pentium III, or Pentium IV
 - 256MB, 512MB, or 1GB
 - Sorting, FFT, compilation, copying a file
- A design setting the number of experiments, and which combination of levels will be used in each one

Simple factorial design

- Select a base configuration and measure it
- For each factor independently, set the different levels and perform measurements
- With k factors and n_i levels, the number of experiments is $1 + \sum_{i=1}^{k} (n_i 1)$
- Problem: does not identify interactions among the factors
 - Example: different benchmarks may have different sensitivity to memory size

Full factorial design

- Measure all possible combinations of levels of the different factors
- With k factors and n_i levels, the number of experiments is $\prod_{i=1}^{k} n_i$
- Provides full information about all interactions at the price of more work

Pentium + 1 GB + FFT

Fractional factorial design

- Measure a subset of the possible combinations
- Attempt to obtain the most information for the minimal work
- Will be able to identify some interactions
- But cannot distinguish sets of interactions

- Common designs
- 2^k design: a full design of k factors with 2 levels each
- 2^kr design: same as 2^k, but each experiment is repeated *r* times
- 2^{k-p} design: a partial design with k factors but performing less experiments

Analyzing a 2² Design

2²: 2 factors, each has 2 levels

- For example, the first factor can be memory
 - Call this factor X_A
 - Its levels are 256MB and 1GB
- Let the second factor be cache size
 - Call this factor X_B
 - Let its levels be 16KB and 32KB

The levels need to span the relevant range (this may change with time / technology)

- Perform a full factorial design, that is measure all 4 combinations
- Results can be shown in a table:

		memory				
		256MB	1GB			
Cache	16KB	15	45			
	32KB	25	75			

• Assume a model with 4 unknowns:

$$y = q_0 + q_A X_A + q_B X_B + q_{AB} X_A X_B$$

			Х	A
Abstracting the re	sults		-1	1
(with levels ±1)	X٦	-1	y 1	y 2
		1	У 3	Y 4

And model

$$y = q_0 + q_A X_A + q_B X_B + q_{AB} X_A X_B$$

Leads to 4 equations with 4 unknowns

$$y_{1} = q_{0} - q_{A} - q_{B} + q_{AB}$$

$$y_{2} = q_{0} + q_{A} - q_{B} - q_{AB}$$

$$y_{3} = q_{0} - q_{A} + q_{B} - q_{AB}$$

$$y_{4} = q_{0} + q_{A} + q_{B} + q_{AB}$$

$$y_{1} = q_{0} - q_{A} - q_{B} + q_{AB}$$

$$y_{2} = q_{0} + q_{A} - q_{B} - q_{AB}$$

$$y_{3} = q_{0} - q_{A} + q_{B} - q_{AB}$$

$$y_{4} = q_{0} + q_{A} + q_{B} + q_{AB}$$

Summing them up leads to

$$y_1 + y_2 + y_3 + y_4 = 4 q_0 + 0 q_A + 0 q_B + 0 q_{AB}$$

that is, $q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$

Similar algebraic manipulations lead to the solutions

$$q_{0} = \frac{1}{4} (y_{1} + y_{2} + y_{3} + y_{4})$$

$$q_{A} = \frac{1}{4} (-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4} (-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4} (y_{1} - y_{2} - y_{3} + y_{4})$$

This procedure leads to the model

$$y = 40 + 20 X_A + 10 X_B + 5 X_A X_B$$

(that is $q_0 = 40, q_A = 20, q_B = 10, q_{AB} = 5$)

A sign table can be used for the computation:

Interpretation of these results:

- $q_0=40$: the average of all 4 measurements is 40
- q_A=20 : the memory factor has an effect of ±20
- $q_B = 10$: the cache factor has an effect of ± 10
- q_{AB}=5 : the interaction has an effect of ±5

Each of these effects is an average over all the levels of the other factors

q₀=40 : the average of all 4 measurements is 40

q_A=20 : the memory factor has an effect of ±20

q_B =10 : the cache factor has an effect of ±10

 q_{AB} =5 : the interaction has an effect of ±5

What do interactions mean?

- Consider two balanced systems
 - The CPU and I/O subsystem are both adequate
- Or alternatively, two unbalanced systems
 - Fast CPU and slow I/O
 - Slow CPU and fast I/O
- Evaluate them using two programs
 - A compute-intensive application
 - An I/O-intensive application

Balanced	applic	ation	Unbalanced	applic	ation	
Systems	CPU	I/O	Systems	CPU	I/O	
CPU A	27	27	Fast CPU	10	68	
I/O A	57	57	Slow I/O	IU		
CPU B	25	12	Slow CPU	60	10	
I/O B	55	43	Fast I/O	UΖ	ΙZ	

- Same q₀ (overall average)
- Same q_A (difference between left and right)
- Same q_B (difference between top and bottom)
- But very different q_{AB} (diagonals): with unbalanced systems, matching the benchmark to the system is meaningful

Allocation of variation

- SST = sum squares total = $\sum (y_i \overline{y})^2$
- SSA = 4 q_A^2
- SSB = $4 q_B^2$
- SSAB = 4 q_{AB}^2
- Surprise: SST = SSA + SSB + SSAB

Explanation:

$$\sum (y_i - \overline{y})^2 = \sum (q_A x_A + q_B x_B + q_{AB} x_A x_B)^2$$

=
$$\sum (q_A x_A)^2 + \sum (q_B x_B)^2$$

+
$$\sum (q_{AB} x_A x_B)^2$$

+ cross terms

the cross terms cancel out because the x's are ±1 in all possible combinations

$$\sum (q_A x_A)^2 = q_A^2 \sum x_A^2 = 4 q_A^2$$

Allocation of variation

- SST = sum squares total = $\sum (y_i \overline{y})^2$
- SSA = 4 q_A^2
- SSB = $4 q_B^2$
- SSAB = 4 q_{AB}^2
- Surprise: SST = SSA + SSB + SSAB
- So we can allocate the part of the variation due to each factor and to the interaction:

<u>SSA</u>	<u>SSB</u>	<u>SSAB</u>
SST	\overline{SST}	SST

			mem	lory	
Framnle	_		256MB	1GB	-
$= - \alpha = 40$	ache_	16KB	15	45	
$y = q_0 = 40$	Cacile	32KB	25	75	
$SST = (15 - 40)^2 + (45 - 40)$	$^{2}+(2$	25-4	$(0)^2 + (2)^2$	75-4	$(0)^2$
$= (-25)^2 + 5^2 + (-15)^2 -$	$+35^{2}$	2			
= 2100					
$\frac{SSA}{SST} = \frac{4 \cdot 20^2}{2100} = \frac{1600}{2100} = 76\%$	/ 0				
$\frac{SSB}{SST} = \frac{4 \cdot 10^2}{2100} = \frac{400}{2100} = 19\%$	/ 0				
$\frac{SSAB}{SST} = \frac{4 \cdot 5^2}{2100} = \frac{100}{2100} = 5\%$, 0				

Reservations

- The relative importance of the different factors is exaggerated due to squaring
- The values depend on the specific measurements, which depend on the specific levels used
- Also depends on the model

An alternative: a multiplicative model

- Take the log of the results before analyzing $\ln(y_i) = q_0 + q_A X_A + q_B X_B + q_{AB} X_A X_B$
- The model then becomes

$$y_i = e^{q_0} \cdot e^{q_A X_A} \cdot e^{q_B X_B} \cdot e^{q_{AB} X_A X_B}$$

- The choice of model should depend on an understanding of the domain
- In particular, a multiplicative model is appropriate if the combined effect of the factors is expected to be multiplicative
- Example:
 - Factor A is the CPU speed (or slowness) in cyclesper-instruction
 - Factor B is the program length
 - Execution time is their product
- A high interaction (q_{AB}) may indicate that a multiplicative model should be checked

Fractional Design

- A full factorial design with 7 factors and 2 levels requires 2⁷=128 experiments
- A fractional design like 2⁷⁻⁴ can reduce this to a much lower number: 2³=8
- The question is how to select the combinations of levels to use
- The answer: try to reduce "confounding"

General procedure for 2^{k-p} fractional design:

- Create a sign table for a 2^d full design, where d=k-p
 - This has one column of all 1s
 - *d* columns for the *d* factors
 - $-2^{d} d 1$ columns of interactions
- Use the *d* factor columns for the first *d* factors
- Use k-d of the interaction columns for the remaining factors
- Set the factor levels in each experiment (line) according to the signs of the different factor columns

Example: a 2^{7-4} fractional design The sign table for a 2^3 full design is

Example: a 2⁷⁻⁴ fractional design The new sign table is

- The problem: confounding
- Each column no longer represents a single factor or interaction
 - Example: the last column was ABC, and now it has the added role of G, and a few others
- With 7 factors, there are 128 q's representing factors and interactions
- But we only make 8 measurements
- So each one represents the combined effect of 16 factors and interactions!

Another example: a 2^{4-1} fractional design The sign table for a 2^3 full design is

Another example: a 2⁴⁻¹ fractional design Let's select the ABC column

	А	В	С	ΑB	AC	ВC	D	_
1	-1	-1	-1	1	1	1	-1	
1	1	-1	-1	-1	-1	1	1	But each
1	-1	1	-1	-1	1	-1	1	column
1	1	1	-1	1	-1	-1	-1	actually
1	-1	-1	1	1	-1	-1	1	represents
1	1	-1	1	-1	1	-1	-1	two effects!
1	-1	1	1	-1	-1	1	-1	
1	1	1	1	1	1	1	1	

The confounding in this example is

But if we select the AB column

	Ι	А	В	С	D	AC	ВC	ABC	
	ABD	ΒD	ΑD	ABCD	AB	BCD	ACD	CD	
	1	-1	-1	-1	1	1	1	-1	
	1	1	-1	-1	-1	-1	1	1	
Average	1	-1	1	-1	-1	1	-1	1	
with 3 rd order interaction	1	1	1	-1	1	-1	-1	-1	
	1	-1	-1	1	1	-1	-1	1	
	1	1	-1	1	-1	1	-1	-1	
	1	-1	1	1	-1	-1	1	-1	
	1	1	1	1	1	1	1	1	
	S	ome onfoui order	main nded intera	effect with 2 actions	S and		As orc	sumi ler ir onge	ng that lower iteractions are er, this is worse

But how do we find the confoundings?

- Columns of interactions are derived by point multiplication of the columns of the effects
- So need to find all the different combinations that give the same result

Repeated measurements

- A 2^kr design implies *r* repetitions of each experiment
- This enables an assessment of the experimental error
- And calculation of confidence intervals for the q's

The model with an error is

$$y = q_0 + q_A X_A + q_B X_B + q_{AB} X_A X_B + e$$

• The average result of each experiment is $\overline{y}_i = \frac{1}{r} \sum_j y_{ij}$

And this is used to calculate the effects

• In addition, we have the errors

But the sum of the squares of the errors is not

 $e_{ij} = y_{ij} - \overline{y}_i$

$$SSE = \sum_{i} \sum_{j} e_{ij}^{2}$$

• The fraction of the variation due to errors is then <u>SSE</u>

- To calculate confidence intervals, we need a model of the variance of each effect
- Assume that the y_{ij} s are normally distributed with variance σ^2
- q_0 is the sum of many such random variables $q_0 = \frac{1}{4r} \sum_{ij} y_{ij}$
- So it is also normally distributed, with variance $\frac{\sigma^2}{4r}$

• Empirically, this variance is related to the variation allocated to the error

$$s_e^2 = \frac{SSE}{4(r-1)}$$

• Therefore the estimate for the variance of q_0 is

$$s_{q_0}^2 = \frac{s_e^2}{4r}$$

And the confidence interval is

$$q_0 \pm t_{1-\frac{\alpha}{2}, 4(r-1)} \cdot \frac{s_e}{\sqrt{4r}}$$