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Given measured data, we can
● Describe it

– Mean, median
– Range, standard deviation
– Histogram, scatter plot, empirical distribution

● Model it
– Fit to a distribution function
– Apply regression
– Find a generative mechanism



  

Fitting a Distribution



  

● Data is given
● Assume data was created by sampling from a 

distribution
● What distribution was this?

– Use a set of predefined candidates
– Estimate parameter values
– Check goodness of fit

● Process can be automated
● Limited to those predefined distributions

– Cannot handle mixtures



  

Parameter estimation
● Moments matching method
● Maximum likelihood method



  

Example: moments matching for gamma 
distribution
● Distribution has two parameters: α and β
● Mean is 
● Variance is 
● These can be inverted to find parameters based 

on (estimated) mean and variance:

x = 
var x  =  2

 = x2/ var  x 
 = var  x /x



  

Warning:
● With k parameters, need to use k moments
● High moments are very sensitive to outliers
● Especially troublesome for distributions with a 

heavy tail
● Example: 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 15

– 5th moment is 63,676
– 99.4% of this is due to the outlier 15
– If outlier was 16, 5th moment would be 87,776
– an increase of 38%



  

Maximum likelihood estimation: find the 
parameter values that are most likely to have led 
to the observed samples
● Likelihood is product of probability to observe 

each one
● Differentiate and equate to 0 to find max
● Done in log-space to turn product into sum



  

Example: exponential distribution
● Likelihood is product of probability to observe 

these samples

● Take log to get a sum

L X 1, X 2, X n ; =∏i=1

n 1

e−X i / 

ln  L X 1, X 2, X n ;=∑i=1

n ln 1−X i /
= n ln 1−∑i=1

n
X i /



  

● Differentiate by 

● Equate this to 0, giving



∂
∂ [n ln1 −∑i=1

n
X i/ ]=−n 1


 1

2
∑i=1

n
X i

n 1

= 1

2
∑i=1

n
X i

 = 1
n∑i=1

n
X i



  

● Note: finding the best parameters for an 
assumed distribution does not necessarily imply 
a good fit!

● Check goodness of fit using statistical tests
– chi-square
– Kolmogorov-Smirnov
– Anderson-Darling

● Or simple visual tests
– Q-Q plot



  

Kolmogorov-Smirnov
● Metric is maximal 

vertical distance 
between 
distributions

● Reflects maximal 
error of model 
relative to data

● Not sensitive to tails



  

Q-Q Plots
● For each quantile, 

find its value in the 
data and in the 
model, and plot

● Deviations from 
straight line indicate 
lack of fit

● More sensitive to 
tails



  

Generative Models



  

How does one choose a candidate distribution 
when fitting parameters?
● Try all of them and see which gives a good fit
● Select a distribution that matches your 

understanding of what is going on



  

Example 1: arrivals
● Assume arrivals occur at a constant rate (at 

each instant, there is an equal probability of a 
new arrival)

● And they are independent (arrivals at one 
instant have no relation to those at other 
instants)

● And they do not come in bursts (at each instant, 
there is at most one arrival)

● Then arrivals are a Poisson process
● And interarrival times are exponentially 

distributed



  

Example 2: file sizes
● Assume files are created as derivatives of 

existing files
– editing a files produces a new file and leaves the 

old one as a backup
– compiling a program file creates an executable file

● And the process is multiplicative (the new file 
size is derived by multiplying the original file 
size by a random number)

● And repetitive (file sizes are the result of many 
such multiplications)

● Then the distribution of file sizes is lognormal



  

Handling Censored Data



  

● When measuring the duration of an event, 
some events may not have finished yet

● This provides partial information: we don't know 
what the duration is, but we know it is longer 
than t

● This is called right-censored data
● Question is, how to incorporate it into the 

empirical distribution



  

Examples:
● Trying to find the distribution of session 

durations based on a log of sessions – ongoing 
sessions are censored

● Trying to find the distribution of process 
lifetimes from a trace of processes that ran on 
the system – processes that were killed are 
censored

● Trying to find how long users are willing to wait 
from the distribution of wait times – cases 
where the user received service are censored



  

Finding the empirical distribution function
● Let x

i
 denote a sampled value

● Let d
i
 denote the number of real samples with 

value x
i
 (excluding censored samples with this 

value)
● Let n

i
 denote all samples larger than or equal to 

x
i
 (both real and censored)

● Then the hazard at x
i
 (risk of surviving up to x

i
 

and then dying) is d
i
 / n

i

● And the probability of surviving x
i
 is 1 - d

i
 / n

i



  

Finding the empirical distribution function
● The probability of surviving x

i
 is 1 - d

i
 / n

i

● Then the probability of surviving an arbitrary x is 
the probability of surviving all smaller x

i
:

(This is the Kaplan-Meier formula)
● Note: this assumes censoring is random

– population is homogeneous
– long events have a higher probability of being 

censored

Pr X≥x  =∏ x ix
1−d i/ni



  

Example: samples from an exponential 
distribution, about half are censored



  

2D Data



  

● Data may come in 2 (or more) dimensions
● The question is then whether one may be used 

to predict the other
– Do processes that use more memory run longer?
– Do systems with more users also experience higher 

levels of activity?
– Are short files accessed more often?



  

FIRST, LOOK AT THE DATA
● Draw a scatter plot
● Verify that you see a well-defined pattern
● Then try to find an equation that models it

– may require a transformation
● Problematic when more than 2 dimensions are 

involved



  

● Runtime vs. size of parallel jobs
● No appreciable correlation



  

● Average job size vs. number of jobs in a week
● Looks like an inverse relationship



  

Regression



  

● Simplest model is a linear one:

● Note asymmetry between X and Y: X is given 
and used to predict Y

● The quality of the model is assessed by the 
quality of the predictions: given a data point 
(X,Y), how close is Y to aX+b ?

Y=aXb



  

Finding a and b
● Goal: minimize vertical distances between Y

i
 

and corresponding prediction aX
i
+b

● Method: differentiate and equate to 0

∂
∂a [∑i=1

n
Y i−aX ib

2]=0
∂
∂b [∑i=1

n
Y i−aX ib

2]=0



  

The solution (after some algebra):

a=
∑i=1

n
X iY i−n X Y

∑i=1

n
X i
2−n X 2

b=Y−a X



  

Quantifying the quality of the regression
● If we didn't know anything, our best prediction 

would be that every Y
i
 is like the mean Y

The variation is then 
● But given the model predictions, we can explain 

away much of this variation: it results from 
having different X

i
s

The fraction of the variation thus explained is

● If R2≈1 then the linear model explains most of 
the variation very well

SST =∑i=1

n
Y i−Y 2

R2=
∑i=1

n
a X ib−Y 2

∑i=1

n
Y i−Y 2



  

Interpreting regression results
● R2≈1 implies that the relationship is near linear

– as opposed to a diffuse cloud of points
● This is susceptible to strong effects by outliers

– so does not necessarily look linear to humans
● It says nothing about the slope of the line

– The slope is expressed by the a parameter



  

Example of the effect of an outlier



  

Not only for linear models:
● regression of Y with 1/X gives inverse 

relationship
● regression of Y with X2 gives quadratic 

relationship
● regression of Y with 1-eX gives exponential 

convergence


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

