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Assume we start taking measurements of 
something:



  

Such measurements are limited by the resolution 
of our measurement apparatus: the smallest 
difference between measurements

Example: measuring time in milliseconds



  

Another problem is the uncertainty in the 
measurements: if we repeat them, we get 
somewhat different results

This is caused by random errors that reflects the 
(im)precision of the measurement



  

A third issue is the accuracy of the 
measurement: how far it is from the “real” value

This reflects the systematic error in the 
measurement
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Systematic errors are systematic – they always 
have the same effect

Example: when measuring the time to perform an 
action, the overhead of the measurement itself is 
added to the result

Part of the design should be to identify systematic 
errors and factor them out

A special problem is warmup or hysteresis-type 
errors, where the outcome depends on history; for 
example, the first measurement could be different 
from subsequent ones



  

Random errors are random – they may have 
different effects

Example: when measuring the time to perform an 
action, the result may depend on cache state, 
interrupts from the network, and competition from 
other processes

This can be analyzed statistically

In extreme cases, interference leads to outliers 
that should be ignored



  

Model of random errors:

Assume the error is a combination of multiple 
effects, each contributing ±ε

If we have n such effects, the outcome will have a 
binomial distribution

For large n, this can be approximated by a normal 
distribution

Calculation of confidence intervals is based on 
assumption of a normal distribution

p Xk  = 
n
nk

2  1
2n



  

Summary:

resolution: the
smallest difference
we can measure

uncertainty due to
random errors

inaccuracy due to
systematic errors

outlier due to
interference
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Measuring Time



  

A computer (specifically, Intel PC) has three time 
sources:

Timer interrupts

Time stamp counter

Time server and NTP protocol



  

Timer interrupts:

Cause a CPU interrupt, and running the clock 
interrupt handler

Come at a certain frequency (e.g. 250 Hz) from 
an external timer

The system counts how many interrupts (called 
ticks or jiffies) have occurred

Reasonably accurate measure of wallclock time

Typical resolution of several milliseconds 
(maximal resolution is microseconds)



  

Time stamp counter:

A special register that counts the cycles since the 
machine was booted

Can be read by a special assembler instruction

Rate depends on the CPU clock rate

Can drift e.g. when temperature rises

Can change due to power considerations, especially on 
laptops (reduce speed to save energy)

Nanosecond (cycle) resolution, but need many 
cycles to take a reading



  

NTP (Network Time Protocol)

Most networks have a designated NTP server

The NTP server gets time from some standard 
source

All nodes in the network synchronize with the NTP 
server

Effect is to update the system time

Can lead to a jump in time

Jump can also be backwards

Alternative is to change the time gradually



  

Linux gettimeofday()

Upon each clock interrupt

Update notion of real time as per the external source

Synchronize with the time stamp counter

When called, read the current time stamp counter 
and extrapolate from the previous clock interrupt

Combines different timing sources

Report result in microsecond resolution (API)



  

Making a Measurement



  

The framework:

Measurement of some computer activity or 
operation

Done from user level

With no specialized tools



  

Potential problems:

Inaccuracy due to measurement overhead

A simple measurement:

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";



  

measurement overhead:

gettimeofday() gettimeofday()
measured
operation
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measured value includes operation + one 
gettimeofday()

Thus one gettimeofday() should be subtracted



  

Potential problems:

Inaccuracy due to measurement overhead

Operation is shorter than our measurement 
resolution (get  t1 = t2  so  time = 0)

Operation is short relative to random errors (so 
actually get a random time)

A simple measurement:

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";



  

Resolution problem: printouts will be 0 or 1

Random errors: printouts will fluctuate wildly

But in both cases the average (for large enough 
N) should be good

Solution 1: iterate making multiple measurements

for (i=0 ; i<N ; i++) {

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";

}



  

Important because printing is a heavy operation 
that affects cache state and may cause a context 
switch

Solution 1a: buffer the results to reduce 
measurement interference

for (i=0 ; i<N ; i++) {

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

time[i] = t2 - t1;

}

print "average is ", avg(time[0..N-1]), "\n";



  

Measurement of  t2 – t1 will now be stable and 
meaningful

But need to subtract loop overhead (found by 
measuring an empty loop)

Solution 2: invert loop and measurement

t1 = gettimeofday();

for (i=0 ; i<N ; i++) {

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";



  

Problem: compiler optimizations

Compiler may optimize away an empty loop

Even if it has an operation in it like j++

If  j  is not subsequently used, why update it?

Even if it is, it's value will grow just like that of the loop 
index

Could work if the operation is on a global 
variable, because cross-procedural optimization 
is harder

Still, need to check

e.g. verify that measured overhead depends on number 
of iterations



  
Need to decide number of repetitions

Solution 2a: reduce effect of overhead by unrolling

t1 = gettimeofday();

for (i=0 ; i<N/3 ; i++) {

operation being measured

operation being measured

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";



  

In all iterative measurements, need to define N

N should be big enough to pass resolution limit 
and average out random errors

N should not be too big so as to reduce risk of 
large interferences from other activities in the 
system

Underlying assumption that measurement is short

Therefore completed within a single scheduling quantum 
without interference

If this is not the case, need to account for time spent 
doing other things

But what if we're unlucky?



  

Example: time to write 100 bytes at 
the beginning of a file

outliers 
are not 
common, 
but do 
happen



  

Catch outliers in which interference has occurred

Solution 3: double loop

for (r=0 ; r<REP ; r++) {

t1 = gettimeofday();

for (i=0 ; i<N ; i++) {

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";

}



  

Outliers may also exhibit periodic behavior 
indicative of some system activity that needs to be 
understood

Example is 
writing 
successive 
blocks of 
100 bytes 
to a file



  

Biggest problem:

Systematic errors that don't make sense

Need to look at the data

              notice that something is wrong

              identify it precisely

              remove it from the analysis

Hard to do if sensitive to exact conditions



  

example 
code:

for (i=0 ; i<=10 ; i++) {
gettimeofday( &ts[i], 0 );

}
for (i=1 ; i<=10 ; i++) {

printf("delta=%d\n",
              ts[i].tv_usec - ts[i-1].tv_usec);
}

gettimeofday( &ts[0], 0 );
gettimeofday( &ts[1], 0 );
...
gettimeofday( &ts[10], 0 );

for (i=1 ; i<=10 ; i++) {
printf("delta=%d\n",

              ts[i].tv_usec - ts[i-1].tv_usec);
}



  

Possible 
output:

delta=1
delta=1
delta=1
delta=1
delta=1
delta=0
delta=1
delta=1
delta=1
delta=1

delta=2
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1

But 
also:

delta=1
delta=1
delta=1
delta=1
delta=0
delta=1
delta=1
delta=1
delta=1
delta=1

delta=103
delta=1
delta=1
delta=33
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1

so we seem to 
have some 
random 
interference



  

But if we 
repeat 
this 10 
times and 
average, 
a typical 
result is

(note: 
typical is 
not 
always...)

avg delta = 1.20
avg delta = 1.00
avg delta = 0.70
avg delta = 0.90
avg delta = 1.00
avg delta = 1.00
avg delta = 0.90
avg delta = 1.00
avg delta = 1.10
avg delta = 1.00

avg delta = 11.10
avg delta = 0.90
avg delta = 1.10
avg delta = 0.90
avg delta = 0.90
avg delta = 1.00
avg delta = 0.90
avg delta = 1.00
avg delta = 1.00
avg delta = 0.90

so there is actually 
some systematic 
problem at the 
beginning of the 
second batch of 
measurements



  

Sensitivity:

This only happens when output is directed to the 
terminal;  all is well if it is directed to a file

This is related to printing the results of the first 
batch just before starting the second batch;  all is 
well if all printing is done at the end



  

Calculating Confidence Intervals



  

When we perform multiple measurements of the 
same thing, we can calculate confidence intervals

Assume measurements are samples from a 
(normal) distribution

Characterize the distribution's dispersion

Find the range that includes the desired mass of 
the probability density (e.g. 90%)



  

Assume a set of measurements 
come from a normal distribution 
(real value + random error)

This set has an average, which is 
an estimate of the real value

If we repeat this with different 
samples, we will get a slightly 
different average

So multiple samples from the base 
distribution induce a single sample 
from the distribution of averages

the
average



  

multiple sets of samples induce 
multiple samples from the 
distribution of averages

The distribution of averages is 
narrower than the base 
distribution

So it gives a tighter estimate of 
the real value



  

Assumption: the averages 
reflect a true value plus 
some random noise

Thus the averages are 
distributed around the 
true value

the
true

value distribution
of averages



  

Assumption: the 
averages reflect a true 
value plus some 
random noise

Thus the averages are 
distributed around the 
true value

Given the distribution, we 
can find the range h 
that is expected to 
contain 90% of the 
averages

the
true

value
90%

5%
h

5%



  

the
true

value

h

This also works 
the other way: 
for 90% of the 
averages, the 
true value is 
within h

So the range  
average ± h 
has 
probability 0.9 
to include the 
real value



  

Let  μ  denote the real mean of the base 
distribution

Let     denote the average of n samples

If the base distribution is normal, then the 
averages have a t distribution

Let  α  denote the acceptable uncertainty 
(implying that the level of confidence is 1-α)

Define the half-width to be

Then

x

h = tn−1,1−/2 sx

p ∣x−∣ h = 1−



  

The half width:

                comes from tables

n-1 degrees of freedom

n is the number of samples

for large n approximated by the normal

      is the standard deviation of the averages

assuming the base samples are independent, this can be 
calculated as             (where s is the standard deviation 
of the base samples)

with more samples, the distribution of the averages 
becomes narrower

h = tn−1,1−/2 sx

s /n

t n−1,1−/2

s
x

z 1−/2



  

The confidence interval:

with a certainty of         ,  the distance between a 
sample of the average     and the true mean    is 
less than h

If we repeat this many times, and each time we 
draw a segment of ±h around    , then in          of 
the cases this segment will include 

p ∣x−∣ h = 1−

1−

x 

p ∣x−∣ h = 1−

x 1−




  

Assumptions:

The base samples come from a normal 
distribution

If not, but have a finite variance, the averages 
will still be normal, but this requires a larger n

Base samples are independent

If not, maybe using larger batches will reduce 
the correlation between them



  

Note: first clean the data, then compute 
confidence intervals

Remove outliers that indicate interference

Mechanized approach: remove top and bottom 
measurements

Better approach: look at the data!

Usually, outliers are only bigger (interference cannot 
reduce the measured time)

Remove history/warmup effects
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