

Experimental Approaches
in Computer Science

Dror Feitelson
Hebrew University

Lecture 3 – Measurements

Assume we start taking measurements of
something:

Such measurements are limited by the resolution
of our measurement apparatus: the smallest
difference between measurements

Example: measuring time in milliseconds

Another problem is the uncertainty in the
measurements: if we repeat them, we get
somewhat different results

This is caused by random errors that reflects the
(im)precision of the measurement

A third issue is the accuracy of the
measurement: how far it is from the “real” value

This reflects the systematic error in the
measurement

th
e

R
E

A
L

va
lu

e

Systematic errors are systematic – they always
have the same effect

Example: when measuring the time to perform an
action, the overhead of the measurement itself is
added to the result

Part of the design should be to identify systematic
errors and factor them out

A special problem is warmup or hysteresis-type
errors, where the outcome depends on history; for
example, the first measurement could be different
from subsequent ones

Random errors are random – they may have
different effects

Example: when measuring the time to perform an
action, the result may depend on cache state,
interrupts from the network, and competition from
other processes

This can be analyzed statistically

In extreme cases, interference leads to outliers
that should be ignored

Model of random errors:

Assume the error is a combination of multiple
effects, each contributing ±ε

If we have n such effects, the outcome will have a
binomial distribution

For large n, this can be approximated by a normal
distribution

Calculation of confidence intervals is based on
assumption of a normal distribution

p Xk =
n
nk

2 1
2n

Summary:

resolution: the
smallest difference
we can measure

uncertainty due to
random errors

inaccuracy due to
systematic errors

outlier due to
interference

th
e

R
E

A
L

va
lu

e

Measuring Time

A computer (specifically, Intel PC) has three time
sources:

Timer interrupts

Time stamp counter

Time server and NTP protocol

Timer interrupts:

Cause a CPU interrupt, and running the clock
interrupt handler

Come at a certain frequency (e.g. 250 Hz) from
an external timer

The system counts how many interrupts (called
ticks or jiffies) have occurred

Reasonably accurate measure of wallclock time

Typical resolution of several milliseconds
(maximal resolution is microseconds)

Time stamp counter:

A special register that counts the cycles since the
machine was booted

Can be read by a special assembler instruction

Rate depends on the CPU clock rate

Can drift e.g. when temperature rises

Can change due to power considerations, especially on
laptops (reduce speed to save energy)

Nanosecond (cycle) resolution, but need many
cycles to take a reading

NTP (Network Time Protocol)

Most networks have a designated NTP server

The NTP server gets time from some standard
source

All nodes in the network synchronize with the NTP
server

Effect is to update the system time

Can lead to a jump in time

Jump can also be backwards

Alternative is to change the time gradually

Linux gettimeofday()

Upon each clock interrupt

Update notion of real time as per the external source

Synchronize with the time stamp counter

When called, read the current time stamp counter
and extrapolate from the previous clock interrupt

Combines different timing sources

Report result in microsecond resolution (API)

Making a Measurement

The framework:

Measurement of some computer activity or
operation

Done from user level

With no specialized tools

Potential problems:

Inaccuracy due to measurement overhead

A simple measurement:

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";

measurement overhead:

gettimeofday() gettimeofday()
measured
operation

re
ad

in
g

T
S

C

re
ad

in
g

T
S

C

measured value includes operation + one
gettimeofday()

Thus one gettimeofday() should be subtracted

Potential problems:

Inaccuracy due to measurement overhead

Operation is shorter than our measurement
resolution (get t1 = t2 so time = 0)

Operation is short relative to random errors (so
actually get a random time)

A simple measurement:

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";

Resolution problem: printouts will be 0 or 1

Random errors: printouts will fluctuate wildly

But in both cases the average (for large enough
N) should be good

Solution 1: iterate making multiple measurements

for (i=0 ; i<N ; i++) {

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

print "time was ", t2 – t1, "\n";

}

Important because printing is a heavy operation
that affects cache state and may cause a context
switch

Solution 1a: buffer the results to reduce
measurement interference

for (i=0 ; i<N ; i++) {

t1 = gettimeofday();

operation being measured

t2 = gettimeofday();

time[i] = t2 - t1;

}

print "average is ", avg(time[0..N-1]), "\n";

Measurement of t2 – t1 will now be stable and
meaningful

But need to subtract loop overhead (found by
measuring an empty loop)

Solution 2: invert loop and measurement

t1 = gettimeofday();

for (i=0 ; i<N ; i++) {

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";

Problem: compiler optimizations

Compiler may optimize away an empty loop

Even if it has an operation in it like j++

If j is not subsequently used, why update it?

Even if it is, it's value will grow just like that of the loop
index

Could work if the operation is on a global
variable, because cross-procedural optimization
is harder

Still, need to check

e.g. verify that measured overhead depends on number
of iterations

Need to decide number of repetitions

Solution 2a: reduce effect of overhead by unrolling

t1 = gettimeofday();

for (i=0 ; i<N/3 ; i++) {

operation being measured

operation being measured

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";

In all iterative measurements, need to define N

N should be big enough to pass resolution limit
and average out random errors

N should not be too big so as to reduce risk of
large interferences from other activities in the
system

Underlying assumption that measurement is short

Therefore completed within a single scheduling quantum
without interference

If this is not the case, need to account for time spent
doing other things

But what if we're unlucky?

Example: time to write 100 bytes at
the beginning of a file

outliers
are not
common,
but do
happen

Catch outliers in which interference has occurred

Solution 3: double loop

for (r=0 ; r<REP ; r++) {

t1 = gettimeofday();

for (i=0 ; i<N ; i++) {

operation being measured

}

t2 = gettimeofday();

print "average was ", (t2 – t1)/N, "\n";

}

Outliers may also exhibit periodic behavior
indicative of some system activity that needs to be
understood

Example is
writing
successive
blocks of
100 bytes
to a file

Biggest problem:

Systematic errors that don't make sense

Need to look at the data

 notice that something is wrong

 identify it precisely

 remove it from the analysis

Hard to do if sensitive to exact conditions

example
code:

for (i=0 ; i<=10 ; i++) {
gettimeofday(&ts[i], 0);

}
for (i=1 ; i<=10 ; i++) {

printf("delta=%d\n",
 ts[i].tv_usec - ts[i-1].tv_usec);
}

gettimeofday(&ts[0], 0);
gettimeofday(&ts[1], 0);
...
gettimeofday(&ts[10], 0);

for (i=1 ; i<=10 ; i++) {
printf("delta=%d\n",

 ts[i].tv_usec - ts[i-1].tv_usec);
}

Possible
output:

delta=1
delta=1
delta=1
delta=1
delta=1
delta=0
delta=1
delta=1
delta=1
delta=1

delta=2
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1

But
also:

delta=1
delta=1
delta=1
delta=1
delta=0
delta=1
delta=1
delta=1
delta=1
delta=1

delta=103
delta=1
delta=1
delta=33
delta=1
delta=1
delta=1
delta=1
delta=1
delta=1

so we seem to
have some
random
interference

But if we
repeat
this 10
times and
average,
a typical
result is

(note:
typical is
not
always...)

avg delta = 1.20
avg delta = 1.00
avg delta = 0.70
avg delta = 0.90
avg delta = 1.00
avg delta = 1.00
avg delta = 0.90
avg delta = 1.00
avg delta = 1.10
avg delta = 1.00

avg delta = 11.10
avg delta = 0.90
avg delta = 1.10
avg delta = 0.90
avg delta = 0.90
avg delta = 1.00
avg delta = 0.90
avg delta = 1.00
avg delta = 1.00
avg delta = 0.90

so there is actually
some systematic
problem at the
beginning of the
second batch of
measurements

Sensitivity:

This only happens when output is directed to the
terminal; all is well if it is directed to a file

This is related to printing the results of the first
batch just before starting the second batch; all is
well if all printing is done at the end

Calculating Confidence Intervals

When we perform multiple measurements of the
same thing, we can calculate confidence intervals

Assume measurements are samples from a
(normal) distribution

Characterize the distribution's dispersion

Find the range that includes the desired mass of
the probability density (e.g. 90%)

Assume a set of measurements
come from a normal distribution
(real value + random error)

This set has an average, which is
an estimate of the real value

If we repeat this with different
samples, we will get a slightly
different average

So multiple samples from the base
distribution induce a single sample
from the distribution of averages

the
average

multiple sets of samples induce
multiple samples from the
distribution of averages

The distribution of averages is
narrower than the base
distribution

So it gives a tighter estimate of
the real value

Assumption: the averages
reflect a true value plus
some random noise

Thus the averages are
distributed around the
true value

the
true

value distribution
of averages

Assumption: the
averages reflect a true
value plus some
random noise

Thus the averages are
distributed around the
true value

Given the distribution, we
can find the range h
that is expected to
contain 90% of the
averages

the
true

value
90%

5%
h

5%

the
true

value

h

This also works
the other way:
for 90% of the
averages, the
true value is
within h

So the range
average ± h
has
probability 0.9
to include the
real value

Let μ denote the real mean of the base
distribution

Let denote the average of n samples

If the base distribution is normal, then the
averages have a t distribution

Let α denote the acceptable uncertainty
(implying that the level of confidence is 1-α)

Define the half-width to be

Then

x

h = tn−1,1−/2 sx

p ∣x−∣ h = 1−

The half width:

 comes from tables

n-1 degrees of freedom

n is the number of samples

for large n approximated by the normal

 is the standard deviation of the averages

assuming the base samples are independent, this can be
calculated as (where s is the standard deviation
of the base samples)

with more samples, the distribution of the averages
becomes narrower

h = tn−1,1−/2 sx

s /n

t n−1,1−/2

s
x

z 1−/2

The confidence interval:

with a certainty of , the distance between a
sample of the average and the true mean is
less than h

If we repeat this many times, and each time we
draw a segment of ±h around , then in of
the cases this segment will include

p ∣x−∣ h = 1−

1−

x

p ∣x−∣ h = 1−

x 1−

Assumptions:

The base samples come from a normal
distribution

If not, but have a finite variance, the averages
will still be normal, but this requires a larger n

Base samples are independent

If not, maybe using larger batches will reduce
the correlation between them

Note: first clean the data, then compute
confidence intervals

Remove outliers that indicate interference

Mechanized approach: remove top and bottom
measurements

Better approach: look at the data!

Usually, outliers are only bigger (interference cannot
reduce the measured time)

Remove history/warmup effects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

