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Case studies
● Online scheduling
● Matrix multiplication
● Maximum flow



  

Online scheduling



  

● Problem definition:  Given n jobs with known 
processing times assign them to m identical 
machines so as to minimize the makespan

● Graham's list scheduling [1966]:  assign each 
job to the machine with the least assigned load 
so far

● Claim: Graham's simple greedy algorithm is 
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Proof:

Let c* denote the optimal makespan

then c* ≥ p
max                

[accommodate longest job]

and c* ≥ 1/m ∑ p
j     

[accommodate total                  

                               processing needed]

assume job k is the last one to terminate

then it starts no later than 1/m ∑
j≠k

 p
j  

because no machine is idle before all jobs start



  

Its termination time is then no later than its start 
time + processing time:
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Worst case: many small jobs followed by one 
long job

Improvements:
● Bartal et al. [1995]: 1.986-competitive algorithm
● Karger et al. [1996]: 1.945-competitive 

algorithm
● Albers [1997]: 1.923-competitive algorithm
● All use various conditions to sometimes select 

a machine that is not the least loaded for short 
jobs (leaving the least loaded for the long job)

● Question: is this generally good, or does it just 
avoid certain pathological cases?



  

Experimental evaluation:

[Albers & Schroder, J. Exp. Alg. 7(3), 2002]
● Use real-world job sizes

– Parallel machines (MPPs at CTC, KTH)

– Vector machine (Cray at PSC)

– Workstation (Sun in Germany)

● Use distributions
● Create sequences of 10000 jobs, and tabulate 

running ratio of achieved makespan to optimal 
for m=10



  

Results KTH:

relatively low variance, so ratio stabilized after 
some fluctuations; Graham is best



  

Results Cray:

Occasional big job similar to average so far.

Graham suffers because loads are balanced, and one 
machine will need to work much more; others leave 
machines less loaded in anticipation of such jobs



  

Results Sun:

job sizes have a heavy tail: some are so big they dominate 
the average.  This causes both the online algorithm and the 
optimal makespan to be essentially equal, and the ratio 
drops to 1



  

Exponential:

Relatively low variability leads to quick convergence.

Similar results for uniform, Erlang, and hyperexponential with 
various parameter values



  

Effect of number of machines (m):
● All previous results were for m=10
● When m grows, it takes longer for ratios to 

stabilize, because more jobs are needed to fill 
the machines

● Also, the effect of jobs that are similar to the 
average load is changed – given that the load is 
distributed on more machines, these jobs now 
look huge, and their effect is to reduce the ratio 
rather than to enlarge it



  

The bottom line: it depends on the workload
● Graham's simple greedy algorithm is best when 

job variance is low
● Other algorithms, mainly Albers and Bartal, 

may reduce sensitivity to large jobs
● When the variance is extremely big due to a 

heavy tail, the algorithm has little effect



  

Matrix Multiplication



  

Problem definition:
● Use the straightforward n3 algorithm
● Take into account the memory hierarchy

– Cache capacity

– Cache associativity

– Contention for the system bus

– Memory latency

● An instance of algorithm engineering

[Eiron et al. J. Exp. Alg. 4(3), 1999]



  

Idea 1: use tiling
● Use tiles that fit into the cache, to avoid capacity 

misses
● Retain ratio of multiple operations per given data



  

Idea 2: use prefetching
● In each phase prefetch the data needed in the 

next phase
● If all data is in the cache, computation does not 

use the system bus at all
● Bus is therefore free for use by prefetching
● Need to time the prefetches so as to avoid 

evicting needed data (assumes LRU cache 
replacement)



  

Tile size constraints

● Computation per tile multiplication is O(P
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● Can reduce prefetching/writeback by reusing C 
tile for full row of A tiles and column of B tiles



  

Idea 3: copy to avoid conflicts
● Copy tiles to different addresses so that they fall 

in different cache associativity sets
● Assuming k-way associativity, ensure that each 

set is used only k/2 times
● Simple example:

– 2-way associativity

– Interleave tiles from the different matrices

– Use offset that is a multiple of the way size

– Being 2-way allows 2 tiles from each matrix to be 
cache resident



  

Implementation:
● IBM PowerPC model 604
● Use fma (floating multiply-add) instruction, which 

is ideal for matrix/vector multiplication
– Theoretical peak of 266 MFLOPS

● Don't use dcbt (data cache block touch) 
instruction for prefetching, but rather a register 
load
– dcbt doesn't work when TLB misses

– Can't be triggered from source level



  

Performance:

better and more predictable than highly tuned code

MFLOPS % of peak



  

Maximum Flow



  

Problem definition:

given a graph G=(V,E),

with two distinguished nodes s and t,

where each edge e has capacity c(e),

find the maximum possible flow from s to t

we'll focus on unit capacity (c(e)=1 for all edges)



  

Flow definition:

A flow is a function  f : V x V → R such that
● f(u,v) ≤ c(u,v)      [capacity constraint]
● f(u,v) = –f(v,u)     [anti-symmetry]

● ∑
v
f(u,v) = 0          [conservation constraint]

    (holds for all u except s and t)

The value to maximize is  ∑
v
f(s,v)



  

Main algorithms:
● Path augmentation
● Preflow push-relabel

    



  

Path augmentation
● Invariant: always maintain a legitimate flow
● Start with a 0 flow
● At each step

– Find a path from s to t that has capacity to spare

– Add a flow along this path 

● Terminate when no additional paths can be 
found

● Complexity: O(E |f|)  with integer capacities, |f| is max

Variants: 
BFS? DFS? 



  

Preflow push-relabel
● Invariant: maintains a preflow (allow excess 

input to a node)
● Initially s is at level |V|, t and all others at 0
● For all overflowing nodes (starting with s) fill 

outgoing links to nodes at lower level to capacity
● If all unsaturated outbound links are to nodes at 

same or higher level, relabel the node to level 
one higher than lowest unsaturated neighbor

● At end, nodes with excess flow will migrate to 
above the source and push the excess back

● Complexity: O(V2 E)
Variants: order of

push and relabel ops,
use of  optimizations 



  

Optimizations:
● Global relabel

– Push and relabel are local operations

– State may drift away from global optimum

– Optimization is to do a global scan and relabel all 
nodes consistently in one sweep

● Gap heuristic:
– If there are no nodes with label d, all those with 

higher labels return excess to s

– Saves the need to raise their level by single steps 
to above |V|



  

Experimental questions:
● Augment or push?
● What is the effect of variants and 

optimizations?
● How does this depend on different input graph 

instances?

[Cerkassky et al. J Exp. Alg. 3(8), 1998]



  

Methodology: use random graphs from various 
different families



  

Experimental results

Rows are 
families of 
graphs

columns are 
algorithms



  

Experimental results

Plots for graph families
Lines for algorithms



  

Conclusions:
● No single algorithm is best for all graph types
● Both BFS and DFS (path augmentation) are not 

robust, with bad performance for many graph 
families

● The best push-relabel methods are generally 
more robust than the best augmented flow

● The added heuristics are important for the 
achieved performance
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