

Experimental Approaches
in Computer Science

Dror Feitelson
Hebrew University

Lecture 12 – Experimental Algorithmics

Case studies
● Online scheduling
● Matrix multiplication
● Maximum flow

Online scheduling

● Problem definition: Given n jobs with known
processing times assign them to m identical
machines so as to minimize the makespan

● Graham's list scheduling [1966]: assign each
job to the machine with the least assigned load
so far

● Claim: Graham's simple greedy algorithm is

 -competitive 2−
1
m

1

2

3

4

5 8

7 9

6

m
1

m
2

m
3

m
4

makespan

Online: assign each
job before you know

about subsequent jobs

Proof:

Let c* denote the optimal makespan

then c* ≥ p
max

[accommodate longest job]

and c* ≥ 1/m ∑ p
j

[accommodate total

 processing needed]

assume job k is the last one to terminate

then it starts no later than 1/m ∑
j≠k

 p
j

because no machine is idle before all jobs start

Its termination time is then no later than its start
time + processing time:

c
k
 ≤ 1/m ∑

j≠k
 p

j
+ p

k

 ≤ 1/m ∑
j
 p

j
+ (1 – 1/m)p

k

 ≤ c*

+ (1 – 1/m)c*

 = (2 – 1/m)c*

Worst case: many small jobs followed by one
long job

Improvements:
● Bartal et al. [1995]: 1.986-competitive algorithm
● Karger et al. [1996]: 1.945-competitive

algorithm
● Albers [1997]: 1.923-competitive algorithm
● All use various conditions to sometimes select

a machine that is not the least loaded for short
jobs (leaving the least loaded for the long job)

● Question: is this generally good, or does it just
avoid certain pathological cases?

Experimental evaluation:

[Albers & Schroder, J. Exp. Alg. 7(3), 2002]
● Use real-world job sizes

– Parallel machines (MPPs at CTC, KTH)

– Vector machine (Cray at PSC)

– Workstation (Sun in Germany)

● Use distributions
● Create sequences of 10000 jobs, and tabulate

running ratio of achieved makespan to optimal
for m=10

Results KTH:

relatively low variance, so ratio stabilized after
some fluctuations; Graham is best

Results Cray:

Occasional big job similar to average so far.

Graham suffers because loads are balanced, and one
machine will need to work much more; others leave
machines less loaded in anticipation of such jobs

Results Sun:

job sizes have a heavy tail: some are so big they dominate
the average. This causes both the online algorithm and the
optimal makespan to be essentially equal, and the ratio
drops to 1

Exponential:

Relatively low variability leads to quick convergence.

Similar results for uniform, Erlang, and hyperexponential with
various parameter values

Effect of number of machines (m):
● All previous results were for m=10
● When m grows, it takes longer for ratios to

stabilize, because more jobs are needed to fill
the machines

● Also, the effect of jobs that are similar to the
average load is changed – given that the load is
distributed on more machines, these jobs now
look huge, and their effect is to reduce the ratio
rather than to enlarge it

The bottom line: it depends on the workload
● Graham's simple greedy algorithm is best when

job variance is low
● Other algorithms, mainly Albers and Bartal,

may reduce sensitivity to large jobs
● When the variance is extremely big due to a

heavy tail, the algorithm has little effect

Matrix Multiplication

Problem definition:
● Use the straightforward n3 algorithm
● Take into account the memory hierarchy

– Cache capacity

– Cache associativity

– Contention for the system bus

– Memory latency

● An instance of algorithm engineering

[Eiron et al. J. Exp. Alg. 4(3), 1999]

Idea 1: use tiling
● Use tiles that fit into the cache, to avoid capacity

misses
● Retain ratio of multiple operations per given data

Idea 2: use prefetching
● In each phase prefetch the data needed in the

next phase
● If all data is in the cache, computation does not

use the system bus at all
● Bus is therefore free for use by prefetching
● Need to time the prefetches so as to avoid

evicting needed data (assumes LRU cache
replacement)

Tile size constraints

● Computation per tile multiplication is O(P
1
P

2
P

3
)

● Data to prefetch is O(P
1
P

2
+P

2
P

3
+P

1
P

3
)

● Also need to write back C tile of P
1
P

3

● Enough time if P
1
P

2
P

3
> P

1
P

2
+P

2
P

3
+2P

1
P

3

● Enough space if 2(P
1
P

2
+P

2
P

3
+P

1
P

3
) < C

● Can reduce prefetching/writeback by reusing C
tile for full row of A tiles and column of B tiles

Idea 3: copy to avoid conflicts
● Copy tiles to different addresses so that they fall

in different cache associativity sets
● Assuming k-way associativity, ensure that each

set is used only k/2 times
● Simple example:

– 2-way associativity

– Interleave tiles from the different matrices

– Use offset that is a multiple of the way size

– Being 2-way allows 2 tiles from each matrix to be
cache resident

Implementation:
● IBM PowerPC model 604
● Use fma (floating multiply-add) instruction, which

is ideal for matrix/vector multiplication
– Theoretical peak of 266 MFLOPS

● Don't use dcbt (data cache block touch)
instruction for prefetching, but rather a register
load
– dcbt doesn't work when TLB misses

– Can't be triggered from source level

Performance:

better and more predictable than highly tuned code

MFLOPS % of peak

Maximum Flow

Problem definition:

given a graph G=(V,E),

with two distinguished nodes s and t,

where each edge e has capacity c(e),

find the maximum possible flow from s to t

we'll focus on unit capacity (c(e)=1 for all edges)

Flow definition:

A flow is a function f : V x V → R such that
● f(u,v) ≤ c(u,v) [capacity constraint]
● f(u,v) = –f(v,u) [anti-symmetry]

● ∑
v
f(u,v) = 0 [conservation constraint]

 (holds for all u except s and t)

The value to maximize is ∑
v
f(s,v)

Main algorithms:
● Path augmentation
● Preflow push-relabel

Path augmentation
● Invariant: always maintain a legitimate flow
● Start with a 0 flow
● At each step

– Find a path from s to t that has capacity to spare

– Add a flow along this path

● Terminate when no additional paths can be
found

● Complexity: O(E |f|) with integer capacities, |f| is max

Variants:
BFS? DFS?

Preflow push-relabel
● Invariant: maintains a preflow (allow excess

input to a node)
● Initially s is at level |V|, t and all others at 0
● For all overflowing nodes (starting with s) fill

outgoing links to nodes at lower level to capacity
● If all unsaturated outbound links are to nodes at

same or higher level, relabel the node to level
one higher than lowest unsaturated neighbor

● At end, nodes with excess flow will migrate to
above the source and push the excess back

● Complexity: O(V2 E)
Variants: order of

push and relabel ops,
use of optimizations

Optimizations:
● Global relabel

– Push and relabel are local operations

– State may drift away from global optimum

– Optimization is to do a global scan and relabel all
nodes consistently in one sweep

● Gap heuristic:
– If there are no nodes with label d, all those with

higher labels return excess to s

– Saves the need to raise their level by single steps
to above |V|

Experimental questions:
● Augment or push?
● What is the effect of variants and

optimizations?
● How does this depend on different input graph

instances?

[Cerkassky et al. J Exp. Alg. 3(8), 1998]

Methodology: use random graphs from various
different families

Experimental results

Rows are
families of
graphs

columns are
algorithms

Experimental results

Plots for graph families
Lines for algorithms

Conclusions:
● No single algorithm is best for all graph types
● Both BFS and DFS (path augmentation) are not

robust, with bad performance for many graph
families

● The best push-relabel methods are generally
more robust than the best augmented flow

● The added heuristics are important for the
achieved performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

