

Experimental Approaches
in Computer Science

Dror Feitelson
Hebrew University

Lecture 1 -- Introduction

The complexity of sorting is O(n log n).

Have you seen anyone actually measure it
for different values of n to verify that the
relationship indeed holds?

(you will in one of the exercises...)

Computer science is based on theory
in the context of abstract models

which are assumed to reflect reality

The justification: computers are not natural
phenomena, but are designed and built by

humans, so we know how they work.

Do you
believe this
for modern
micro-
processors?

Source: IBM BlueGene/L

Or the
Internet?

Source: www.opte.org

"Real" science is based on observations
which lead to models and theories

which enable hypotheses and predictions
which can be verified experimentally

observation

experimental
test

concrete
prediction

model or
hypothesis

And this is a
cyclic process

“A theory which cannot be mortally endangered
cannot be alive"

W. A. H. Rushton

Two important points:

Theories can be refuted by experiments.
This distinguishes science from religion.

Experiments can be reproduced by others,
in order to verify the results.

Claim:
all this is relevant to
computer science

Experimentation in computer science:

● Know the world in which we live
● Complement theory
● Support design and engineering

Know the world example 1: Locality

We all know that computer programs display
locality. But,
● Given two programs, how do you know which

has more locality? How do you quantify
locality?

Actually, there are a number of ways.
● Stack distance

– Maintain all previous references in a stack
– Upon each access, note it's depth in the stack
– Strong locality implies references will be found near

the top
● Autocorrelation function

– In particular, is each reference correlated with the
next reference?

● Number of combinations observed
– Are all possible combinations of successive

references actually observed?

Know the world example 1: Locality

We all know that computer programs display
locality. But,
● Given two programs, how do you know which

has more locality? How do you quantify
locality?

● What is the relationship between different
metrics of locality?

● How much locality is needed to make caching
effective?

Know the world example 2: Self-similar traffic

For many years network traffic was assumed to
be Poisson
– This means that arrivals occur uniformly and at

random
Turns out that this is not the case: network traffic
is self-similar
– It is bursty at many different time scales
– It does not average out
– There are long-range correlations
– Important for provisioning buffers and QoS

From Leland et.al, On the self-similar nature of Ethernet traffic, IEEE/ACM T. Networking, 1994

Complement theory example: thresholds in
NP-complete problems

Given a Boolean formula in conjunctive normal
form on n variable with m clauses and k variables
per clause, the K-SAT problem asks whether it
can be satisfied.
This can be done in polynomial time for k=1,2
It is NP-complete for k≥3
However, some instances with k≥3 turn out to be
very easy.

Given a formula generated at random, you can
apply the following heuristics:
● Try to find a satisfying heuristic by setting

variables arbitrarily and using backtracking
● Try to find a simple proof that the formula is not

satisfiable, e.g. if it contains conflicting clauses

It turns out that the
probability that the
formula is satisfiable
depends on m/n, and
displays a strong
threshold effect.

From Hayes, Can't get no satisfaction, American Scientist, 1997

Moreover, the difficulty of deciding if a formula is
satisfiable depends on the distance from the
threshold:

So now we have a finer classification: by
characterizing how the threshold depends on k,
we can say which problems are easy or not.

idea

experimental
evaluation

concrete
implementation

system
design

Support design and engineering

Ideas that look good
don't always work out
in practice

They need to
be tested in
realistic
conditions

Experimental engineering example:
PlanetLab

Assume you have a great new idea for an Internet
service or protocol. How can you test it?
● Need large scale with many nodes
● Need realistically high latencies
● Need interaction with other types of traffic
● Need feedback from actual usage
● Need not to disrupt existing applications

From www.planet-lab.org

Answer: use the PlanetLab overlay network
infrastructure.
As of January 2007, PlanetLab consists of 753
nodes at 363 sites (including here).

Experimental activities:

● Observations and measurements
● Forming hypotheses ans testing them
● Reproducing results

Observation and measurement

● Collect data
– For example,

trace all the
packets in a
local network

Observation and measurement

● Collect data
– For example, trace all the packets in a local network

● Clean the data from outliers and "bad" data

Example: huge flurries
of activity by single
users on parallel
supercomputers

Observation and measurement

● Collect data
– For example, trace all the packets in a local network

● Clean the data from outliers and "bad" data
– For example, flurries

● Perform point measurements

Small issue of what to measure and how
● Need to define appropriate metrics

– Time and throughput are easy
– Locality needs some thought
– And how do you measure the degree to which

virtual machines are isolated from each other?
● Need to perform measurements reliably

– Avoid interference
– Take all effects into account

● Need to record exact conditions used

Observation and measurement

● Collect data
– For example, trace all the packets in a local network

● Clean the data from outliers and "bad" data
– For example, flurries

● Perform point measurements
● Experiments with humans

– They both build and use computer systems
● Display results clearly in graphs
● Share data

Hypotheses (NOT)

● The most famous hypotheses are actually
"meta-theories"
– The theory of evolution
– The conjecture that P≠NP
– The claim that intelligence can be achieved by

extensive search
● These are summaries that fit a large body of

experience
● This is not what we are talking about

Hypotheses

● A model that tries to explain observations
● And enable predictions
● Metric for good hypotheses: can be tested

experimentally
● In particular, can be refuted
● This enables the most rapid and consistent

progress

Reproducibility

● Verify that published results are correct
– This is the least important aspect

● Identify exactly what conditions need to be
reproduced to get the same results
– Improves our understanding of cause and effect

● Foster progress by a concentrated effort of
multiple teams
– TREC
– DARPA robotics program

documents
(10 GB)

needs
(50 topics) retrieval

algorithm 1

result
set 1

retrieval
algorithm 2

result
set 2

retrieval
algorithm k

result
set k

TR
E

C
 participants

. . .

documents
pool

Top 100

relevance
judgments

evaluation
score 1

evaluation
score 2

evaluation
score k

human
assessors

Based on Voorhees, TREC, Comm. ACM 2007

Structure of a TREC track

From Jackel et al., Structuring DARPA's robotics programs, Comm. ACM 2007

DARPA learning robots program:
each team gets identical platform, can focus
on robot software rather than on platform
development, ships software for testing at DARPA

