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Previous lecture:
● Representativeness of workloads
● Workload data and sanitization
● Heavy tails
This lecture:
● Burstiness and self similarity
● Locality of sampling



  

Burstiness and Self-Similarity



  

Let's make the following assumptions about how 
new work (jobs, packets, requests) arrives at a 
computer system:
● Work items arrive independently of each other
● They can arrive at any instant with uniform 

probability
● We measure time at fine granularity, so at each 

instant at most one arrives
This defines a Poisson process



  

Implications of a Poisson process:
● Work arrives uniformly over time

– No large bursts of sudden activity
– No cycles of activity

● Inter-arrival times are exponentially distributed
– Allows for easy simulation of arrivals without 

deciding in advance how many will arrive
● Merging multiple Poisson processes is also a 

Poisson process
● Variability is reduced with aggregation

– If we look at a longer time, periods with more 
activity cancel out with periods with less activity



  

Checking experimentally that arrivals are Poisson:
● Verify that distribution of inter-arrivals is indeed 

exponential
– Compare to exponential distribution with same 

average arrival rate
● Verify that successive inter-arrivals are 

independent of each other
– Look at correlation of successive inter-arrivals

● Verify that when aggregated the variance is 
reduced



  

Poisson arrivals aggregated



  

Real arrivals aggregated The term "self-similar"
derives from the fact that

this looks like itself
at all different scales



  

Another visualization using texture plots

This defines a time unit u, and plots each datum 
at  X = t / u  and  Y = t mod u



  

● Results: arrivals are often not Poisson
– Packets in a communication network
– Jobs to a parallel supercomputer

● But sometimes they are
– New flows on a network

● This has implications for system capacity
– Network buffers need to be large enough for bursts 

of activity
● Also need to consider other effects, e.g. the 

daily work cycle



  

The R/S metric and Hurst Parameter



  

How do you quantify self-similarity?
● Successive items are correlated
● So if you sum them up, you will get large 

deviations from the average
● Deviations larger than those of random 

independent items indicate self-similarity



  

● Start with a time series X1, X2, X3, ...
For example, Xi can be the number of packets that 

arrived in second i
● Center the data by subtracting its average, 

giving 
● Now create the sum of the first n items, for all n

Note that Yn = 0

● Finally, look at the range covered by these

Z i = X i− X

Y j =∑i=1

j
Z i

Rn = max jY j−min jY j
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● The magnitude of Rn is related to
– The number of consecutive steps in each direction
– The size of each step

● To remove the second effect and focus on the 
first one, we divide by the standard deviation

● The model is that this grow as a power law

● By taking the log, we get

 RS n = C nH 0≤H≤1

log RS n ∝ H log n



  

What happens for a random walk?
● Each step is Xi = +1 or Xi = -1
● The expected distance squared is 

● So the root-mean-square distance is

● And indeed we get H = 0.5

E [Y j
2] = E [Y j−1X j

2]
= E [Y j−1

2 ]2 E [Y j−1 X j]E [X j
2]

= E [Y j−1
2 ]1

= j

RMS Y n = n
0.5



  

For self-similar data:
● Collect data for many different sizes n
● For each one, look at many different subsets of 

this length
● Calculate (R/S)n for each one
● Draw a pox-plot: the measured (R/S)n as a 

function of n on log-log axes
● Expect to get a straight line, with slope 

proportional to the Hurst parameter H



  



  



  

Locality of Sampling



  

● Common model of workload generation is 
sampling from a distribution
– Implied in fitting distributions to data and random 

variate generation in simulations
– Implied in definition of arrival and service 

distributions in queueing analysis
● This requires a stationarity assumption
● But real workloads are non-stationary

– Daily/weekly cycles
– Workload evolution as usage changes
– Locality in user behavior: repeated activity + shifting 

focus with time



  

Locality reduces randomness
● Important for adaptive systems

– Can learn about the workload
– Can make predictions for the future

● Important for performance evaluations
– Randomness is good because things tend to 

average out
– Lack of randomness is harder to handle



  

"Locality of sampling"
● Assume an underlying stationary distribution

– e.g. empirical distribution from a long data log
● Workload is generated by a 2-level sampling 

process
– Select a location within the distribution
– Sample multiple items from this location

● Generative model of user behavior
– At a given time, users focus on a certain project
– While working on this project they repeatedly to the 

same thing



  



  



  



  

Quantifying locality of sampling:
1.Create histogram of global data, and partition 

into r equally likely ranges
2.Partition the log into slices that are long enough 

to contain sufficient data (>5r items)
3.For each slice i find number of items in each 

range o
j
, and compute

4.Find median of all the m
i

The idea: quantify concentration of values in one 
range of the global  distribution

mi=
max j {∣o j−ei∣}

N i−ei



  Example results



  Significance of results



  

Modeling locality of sampling:
● Empirical data: job repetitions are heavy tailed
● Top level of model: choose a job
● Bottom level: repeat it according to Zipf 

distribution
● Tail parameter of distribution allows control over 

the level of locality



  


