

Experimental Approaches
in Computer Science

Dror Feitelson
Hebrew University

Lecture 4 – Microbenchmarks

What would you like to measure?
● Overhead of context switch
● Overhead of trap into kernel
● Memory bandwidth
● Network bandwidth
● CPU frequency
● Cache size

Microbenchmark – a benchmark designed to
measure a specific feature

time for
something

rate of
something

system
parameters

● Time
– using gettimeofday()

● Rate
– is work per unit time
– so enough to measure time again

● Parameters
– can often be inferred from discontinuities in timing

measurements

lmbench

McVoy and Staelin

Usenix Technical Conf, Jan 1996

lmbench is a microbenchmark suite for computer
systems, with emphasis on low-level primitives

Goals:
● Focus on basic building blocks used in system

design
● Compare systems from different vendors
● Portability by using common tools

Memory bandwidth
● Size = 8MB to defeat caches but fit into memory
● bcopy gives half the bandwidth of read/write,

because does both
● For small sizes could be 1/3 of the bandwidth,

because destination cache lines need to be
read first before being partially overwritten

● For read suggest to sum up the read data to
enable optimization but avoid losing the whole
operation
– Memory access much higher than add, so not a

large perturbation

IPC bandwidth
● Pipes: transfer 50MB in 64KB chunks

– attempt to reduce effect of OS and context
switching

● TCP: use 1MB chunks, 1MB buffers, loopback
mode
– attempt to get optimal performance

● These configurations actually based on memory
copy, so should be related to memory
bandwidth
– may show use of optimizations to reduce copying
– may depend on chunk and buffer sizes

Memory latency
● Def 1: time for a single cache miss

– Reflects best achievable performance
– Hard to measure in software

● Def 2: time for one in a sequence of cache
misses with dependencies
– Possible to measure in software
– Better reflects effect on real applications:

;p = head
(while (p -> next
;p = p->next

– Loop overhead can be 100 times less than access

The actual benchmark:
● Array of size n
● Cells contain address of cell that is k away

(wrap back at end)
● Walk the array using p = *p;
● Do this for different n and k (powers of 2)

● Identify cache
and memory
sizes by steps
in graph

● Identify cache
line size by
smallest stride
in main batch
at next level
(those that are
faster benefit
from multiple
hits in same
line)

Entry into the operating system
● Suggest using a loop of writing a single byte

to /dev/null
● This is not optimized away in any system
● Alternatives like getpid or gettimeofday may be

optimized or implemented as a user-level library
function

Process creation alternatives
● Do fork and wait, child immediately exits
● Do fork and wait, child execs a hello world

program
– more realistic use

● Do fork and wait, child uses shell to run a hello
world program
– include searching $PATH

Context Switch
● Ousterhout [1991]: create two processes that

pass a byte back and forth via a pipe
● Problems:

– Overhead to read/write pipe is high and varied
– Only two processes
– Processes do not have any working set, so effect

on cache is missed

Context Switch
● lmbench: create 2-20 processes that pass a

token in a loop via pipes
– Measure 2000 transfers of the token
– Each process sums an array in memory before

forwarding the token; repeat for different array sizes
– Also do this on a single process to subtract

overheads for read/write and summing from a hot
cache

● Concentration
of values at
bottom left
shows caching
is effective
across context
switches

● No increase in
latency as long
as all working
sets together fit
into L2 = 256K

mhz benchmark

Staelin and McVoy

Usenix Technical Conf, Jan 1998

MHz benchmark: what is the clock rate on your
machine?
● Idea: measure the time of k instructions, and

divide by k
● Problems:

– Low resolution for measuring this time
– k C instructions can be compiled into a different

number of machine instructions
– On superscalar out-of-order processors operations

may overlap

● Inspiration: in the 19th century, chemists and
physicists found the atomic weight of the
elements by finding the greatest common
divisor of a set of measurements

● Similarly, the cycle time of a computer is the
greatest common divisor of the times needed to
complete a set of different instructions

● Only assumption: every instruction takes an
integral number of clock ticks

● Requirement: find instructions that take
relatively prime numbers of cycles

Finding the GCD
● Problems

– The measured times are not integral
– The measurements include noise

● Solution
– Let emin be the smallest measurement

– For i=1..6, calculate bi = emin / i
(these are candidates for being the cycle time)

– Turn each measurement ej into cycles by cj=[ej/bi]

– Check whether (ej,cj) fit a straight line through (0,0)
– The i that gives the best fit is chosen

Example:
e1=6.9

e2=10.6

e3=17.7

0 5 1510

i=1
c1=1

c2=[1.536]

c3=[2.565]
0

1

2

3

e
1
 is one
cycle

0

i=2
c1=2

c2=[3.072]

c3=[5.130]
0

1

2

3

4

5

e
1
 is two

cycles

Example:
e1=6.9

e2=10.6

e3=17.7

5 10 15

Atomic instructions
● Will string together 100 times for a

measurement
● Requirements:

– Each depends on the previous one so will not be
done in parallel

– Even subexpressions cannot be done in parallel
– Compiler cannot optimize them away

Compiler optimization problems
● Instruction: a += a
● Optimized to a = 0

– a += a is equivalent to a = a<<1
– Repeated 100 times this is a = a << 100
– But a only has 32 bits
– So the whole 100 repetitions are replaced by one

instance of a=0

The selected instructions:
;p = *p
;a ^= a + a
;a ^= a + a + a
;a >>= b
;a >>= a + a
;a ^= a << b
;a ^= a + b
a += (a + b) & 07
;a++; a ^= 1; a <<= 1

Several pairs are the
same except for one
additional operations

hopefully turns into
one additional cycle

Summarizing repetitions of a measurement

● Repetitions usually lead to different results
● Some of the results are very different (outliers)
● Others just reflect uncertainty in the

measurement (noise)
● How do we turn such multiple measurements

into a single estimate?

Simple answer: take the average

● Average reflects all the measurements

● Minimizes ∑  xi−m
2

Which average?
● Arithmetic average
● Harmonic average
● Geometric average

Arithmetic average

● Good for measured times
● When measured times double, so does the

average

x = 1
n∑ xi

Harmonic average

● Good for measured rates

● When measured times double, the average
should be halved

x = 1
1
n∑

1
xi

xi = w / t i  x = nw
∑ t i

total work

total time

Geometric average

● Gives consistent results when all xi are
measured relative to one of them, all have
same weight
– Therefore used in SPEC

● However, inconsistent with total time
– If times double, average does not

● Useful for average of multiplicative process
– Xi is improvement factor of component i
– Average improvement of all components given by

geometric mean

x = ∏ xi

Measurement results
Benchmark 1 Benchmark 2

System A 13 sec 16.5 sec
System B 19.5 sec 11 sec

Normalized by system A
Benchmark 1 Benchmark 2 average

System A 1 1 1
System B 1.5 0.667 1.08

Normalized by system B
Benchmark 1 Benchmark 2 average

System A 0.667 1.5 1.08
System B 1 1 1

Geometric average

● Gives consistent results when all xi are
measured relative to one of them, all have
same weight
– Therefore used in SPEC

● However, inconsistent with total time
– If times double, average does not

● Useful for average of multiplicative process
– Xi is improvement factor of component i
– Average improvement of all components given by

geometric mean

x = ∏ xi

● Alternative 1: the median

● More robust in face of outliers

● Minimizes ∑∣xi−m∣

Example:

The median

The mean

● Alternative 2: use the minimal value

● Interference typically adds time to the
measurement

● So the minimal measurement is the one that
has suffered the least noise

● Potential problem: if subtracting measurement
overhead, minimal result may actually reflect
subtraction of an inflated overhead
measurement

Using microbenchmarks to
analyze system performance

Brown & Seltzer

SIGMETRICS 1997

● Systems are built in layers
– hardware primitives
– low-level operating system primitives
– high-level operating system services
– user applications

● Performance of applications depends on
interactions among the lower components

● To understand performance, need to
1) measure the different primitives in isolation
2) characterize combinations and interactions

Example: decomposition of bulk data transfer

Raw memory bandwidth
● Dependence on benchmark

– max BW achieved by walking prearranged pointers
– more realistic to include indexing of array

● Dependence on hardware features
– memory technology
– bus width
– bus clock rate and its relation to CPU clock rate
– support for burst transfers on bus (avoid need for

bus negotiation)
– combined writes from cache (writing complete line

avoids need to first read and then modify)
● Many delicate details

Kernel service and application bandwidth
● Based on hardware primitive bandwidth we can

predict bandwidth at higher levels
– copy BW = ½ harmonic mean of read BW, write BW

● Deviations indicate interaction with some other
aspect of the system

● Example: alternating reads and writes may
require different pattern of negotiations for bus

Practical insight:
● Performance depends on intricate details
● Very hard to predict
● Very sensitive to unknown bottlenecks or

incompatibilities
● For dedicated-system procurement, better to

use application-level benchmarks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

