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What would you like to measure?
● Overhead of context switch
● Overhead of trap into kernel
● Memory bandwidth
● Network bandwidth
● CPU frequency
● Cache size

Microbenchmark – a benchmark designed to 
measure a specific feature

time for
something

rate of
something

system
parameters



  

● Time
– using gettimeofday()

● Rate
– is work per unit time
– so enough to measure time again

● Parameters
– can often be inferred from discontinuities in timing 

measurements



  

lmbench

McVoy and Staelin

Usenix Technical Conf, Jan 1996



  

lmbench  is a microbenchmark suite for computer 
systems, with emphasis on low-level primitives

Goals:
● Focus on basic building blocks used in system 

design
● Compare systems from different vendors
● Portability by using common tools



  

Memory bandwidth
● Size = 8MB to defeat caches but fit into memory
● bcopy gives half the bandwidth of read/write, 

because does both
● For small sizes could be 1/3 of the bandwidth, 

because destination cache lines need to be 
read first before being partially overwritten

● For read suggest to sum up the read data to 
enable optimization but avoid losing the whole 
operation
– Memory access much higher than add, so not a 

large perturbation



  

IPC bandwidth
● Pipes: transfer 50MB in 64KB chunks

– attempt to reduce effect of OS and context 
switching

● TCP: use 1MB chunks, 1MB buffers, loopback 
mode
– attempt to get optimal performance

● These configurations actually based on memory 
copy, so should be related to memory 
bandwidth
– may show use of optimizations to reduce copying
– may depend on chunk and buffer sizes



  

Memory latency
● Def 1: time for a single cache miss

– Reflects best achievable performance
– Hard to measure in software

● Def 2: time for one in a sequence of cache 
misses with dependencies
– Possible to measure in software
– Better reflects effect on real applications:

;p = head
(while (p -> next
;p = p->next

– Loop overhead can be 100 times less than access



  

The actual benchmark:
● Array of size n
● Cells contain address of cell that is k away 

(wrap back at end)
● Walk the array using  p = *p;
● Do this for different n and k (powers of 2)



  

● Identify cache 
and memory 
sizes by steps 
in graph

● Identify cache 
line size by 
smallest stride 
in main batch 
at next level 
(those that are 
faster benefit 
from multiple 
hits in same 
line)



  

Entry into the operating system
● Suggest using a loop of writing a single byte 

to  /dev/null
● This is not optimized away in any system
● Alternatives like getpid or gettimeofday may be 

optimized or implemented as a user-level library 
function



  

Process creation alternatives
● Do fork and wait, child immediately exits
● Do fork and wait, child execs a hello world 

program
– more realistic use

● Do fork and wait, child uses shell to run a hello 
world program
– include searching $PATH



  

Context Switch
● Ousterhout [1991]: create two processes that 

pass a byte back and forth via a pipe
● Problems:

– Overhead to read/write pipe is high and varied
– Only two processes
– Processes do not have any working set, so effect 

on cache is missed



  

Context Switch
● lmbench: create 2-20 processes that pass a 

token in a loop via pipes
– Measure 2000 transfers of the token
– Each process sums an array in memory before 

forwarding the token; repeat for different array sizes
– Also do this on a single process to subtract 

overheads for read/write and summing from a hot 
cache



  

● Concentration 
of values at 
bottom left 
shows caching 
is effective 
across context 
switches

● No increase in 
latency as long 
as all working 
sets together fit 
into L2 = 256K



  

mhz benchmark

Staelin and McVoy

Usenix Technical Conf, Jan 1998



  

MHz benchmark: what is the clock rate on your 
machine?
● Idea: measure the time of k instructions, and 

divide by k
● Problems:

– Low resolution for measuring this time
– k C instructions can be compiled into a different 

number of machine instructions
– On superscalar out-of-order processors operations 

may overlap



  

● Inspiration: in the 19th century, chemists and 
physicists found the atomic weight of the 
elements by finding the greatest common 
divisor of a set of measurements

● Similarly, the cycle time of a computer is the 
greatest common divisor of the times needed to 
complete a set of different instructions

● Only assumption: every instruction takes an 
integral number of clock ticks

● Requirement: find instructions that take 
relatively prime numbers of cycles



  

Finding the GCD
● Problems

– The measured times are not integral
– The measurements include noise

● Solution
– Let emin be the smallest measurement

– For i=1..6, calculate bi = emin / i                          
(these are candidates for being the cycle time)

– Turn each measurement ej into cycles by cj=[ej/bi]

– Check whether (ej,cj) fit a straight line through (0,0)
– The i that gives the best fit is chosen



  

Example:
e1=6.9

e2=10.6

e3=17.7
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Atomic instructions
● Will string together 100 times for a 

measurement
● Requirements:

– Each depends on the previous one so will not be 
done in parallel

– Even subexpressions cannot be done in parallel
– Compiler cannot optimize them away



  

Compiler optimization problems
● Instruction: a += a
● Optimized to a = 0

– a += a is equivalent to a = a<<1
– Repeated 100 times this is a = a << 100
– But a only has 32 bits
– So the whole 100 repetitions are replaced by one 

instance of  a=0



  

The selected instructions:
;p = *p
;a ^= a + a
;a ^= a + a + a
;a >>= b
;a >>= a + a
;a ^= a << b
;a ^= a + b
a += (a + b) & 07
;a++;  a ^= 1;  a <<= 1

Several pairs are the 
same except for one 
additional operations

hopefully turns into 
one additional cycle



  

Summarizing repetitions of a measurement



  

● Repetitions usually lead to different results
● Some of the results are very different (outliers)
● Others just reflect uncertainty in the 

measurement (noise)
● How do we turn such multiple measurements 

into a single estimate?



  

Simple answer: take the average

● Average reflects all the measurements

● Minimizes ∑  xi−m
2



  

Which average?
● Arithmetic average
● Harmonic average
● Geometric average



  

Arithmetic average

● Good for measured times
● When measured times double, so does the 

average

x = 1
n∑ xi



  

Harmonic average

● Good for measured rates

● When measured times double, the average 
should be halved

x = 1
1
n∑

1
xi

xi = w / t i  x = nw
∑ t i

total work

total time



  

Geometric average

● Gives consistent results when all xi are 
measured relative to one of them, all have 
same weight
– Therefore used in SPEC

● However, inconsistent with total time
– If times double, average does not

● Useful for average of multiplicative process
– Xi is improvement factor of component i
– Average improvement of all components given by 

geometric mean

x = ∏ xi



  

Measurement results
Benchmark 1 Benchmark 2

System A 13 sec 16.5 sec
System B 19.5 sec 11 sec

Normalized by system A
Benchmark 1 Benchmark 2 average

System A 1 1 1
System B 1.5 0.667 1.08

Normalized by system B
Benchmark 1 Benchmark 2 average

System A 0.667 1.5 1.08
System B 1 1 1



  

Geometric average

● Gives consistent results when all xi are 
measured relative to one of them, all have 
same weight
– Therefore used in SPEC

● However, inconsistent with total time
– If times double, average does not

● Useful for average of multiplicative process
– Xi is improvement factor of component i
– Average improvement of all components given by 

geometric mean

x = ∏ xi



  

● Alternative 1: the median

● More robust in face of outliers

● Minimizes ∑∣xi−m∣



  

Example:

The median

The mean



  

● Alternative 2: use the minimal value

● Interference typically adds time to the 
measurement

● So the minimal measurement is the one that 
has suffered the least noise

● Potential problem: if subtracting measurement 
overhead, minimal result may actually reflect 
subtraction of an inflated overhead 
measurement



  

Using microbenchmarks to
analyze system performance

Brown & Seltzer

SIGMETRICS 1997



  

● Systems are built in layers
– hardware primitives
– low-level operating system primitives
– high-level operating system services
– user applications

● Performance of applications depends on 
interactions among the lower components

● To understand performance, need to
1) measure the different primitives in isolation
2) characterize combinations and interactions



  

Example: decomposition of bulk data transfer



  

Raw memory bandwidth
● Dependence on benchmark

– max BW achieved by walking prearranged pointers
– more realistic to include indexing of array

● Dependence on hardware features
– memory technology
– bus width
– bus clock rate and its relation to CPU clock rate
– support for burst transfers on bus (avoid need for 

bus negotiation)
– combined writes from cache (writing complete line 

avoids need to first read and then modify)
● Many delicate details



  

Kernel service and application bandwidth
● Based on hardware primitive bandwidth we can 

predict bandwidth at higher levels
– copy BW = ½ harmonic mean of read BW, write BW

● Deviations indicate interaction with some other 
aspect of the system

● Example: alternating reads and writes may 
require different pattern of negotiations for bus



  

Practical insight:
● Performance depends on intricate details
● Very hard to predict
● Very sensitive to unknown bottlenecks or 

incompatibilities
● For dedicated-system procurement, better to 

use application-level benchmarks
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