Experimental Approaches in Computer Science

Dror Feitelson Hebrew University

Lecture 12 - Experimental Algorithmics

Case studies

- Online scheduling
- Matrix multiplication
- Maximum flow

Online scheduling

- Problem definition: Given n jobs with known processing times process them on m identical machines so as to minimize the makespan
- Graham's list scheduling [1966]: put the jobs in a list and whenever a machine becomes idle assign the next job to this machine
- Claim: Graham's simple greedy algorithm is $\left(2-\frac{1}{m}\right)$-competitive

Proof:

Let c* denote the optimal makespan
then $c^{*} \geq p_{\max } \quad$ [accommodate longest job]
and $c^{*} \geq 1 / m \sum p_{j} \quad$ [accommodate total processing needed]
assume job k is the last one to terminate then it starts no later than $1 / m \sum_{j \neq k} p_{j}$ because no machine is idle before all jobs start

Its termination time is then no later than its start time + processing time:

$$
\begin{aligned}
c_{k} & \leq 1 / m \sum_{j \not j k} p_{j}+p_{k} \\
& \leq \sum_{j} p_{j}+(1-1 / m) p_{k} \\
& \leq c^{*}+(1-1 / m) c^{*} \\
& =(2-1 / m) c^{*}
\end{aligned}
$$

Improvements:

- Bartal et al. [1995]: 1.986-competitive algorithm
- Karger et al. [1996]: 1.945-competitive algorithm
- Albers [1997]: 1.923-competitive algorithm
- All use various seemingly arbitrary conditions to sometimes select a machine that is not the least loaded
- Question: is this generally good, or does it just avoid certain pathological cases?

Experimental evaluation:

[Albers \& Schroder, J. Exp. Alg. 7(3), 2002]

- Use real-world job sizes
- Parallel machines (MPPs at CTC, KTH)
- Vector machine (Cray at PSC)
- Workstation (Sun in Germany)
- Use distributions
- Create sequences of 10000 jobs, and tabulate running ratio of achieved makespan to optimal

Results KTH:

relatively low variance, so ratio stabilized after some fluctuations; Graham is best

Occasional big job similar to average so far.
Graham suffers because loads are balanced, and one machine will need to work much more; others leave machines less loaded in anticipation of such jobs

job sizes have a heavy tail: some are so big they dominate the average. This causes both the online algorithm and the optimal makespan to be essentially equal, and the ratio drops to 1

ExpOnential:

Relatively low variability leads to quick convergence.
Similar results for uniform, Erlang, and hyperexponential with various parameter values

Effect of number of jobs (m) :

- All previous results were for $\mathrm{m}=10$
- When m grows, it takes longer for ratios to stabilize, because more jobs are needed to fill the machines
- Also, the effect of jobs that are similar to the average load is changed - given that the load is distributed on more machines, these jobs now look huge, and their effect is to reduce the ratio rather than to enlarge it

The bottom line: it depends on the workload

- Graham's simple greedy algorithm is best when job variance is low
- Other algorithms, mainly Albers and Bartal, may reduce sensitivity to large jobs
- When the variance is extremely big due to a heavy tail, the algorithm has little effect

Matrix Multiplication

Problem definition:

- The straightforward n^{3} algorithm
- Take into account the memory hierarchy
- Cache capacity
- Cache associativity
- Contention for the system bus
- Memory latency
- An instance of algorithm engineering
[Eiron et al. J. Exp. Alg. 4(3), 1999]

Idea 1: use tiling

- Use tiles that fit into the cache, to avoid capacity misses
- Retain ratio of multiple operations per given data

Matrix A

Matrix B

Matrix C

Idea 2: use prefetching

- In each phase prefetch the data needed in the next phase
- If all data is in the cache, computation does not use the system bus at all
- But is therefore free for use by prefetching
- Need to time the prefetches so as to avoid evicting needed data (assumes LRU cache replacement)

Tile size constraints

- Computation per tile multiplication is $\mathrm{O}\left(\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$
- Data to prefetch is $\mathrm{O}\left(\mathrm{P}_{1} \mathrm{P}_{2}+\mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{P}_{1} \mathrm{P}_{3}\right)$
- Also need to write back C tile of $P_{1} P_{3}$
- Enough time if $P_{1} P_{2} P_{3}>P_{1} P_{2}+P_{2} P_{3}+2 P_{1} P_{3}$
- Enough space if 2 $\left(\mathrm{P}_{1} \mathrm{P}_{2}+\mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{P}_{1} \mathrm{P}_{3}\right)<\mathrm{C}$
- Can reduce prefetching/writeback by reusing C tile for full row of A tiles and column of B tiles

Idea 3: copy to avoid conflicts

- Copy tiles to different addresses so that they fall in different cache associativity sets
- Assuming k-way associativity, ensure that each set is used only $k / 2$ times
- Simple example:
- 2-way associativity
- Interleave tiles from the different caches
- Use offset that is a multiple of the way size
- Being 2-way allows 2 tiles from each matrix to be cache resident

Implementation:

- IBM PowerPC model 604
- Use fma (floating multiply-add) instruction, which is ideal for matrix/vector multiplication
- Theoretical peak of 266 MFLOPS
- Don't use dcbt (data cache block touch) instruction for prefetching, but rather a register load
- dcbt doesn't work when TLB misses
- Can't be triggered from source level

Performance:

better and more predictable than highly tuned code

Maximum Flow

Problem definition:

given a graph $G=(V, E)$,
with two distinguished nodes s and t,
where each edge e has capacity $c(e)$,
find the maximum possible flow from s to t
we'll focus on unit capacity (c(e)=1 for all edges)

Flow definition:

A flow is a function $f: V \times V \rightarrow \mathrm{R}$ such that

- $f(u, v) \leq c(u, v) \quad$ [capacity constraint]
- $f(u, v)=-f(v, u) \quad$ [anti-symmetry]
- $\sum_{v} f(u, v)=0 \quad$ [conservation constraint]
(holds for all u except s and t)

The value to maximize is $\sum_{v} f(s, v)$

Main algorithms:

- Path augmentation
- Preflow push-relabel

Path augmentation

- Invariant: always maintain a legitimate flow
- Start with a 0 flow
- At each step
- Find a path from s to t that has capacity to spare
- Add a flow along this path
- Terminate when no additiorı... paths can be found
- Complexity: $\mathrm{O}(\mathrm{E}|\mathrm{f}|)$ wif VFS? DFS? is max

Preflow push-relabel

- Invariant: maintains a preflow (allow excess input to a node)
- Initially s is at level $|\mathrm{V}|, t$ and all others at 0
- For all overflowing nodes (starting with s) fill outgoing links to nodes at ower level to capacity
- If all unsaturated outbound \because; are to nodes at same or higher level, relahal th ? one higher than lowest Variants: order of
- At end, nodes with ex. push and relabel ops, above the source and use of optimizations
- Complexity: $\mathrm{O}\left(\mathrm{V}^{2} \mathrm{E}\right)$

Optimizations:

- Global relabel
- Push and relabel are local operations
- State may drift away from global optimum
- Optimization is to do a global scan and relabel all nodes consistently in one sweep
- Gap heuristic:
- If there are no nodes with label d, all those with higher labels return excess to s
- Saves the need to raise their level by single steps to above $|\mathrm{V}|$

Experimental questions:

- Augment or push?
- What is the effect of variants and optimizations?
- How does this depend on different input graph instances?
[Cerkassky et al. J Exp. Alg. 3(8), 1998]

Methodology: use random graphs from various different families

Experimental results

Table 1. Summary of results. Blank is good, o is fair, and e is poor.

	DFS	BFS	LDS	AR	FIFO	LO	HI
fewg	\bullet	\circ					
manyg	\bullet	\circ					
hi-lo							\bullet
grid	\bullet						
hexa	\bullet	\circ					
rope							\circ
zipf					\circ		
karz		\bullet	\circ	\bullet	\bullet	\bullet	\bullet
rmfuC	\bullet	\bullet	\circ	\circ			
rmfuL	\circ	\circ		\circ			
rmfuW	\bullet	\bullet	\circ	\circ			
blow			\circ	\circ			\circ
puff	\circ	\bullet		\circ			\circ
saus					\bullet	\bullet	\bullet
squa							\circ
wave	\bullet	\bullet		\circ			\circ

Rows are families of graphs columns are algorithms

Experimental results

Conclusions:

- No single algorithm is best for all graph types
- Both BFS and DFS (path augmentation) are not robust, with bad performance for many graph families
- The best push-relabel methods are generally more robust than the best augmented flow
- The added heuristics are important for the achieved performance

