

Experimental Approaches
in Computer Science

Dror Feitelson
Hebrew University

Lecture 12 – Experimental Algorithmics

Case studies
● Online scheduling
● Matrix multiplication
● Maximum flow

Online scheduling

● Problem definition: Given n jobs with known
processing times process them on m identical
machines so as to minimize the makespan

● Graham's list scheduling [1966]: put the jobs in
a list and whenever a machine becomes idle
assign the next job to this machine

● Claim: Graham's simple greedy algorithm is
 -competitive2− 1m

Proof:
Let c* denote the optimal makespan
then c* ≥ p

max
[accommodate longest job]

and c* ≥ 1/m ∑ p
j

[accommodate total
 processing needed]

assume job k is the last one to terminate
then it starts no later than 1/m ∑

j≠k
 p

j

because no machine is idle before all jobs start

Its termination time is then no later than its start
time + processing time:
c

k
 ≤ 1/m ∑

j≠k
 p

j
+ p

k

 ≤ ∑
j
 p

j
+ (1 – 1/m)p

k

 ≤ c*

+ (1 – 1/m)c*

 = (2 – 1/m)c*

Improvements:
● Bartal et al. [1995]: 1.986-competitive algorithm
● Karger et al. [1996]: 1.945-competitive

algorithm
● Albers [1997]: 1.923-competitive algorithm
● All use various seemingly arbitrary conditions to

sometimes select a machine that is not the
least loaded

● Question: is this generally good, or does it just
avoid certain pathological cases?

Experimental evaluation:
[Albers & Schroder, J. Exp. Alg. 7(3), 2002]
● Use real-world job sizes

– Parallel machines (MPPs at CTC, KTH)
– Vector machine (Cray at PSC)
– Workstation (Sun in Germany)

● Use distributions
● Create sequences of 10000 jobs, and tabulate

running ratio of achieved makespan to optimal

Results KTH:

relatively low variance, so ratio stabilized after
some fluctuations; Graham is best

Results Cray:

Occasional big job similar to average so far.
Graham suffers because loads are balanced, and one
machine will need to work much more; others leave
machines less loaded in anticipation of such jobs

Results Sun:

job sizes have a heavy tail: some are so big they dominate
the average. This causes both the online algorithm and the
optimal makespan to be essentially equal, and the ratio
drops to 1

Exponential:

Relatively low variability leads to quick convergence.
Similar results for uniform, Erlang, and hyperexponential with
various parameter values

Effect of number of jobs (m):
● All previous results were for m=10
● When m grows, it takes longer for ratios to

stabilize, because more jobs are needed to fill
the machines

● Also, the effect of jobs that are similar to the
average load is changed – given that the load is
distributed on more machines, these jobs now
look huge, and their effect is to reduce the ratio
rather than to enlarge it

The bottom line: it depends on the workload
● Graham's simple greedy algorithm is best when

job variance is low
● Other algorithms, mainly Albers and Bartal, may

reduce sensitivity to large jobs
● When the variance is extremely big due to a

heavy tail, the algorithm has little effect

Matrix Multiplication

Problem definition:
● The straightforward n3 algorithm
● Take into account the memory hierarchy

– Cache capacity
– Cache associativity
– Contention for the system bus
– Memory latency

● An instance of algorithm engineering
[Eiron et al. J. Exp. Alg. 4(3), 1999]

Idea 1: use tiling
● Use tiles that fit into the cache, to avoid capacity

misses
● Retain ratio of multiple operations per given data

Idea 2: use prefetching
● In each phase prefetch the data needed in the

next phase
● If all data is in the cache, computation does not

use the system bus at all
● But is therefore free for use by prefetching
● Need to time the prefetches so as to avoid

evicting needed data (assumes LRU cache
replacement)

Tile size constraints
● Computation per tile multiplication is O(P

1
P

2
P

3
)

● Data to prefetch is O(P
1
P

2
+P

2
P

3
+P

1
P

3
)

● Also need to write back C tile of P
1
P

3

● Enough time if P
1
P

2
P

3
> P

1
P

2
+P

2
P

3
+2P

1
P

3

● Enough space if 2(P
1
P

2
+P

2
P

3
+P

1
P

3
) < C

● Can reduce prefetching/writeback by reusing C
tile for full row of A tiles and column of B tiles

Idea 3: copy to avoid conflicts
● Copy tiles to different addresses so that they fall

in different cache associativity sets
● Assuming k-way associativity, ensure that each

set is used only k/2 times
● Simple example:

– 2-way associativity
– Interleave tiles from the different caches
– Use offset that is a multiple of the way size
– Being 2-way allows 2 tiles from each matrix to be

cache resident

Implementation:
● IBM PowerPC model 604
● Use fma (floating multiply-add) instruction, which

is ideal for matrix/vector multiplication
– Theoretical peak of 266 MFLOPS

● Don't use dcbt (data cache block touch)
instruction for prefetching, but rather a register
load
– dcbt doesn't work when TLB misses
– Can't be triggered from source level

Performance:
better and more predictable than highly tuned code

MFLOPS % of peak

Maximum Flow

Problem definition:
given a graph G=(V,E),
with two distinguished nodes s and t,
where each edge e has capacity c(e),
find the maximum possible flow from s to t

we'll focus on unit capacity (c(e)=1 for all edges)

Flow definition:
A flow is a function f : V x V → R such that
● f(u,v) ≤ c(u,v) [capacity constraint]
● f(u,v) = –f(v,u) [anti-symmetry]
● ∑

v
f(u,v) = 0 [conservation constraint]

 (holds for all u except s and t)

The value to maximize is ∑
v
f(s,v)

Main algorithms:
● Path augmentation
● Preflow push-relabel

Path augmentation
● Invariant: always maintain a legitimate flow
● Start with a 0 flow
● At each step

– Find a path from s to t that has capacity to spare
– Add a flow along this path

● Terminate when no additional paths can be
found

● Complexity: O(E |f|) with integer capacities, |f| is max
Variants:

BFS? DFS?

Preflow push-relabel
● Invariant: maintains a preflow (allow excess

input to a node)
● Initially s is at level |V|, t and all others at 0
● For all overflowing nodes (starting with s) fill

outgoing links to nodes at lower level to capacity
● If all unsaturated outbound links are to nodes at

same or higher level, relabel the node to level
one higher than lowest unsaturated neighbor

● At end, nodes with excess flow will migrate to
above the source and push the excess back

● Complexity: O(V2 E)

Variants: order of
push and relabel ops,
use of optimizations

Optimizations:
● Global relabel

– Push and relabel are local operations
– State may drift away from global optimum
– Optimization is to do a global scan and relabel all

nodes consistently in one sweep
● Gap heuristic:

– If there are no nodes with label d, all those with
higher labels return excess to s

– Saves the need to raise their level by single steps
to above |V|

Experimental questions:
● Augment or push?
● What is the effect of variants and optimizations?
● How does this depend on different input graph

instances?
[Cerkassky et al. J Exp. Alg. 3(8), 1998]

Methodology: use random graphs from various
different families

Experimental results

Rows are
families of
graphs

columns are
algorithms

Experimental results

Plots for graph families
Lines for algorithms

Conclusions:
● No single algorithm is best for all graph types
● Both BFS and DFS (path augmentation) are not

robust, with bad performance for many graph
families

● The best push-relabel methods are generally
more robust than the best augmented flow

● The added heuristics are important for the
achieved performance

