
  

Experimental Approaches 
in Computer Science

Dror Feitelson
Hebrew University

Lecture 11 – Experimental Algorithmics



  

Traditional approach:

"Quicksort is O(n2)"
● What this means:

Quicksort will perform at most cn2 operations when 
sorting n numbers, regardless of programming 
language, programmer experience, or the specific 
input sequence

● This is a universal truth
● Note, however, that

– c is not specified
– This is the worst case, and might not be 

representative of common cases



  

Misleading complexity analysis – only huge n:
   Minimum spanning tree

– Prim's algorithm has complexity O(E lg V)
– Fredman and Trajan have an algorithm with 

complexity O(E lg* V)
– In practice, the improvement is only seen for dense 

graphs with more than 1000000 nodes
   [Moret & Shapiro, DIMACS 1994]



  

Misleading complexity analysis – drowned by 
constant factor:
   Test if one graph is a minor of another

– Robertson & Seymour give a cubic algorithm
– However, it has a constant of 10150

   Sorting network
– Ajtai, Komlos, and Szemeredi show an optimal 

O(log n)-depth construction
– Based on expander graphs
– Huge constants make it impractical



  

Misleading complexity analysis – worst case is 
uncommon
   Linear programming

– The simplex method has an exponential worst case 
running time

– However, it has a low running time for practically all 
naturally occurring inputs

   Similar situations exist for many NP-complete 
problems
– Approximations may be available for most inputs
– The problematic inputs may be rare and 

uninteresting



  

Missing complexity analysis does not necessarily 
imply bad performance
   Minimize edge crossings when drawing bipartite 

graphs
– Problem is NP-complete
– Algorithm with no known constant approximation 

ratio leads to better results than algorithm with 
proven low constant approximation ratio

   [Demetrescu & Finocchi, ALENEX 2000]



  

Misleading complexity analysis – does not take 
mundane implementation issues into account
   Locality and cache effects

– May have dramatic effect on performance
– However, can be very hard to predict and analyze
– Partly due to complex parameterization of cache 

structures (set sizes, associativity, multiple levels)



  

Naive optimizations – implicit assumptions may 
be wrong
   Code structure vs. cache effects

– Optimizations often geared to reduce instruction 
counts so as to accelerate execution

– This may lead to smaller code blocks and using 
less data in each basic block

– May result is reduced cache locality and 
subsequent longer running time



  

The experimental approach
● Emphasize real-world results, including 

constants
– How much time will it really run?

● Emphasize common case rather than worst 
case
– Also, how common is the common case?
– Show distribution rather than just one data point

● Price is possible dependence on platform being 
used
– Might restrict applicability
– Typically good enough for qualitative comparisons



  

Basic methodology: Use a good implementation
● When studying an algorithm, make it relevant

– Finding that an inefficient implementation is bad is 
not interesting

– Studying a bad implementation is misleading and 
confounds the issues

● When comparing options, make it fair
– Want to compare algorithms, not implementations
– Need to invest similar amounts of effort



  

Basic methodology: Use representative input 
instances
● Behavior on random inputs may differ from 

behavior on real ones
– Real world inputs may tend to be more structured
– Such structure may provide opportunity for special 

optimizations
– Or such structure may be harder to handle

● Similar to need for representative workloads



  

Basic methodology: Perform good measurements
● Use repetitions and calculate confidence 

intervals
– Repetitions are over multiple representative inputs
– Need to note whether distribution is bell-shaped or 

has a tail
● Remove outliers?

– Not if they are important real cases
– Yes if they reflect interference with measurement



  

Basic methodology: Report full details
● Allow for reproducibility

– If others can reproduce it this increases our 
confidence

– Not the same as replication, where others simply 
run your code on your inputs

● Include platform details, implementation details


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

