
 Slide 1

The CPU simulator

 Slide 2

Lesson Overview
Introduce and clarify ex3 objectives

Various course technical issues

Introduce the Central Processing Unit:

What is the CPU?

The CPU cycle

Basic Constructs:

ALU, Memory, Registers

The CPU instruction set or Commands

 Slide 3

The CPU exercise objectives
 1. Separating design from implementation.

 2. Integrating your code with predefined code modules.

 3. Creating an extensible design which will be able to
accommodate future changes.

In order to enforce a strict separation between your design and
implementation, you will be required to submit your design prior to
writing any of the actual code.

You will then be required to commit to your design in the
implementation stage of the exercises.

We strongly suggest not to write any piece of real code before
submitting your design document.

 Slide 4

Course Technicalities
Using the Eclipse and UML environments

Reception hours

Using the Debugger

Exercise copying

Reading the newsgroup

Email ethics

 Slide 5

The Central Processing Unit
The Central Processing Unit (CPU, or processor) is the heart of any
computer you have used and will use in the future.

It is the component that interprets instructions and processes data
contained in software.

CPUs provide the fundamental digital computer trait of
programmability, and are one of the core components found in
almost all modern microcomputers, along with primary storage and
input/output facilities.

 Slide 6

The Central Processing Unit
The phrase "central processing unit" is, in general terms, a
description of a certain class of logic machines that can execute
complex computer programs.

A program is a set of commands that are in machine language –
the language that the CPU “understands”.

Each machine-language command is implemented by hardware
components within the CPU.

A modern day computer program is loaded into memory (usually by
the operating system), interpreted and then executed ("run")
instruction by instruction until "program termination", either with
success or through software or hardware error.

 Slide 7

CPU Execution
CPU starts from absolute address 0

 It decodes and executes commands, each time increasing the
Program Counter which always points to the next word to be
decoded and executed.

 It stops the execution iff:

(a) A special HALT command was reached

(b)No errors were encountered:
 access to address outside of memory
 write on "code segment"
 faulty command (the word doesn't contain a legal CPU

command)

 Slide 8

How it all works?
Any meaningful program involves manipulation of data

The CPU has access to a main Memory module

The CPU also uses Registers to manipulate data more efficiently

Registers are a set of fast memory cells (words) physical memory
is slow. They can be viewed as a set of local variables that are
sometimes used directly in calculations and sometimes as pointers
to the memory.

Apart from the general purpose registers, there are also special
purpose registers (details below).

 Slide 9

The CPU cycle
There are four steps that nearly all Von Neumann CPUs use in their
operation:

(1) fetch - retrieving a CPU instruction (or command)

(2) decode - the instruction is broken up into parts that have
significance to other portions of the CPU.

(3) execute – the instruction is executed. During this step, various
portions of the CPU are connected so they can perform the
desired operation.

(4) writeback - "writes back" the results of the execute step to
some form of memory.

 Slide 10

The CPU cycle
There are four steps that nearly all Von Neumann CPUs use in their
operation

 Slide 11

The CPU cycle: Fetch
Involves retrieving a CPU instruction (or command).

Each command is represented by a number or sequence of
numbers from program memory.

The location in program memory is determined by a program
counter (PC), which stores a number that identifies the current
position in the program.

The program counter keeps track of the CPU's place in the
current program.

After an instruction is fetched, the PC is incremented by the
length of the instruction word in terms of memory units.

 Slide 12

The CPU cycle: Decode
The instruction that the CPU fetches from memory is used to
determine what the CPU is to do.

In the decode step, the instruction is broken up into parts that
have significance to other portions of the CPU.

The way in which the numerical instruction value is interpreted is
defined by the CPU's instruction set architecture (ISA).

Often, one group of numbers in the instruction, called the opcode,
indicates which operation to perform.

 Slide 13

The CPU cycle: Decode
The remaining parts of the number usually provide information
required for that instruction, such as operands for an addition
operation.

Such operands may be given as a constant value (called an
immediate value), or as a place to locate a value: a register or a
memory address, as determined by some addressing mode.

In our current exercise each CPU command is built up of 5
different parts, each with a fixed-length:

 Slide 14

The CPU cycle: Execute
During this step, various portions of the CPU are connected so
they can perform the desired operation.

If, for example, an addition operation was requested, an
arithmetic logic unit (ALU) will be connected to a set of inputs
and a set of outputs.

The inputs provide the numbers to be added, and the outputs will
contain the final sum.

The ALU contains the circuitry to perform simple arithmetic and
logical operations on the inputs (like addition and bitwise
operations).

 Slide 15

The CPU cycle: Writeback
The writeback step, simply "writes back" the results of the
execute step to some form of memory.

Very often the results are written to some internal CPU register
for quick access by subsequent instructions.

In other cases results may be written to slower, but cheaper and
larger, main memory (in the ex. definition “CPU memory”).

Some types of instructions manipulate the program counter
rather than directly produce result data. These are generally
called "jumps" (or branch command) and facilitate behavior like
loops, conditional program execution (through the use of a
conditional jump), and functions in programs.

 Slide 16

The CPU cycle: Writeback - flags
Many instructions will also change the state of digits in a "flags"
register.

These flags can be used to influence how a program behaves,
since they often indicate the outcome of various operations.

For example, a "compare" instruction (CMP in our exercise)
considers two values and sets a number in the flags register
according to the result. This flag could then be used by a
subsequent conditional jump instruction.

In our exercise the flags register is called the Program Status
Word register (or PSW).

The PSW can have one of 3 values: negative, zero and positive
values.

 Slide 17

The CPU building blocks
Each CPU has the following basic components:

(1) Memory module – which stores both the program's code and
the data it uses.

(2) Registers – which are a set of additional memory cells, which
are physically located on the CPU chip, and provide fast access
memory on which the CPU can operate.

(3) Arithmetic-Logical Unit (ALU) – this module contains the
circuitry to perform simple arithmetic and logical operations on
the inputs (like ADD, AND etc.)

 Slide 18

The CPU building blocks (cont.)
Each CPU has the following basic components:

(4) Instruction Set – a definition of the various CPU instructions
(or commands) that the CPU implements.

(5) Instruction Decoder – which splits the command word into its
various parts (5 in our case) and allows to execute the
command.

 Slide 19

The Memory
The CPU has access to Memory on which it stores everything needed
to run the program. This includes:

(1) “Text” segment - The program's source code – Von Neumann's
model - “Code is Data too!” (The program is also stored in memory)

(2) “Data” segment – The place where global variables and constants
are stored.

(3) “Runtime-Stack” - The stack used to store all of the variables
that belong to function calls within the program

(4) “Heap segment” - The segment which contains all of the
dynamically allocated memory (in Java, everything that is allocated
using the “new” command).

 Slide 20

The Memory
The basic memory unit is called a “Word”.

A “Word” is always an integer type of some fixed length. In our
exercise a Word is a short integer!

The CPU memory has a fixed (physical) size, in our case 16384
words long.

Each word may contain a CPU command, or some value (or number)
which can be associated with a variable in our program.

 Slide 21

The Memory of the CPUsimulator
The CPU memory has is 16384 words long.

Each memory word is a short int.

The memory is uninitialized and may contain garbage.

Our simple memory module only has 2 segments:

(1) The Data segment - This segment begins at address 0, and has a
fixed size which is stated in the program code.

(2)The Code segment - Begins immediately after the Data Segment.
The Code segment is READ-ONLY, i.e. it cannot be changed by any
CPU command. The size of the code segment is stated in the
program code, and is fixed. Any attempt to modify the code
segment should cause the program to exit with an appropriate
error message.

 Slide 22

The Registers
Registers are an extra set of memory cells which are
used by the CPU for various purposes.

The registers can be accessed more efficiently since (in
real CPUs) they are physically located on the CPU chip
itself.

Each register is a CPU word.

There are several types of registers some are general
purpose and some have a special meaning and are used
for specific tasks.

 Slide 23

Types of Registers
There are many types of registers.

In our simple CPU we will only consider the following types:

(1) General purpose registers (RO-R3) – Which can be used for
storing values and can be used as operands for various
commands such as ADD, AND etc.

(2) PSW – the Program Status Word register, which indicates the
status of the result of the last operation executed. The PSW
can be in one of 3 states: Negative, Positive and Zero. It is
modified by several CPU commands such as compare (CMP)
arithmetic operations and logical operations.

 Slide 24

Types of Registers (cont.)
(3) PC – the Program Counter register.

 This register points to the address in memory of the NEXT
command to execute, relative to the start of the code segment.

 The address in the PC is zero based. Thus, when PC=0, the next
command to be executed is the first command in the code
segment.

 Upon reset of the CPU, the PC register is initialized to the
value 0.

 The PC is incremented AFTER the execution of each command.

 The PC can also be changed by different branch commands, and
by immediate or direct addressing modes .

 Slide 25

The CPU commands
The CPU commands are part of the CPU instruction set

Each command is coded by a CPU word.

Each command is implemented by the CPU.

In our CPUsimulator, we will simulate each command, by calling
the appropriate java operation. For example: the ADD command
will be implemented using the '+' operator in Java.

 Slide 26

The CPU commands
The CPU commands are part of the CPU instruction set

(1) Mathematical operations

(2) Logical operations

(3) Assignment operations

(4) Branch commands

(5)Output and formatting commands

 Slide 27

CPU commands – Mathematical operations
These command include the following basic math. operations:

ADD (binary operation) - adds the two operands and stores the
result in the second operand.

SUB (binary operation) – substracts the two operands and
stores the result in the second operand.

MUL (binary operation) – multiplies the two operands and
stores the result in the second operand.

DIV (binary operation) – divides the two operands and stores
the result in the second operand. Division by zero is undefined.

 Slide 28

CPU commands – Mathematical operations
continued...

INC (unary operation) – increments the operand value by 1.

DEC (unary operation) – decrements the operand value by 1.

 Slide 29

CPU commands – Logical operations
Logical commands supported are:

AND (binary operation) – performs bitwise-logical AND (&)
operation between the two operands. stores the result in the
second operand.

OR (binary operation) – performs bitwise-logical OR (|)
operation between the two operands. stores the result in the
second operand.

CMP (binary operation) – compares the two operands, and sets
the PSW register accordingly:

If(operand1 == operand2), the zero bit of PSW is set to one.
otherwise it is set to zero.

If(operand1 > operand2), the negative bit of PSW is set to one.
otherwise it is set to zero.

 Slide 30

CPU commands – Assignment operations
There is only one direct assignment operation:

MOVE (binary operation) – moves the value of the first operand
into the second operand.

However, notice that all of the mathematical and logical
commands also include an assignment command.

 Slide 31

CPU commands – Branch commands
These commands manipulate the program counter (PC) rather
than directly produce result data.

These are generally called "jumps" and facilitate behavior like
loops, conditional program execution (through the use of a
conditional jump), and functions in programs.

There are several types of branch commands supported:

BRANCH (unary operation) – sets the PC register to the value
of the operand.

BREQ (unary operation) - “branch if equal” : sets the PC
register to the value of the operand iff the PSW zero bit is
set.

 Slide 32

CPU commands – Branch commands
There are several types of branch commands supported: (cont.)

BRLSS (unary operation) – “branch if less” : sets the PC
register to the value of the operand, only if the PSW negative
bit is set.

BRGT (unary operation) – “branch if greater” : sets the PC
register to the value of the operand, only if the PSW positive
bit is set.

Notice that the all of the conditional branch commands (BREQ,
BRLSS, BRGT) allow to branch based on the result of the status
of the PSW, which was modified by previous commands.

 Slide 33

CPU commands – Output and Formatting
Note that in our simple CPU we do not include any input
commands.

There are several types of output and formatting commands
supported:

OUT (unary operation) – prints the operand to the output
followed by a tab character ('\t').

SPACE (zero operands) – prints a tab character to the output.

NEWL (zero operands) – prints a newline character ('\n') to
the output.

There is one additional IMPORTANT command : HALT – ends the
execution of the program.

 Slide 34

Command (or Instruction) Decoder
Each command is encoded by a CPU word.

The decoder, parses the command and retrieves the relevant
parts of it, which are used to execute the command.

Preparing the relevant operands for executing a command is a
crucial step, which involves accessing various types of memory, as
determined by the operands' addressing modes.

Decoding the commands in the CPUsimulator involves the use of
bitwise operations.

In our exercise, the Word class that you get from us, does all of
the decoding for you.

 Slide 35

Command Operands
Each command has a fixed number of operands.

An operand can be a register or a number.

If the operand is a register, the register number is encoded in
the command structure.

If the operand is a number, it is represented by the next word in
the code segment .

In order to specify where to read each operand from, each
operand has an addressing mode field associated with it.

 Slide 36

Addressing Modes
The various addressing modes that are defined in a
given instruction set architecture define how machine
language instructions in that architecture identify the
operand (or operands) of each instruction.

An addressing mode specifies how to calculate the
effective memory address of an operand by using
information held in registers and/or constants
contained within a machine instruction or elsewhere.

 Slide 37

CPUsimulator Addressing Modes
In this exercise the CPU will support the following
addressing modes:

(1) Immediate - The operand is a number, and is found in
the next word in the code segment.

(2) Register - The operand is a register, and the register
number is found in the register field.

(3) Direct - The operand is a memory address, and the
address is found in the next word.

 Slide 38

CPUsimulator Addressing Modes
For example, assume the last word read from the memory was X.
Assume that after decoding, the addressing mode of operand 1 in
command X, is held in the variable addMode1.

We have three possible alternatives:

 If (addMode1 == 0) : read the next word in the code segment,
and this is the operand.

 If (addMode1== 1) : the operand is the register specified in the
operand 1 field of the command.

 If (addMode1== 2) : read the next word in the code segment.
This number represents a memory address, and this is the
operand. Assigning a value to this operand , means assigning
value into the memory at that address.

 Slide 39

CPUsimulator Addressing Modes (cont.)
Notice that both the Immediate and Direct addressing modes,
use the word in the next address for obtaining the value
(immediate) or address (Direct) required. this means that they
will increment the PC register in order to read this word from
memory.

Notice that the second operand of a command CANNOT be an
immediate value in any command that modifies it (e.g. ADD, AND
etc.).

