
Advanced Algorithms - Lecture December 18, 2005

Recitation 8

Lecturer: Shahar Dobzinski Scribe: Or Sattath

1 Finishing The Mincut Problem

In the previous recitation we saw the min-multicut problem. We tried to find a solution
where the given graph is a tree. definitions: depth(v) = The distance from the root (the
root is arbitrary). lca(v1, v2) = the vertex with the minimum depth that is in the path
between v1 and v2 (there is only one path because G is a tree).

The Algorithm
Last time we saw the following algorithm (see the full details in the previous recitation).

1. INIT:
f := 0
D = ∅

2. FLOW: for each vertex v in a non increasing depth order (i.e. the deepest leaf is first)
s.t. v = lca(si, ti), flow in a greedy manner between si to ti.
add all the saturated edges to D.

3. BACKWARD REMOVAL: remove all the edges in a reversed order to the one inserted
- if it’s still a legal multi-cut.

We still had to show the following lemma:

Lemma 1 let (si, ti) a couple with a flow that isn’t 0, and let v = lca(si, ti). Then, at most
one edge is chosen in the path si →֒ v (and also in ti →֒ v).

Proof: Assume the contrary. So, there is an example as in figure 1. Assume both e and
e′ are in the multicut. So:

1. e′ is along step 3.

2. e wasn’t removed when we checked it. Therefore, there exists a couple (sj , tj) s.t. e

is the only edge in the path sj →֒ tj that is in D. Define u = lca(sj, tj).

3. depth(u) > depth(e′) because e′ isn’t in the path sj →֒ tj. Therefore the situation is
as in figure 2.

8-1

Figure 1:

ti
e

si

e
′

v

Figure 2:

ti
e

si

e′

v

tjsj

u

Figure 3:

ti
e

si

e′

v

tjsj

e′′

u

8-2

4. We flowed as much as was possible between si →֒ ti =⇒ e was added in this itereation
or later.

5. after we checked u there has to be an edge e′′ between sj to tj in D. It can’t be e

because of 4, therefore the situation is as figure 3.

6. v is deeper than u =⇒ e was added after e′′. so e′′ is in D when e was checked (in
step 3).
Contadiction to 2.

2 Economics and Computation

We’ll move to a different subject. We’ll focus on Truthful Mechanisms. We’ll introduce it
by an example:

2.1 The Auction Problem

Suppose we have one item for sale, and 2 players, (A,B). Every player has a value for this
product, vA, vB ≥ 0. The goal is to give the product to the person who needs it most (the
goal of the ”seller” isn’t to earn as much money as possible). In that way this is a truthful
mechanism - you want the players to reveal their real value for the product.

Our assumption is that every buyer wants to maximize his profit function, but there’s no
interest regarding the other players. Another assumption that if there’s no interest of not
telling the truth, a player tells the truth.

Proposition 1 (The First Price Auction) Every person is asked to bid a price. The
winner is the highest bidder, and he pays the offer that he offered. The losers pay nothing.

The problem with this proposition: there’s an interest for lying. If A can estimate vB , his
best interest is to bid vB + ǫ. The problem is that we’ll give the product to the person that
can estimate the other people pricing, and not to the person that actually has the maximum
value for that product.

Proposition 2 (The Second Price Auction, or Vickrey Auction) Both players are
asked to bid. The winner is the person that gave the highest bid, and he pays the price that
the other offered.

8-3

Figure 4:

vAv
′
B

Lemma 2 The player with the highest value, w.l.o.g., A (i.e. vA > vB), doesn’t have
interest of lying, and therefore A will say the truth - vA.

Proof: Let v′A, v′B be the bids of A and B. The situation is as in figure 4. A can bid
a price v′A ≤ vA. It should be more than v′B, otherwise, B will win. But A will not gain
anything from changing in the region [vA, v′B] because anyway he’ll pay v′B .

Lemma 3 The player with the lowest value, B, doesn’t have interest of lying.

Proof: We already know that A will offer vA. v′B ≤ vB < v′A = vA, so B will lose anyway.
Notice that when the player thinks about what he’ll do he don’t know if he has the highest

value or not, but, he knows that either way, he don’t have an interest for not revealing his
true value. So, he reveals his value.

2.2 The Clacrke Tax Problem

The government wants to build a bridge that would connect the island to the land. Every
player in the island has some value for that bridge, for example: vA = 100, vB = 200, vC =
300. The bridge cost’s to the goverment vG = 450. The goverment has the money, and it’s
target is only to know if it’s the public interest building it in that price or not i.e. whether
vA + vB + vC ≥ vG (the government will build it if it’s the public interest).
The solution: Every player is asked for what is the value of the bridge for him, and eventually
every player pays his ”society damage” - the cost of the bridge minus the sum of the prices
of all the other players (but if this number is negative, that player will pay 0).
In our example, P (A) = 0 because 450 − (300 + 200) < 0, P (B) = 50, and P (C) = 150.

Lemma 4 Player A doesn’t have an interest for offering more than vA.

Proof: Let v′A be what A offered (v′A > vA). If A assumes that vA + v′B + v′C > 450
then he has no interest of offering more then vA - it will not affect how much A pays, nor
the decision whether the bridge will be built or not. Otherwise, he has an interest, because
this is the only way which could make the bridge to be built. But, A will have to pay
450 − v′B − v′C > vA which is more then it’s worth him. So this manipulation doesn’t help
A.

8-4

Lemma 5 Player A doesn’t have an interest for offering less then vA.

Proof: Again, let v′A be what A offered (this time v′A < vA). if A assumes that vA +v′B +
v′C > 450 then A doesn’t has an interest for giving an offer that is less then vA - it might
make the bridge not to be built, and it will not affect on how much he’ll pay. If it’s built,
he’ll pay either way 450 − v′B − v′C (it’s not depended on what he offered).

2.3 Combinatorial Auction

In the next recitation we’ll go deeply into this problem.
The input of the problem: a set M of different items. |M | = m.
For each player i there is a function:
Vi : 2m → R+ where Vi(emptyset) = 0, and
Vi is monotonic: T ⊂ S ⇒ Vi(S) ≥ Vi(T)
The goal: find the partition S1, S2, ..., Sn s.t.

∑n
i=1

Vi(Si) is the maximum.

8-5

