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1 Complementary Slackness

Given a Primal system, we will also look at its Dual system:

Primal P Dual D
min

∑n
j=1 cjxj , so that: max

∑m
i=1 biyi, so that:

∀i (1 ≤ i ≤ m)
∑n

j=1 aijxj ≥ bi ∀j (1 ≤ j ≤ n)
∑m

i=1 aijyi ≤ cj

∀j (1 ≤ j ≤ n) xj ≥ 0 ∀i (1 ≤ i ≤ m) yi ≥ 0

Theorem 1 (Complementary Slackness Principal)
If x, y are solutions to P, D, respectively,
and α, β ≥ 1 fulfill the following conditions:

1. ∀j : xj = 0 or cj

α ≤
∑

i ajiyi ≤ cj

2. ∀i : yi = 0 or bi ≤
∑

j ajixj ≤ βbi

Then:
∑n

j=1 cjxj ≤ αβ
∑m

i=1 biyi .

Let us look at the LP system for the SET-COVER problem, where U is the set of elements,
S ⊆ P (U), and for each set s ∈ S we mark c(s) to be the cost of set s.

• min
∑

s∈S c(s)xs so that:

• ∀e ∈ U :
∑

s|e∈s xs ≥ 1

• ∀s ∈ S : xs ≥ 0

Let us look at its dual system:

• max
∑

e∈U ye so that:

• ∀s ∈ S :
∑

e|e∈s ye ≤ c(s)

• ∀e ∈ U : xe ≥ 0

We shall see an f-approximation algorithm for SET-COVER.
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2 SET-COVER Algorithm

Primal condition: α = 1.
Hence ∀s ∈ S, xs 6= 0 ⇒

∑
e|e∈s ye = c(s)

Dual condition: β = f .
Hence ∀e ∈ U , ye 6= 0 ⇒

∑
s|e∈s xs ≤ f

As long as there is an element e which is not yet covered:

• Increase ye until the set s is tight.

• Add s to the cover ALG.

• Remove from U all the elements covered by s.

Claim 2 Primal solution ALG is a legal solution.

Proof: Because for each uncovered e ∈ U , the algorithm adds a set s which covers it to the
cover.

Claim 3 The Dual solution is also legal.

Proof: Because we always increase a ye only until the first set s ∈ S is tight, never beyond
c(s), and so the condition

∑
e|e∈s ye ≤ c(s) is preserved.

Claim 4 The Primal condition is met.

Proof: Because for any s in the cover (i.e. xs 6= 0) we always increased ye until the inequality
was tight, hence turning it into an equation as necessary.

Claim 5 The Dual condition is also met.

Proof: Obviously the number of sets any element e is in must be smaller or equal to the
frequency f , by the definition of frequency.

Conclusion: From the Complementary Slackness Theorem, we have proved f-approximation.
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3 MIN-MULTICUT

We are given a graph G=(V,E), and a group K = {(s1, t1), ..., (sk, tk)}, where si, ti ∈ V .
We define k = |K|.
For every e ∈ E, we define a weight ce.
Goal: To find a cut of minimal weight so that each pair of vertices (si, ti) ∈ K is separated
by the cut.
This is a very difficult problem, even under the assumption (which we shall make) that G
is a tree.

We will define variables. For each e ∈ E, 0 ≤ de ≤ represents whether or not e is in the cut.
For each i, we will mark as Pi the path between si and ti. (Note: Pi is uniquely defined, as
G is a tree.)
We will reach primal and dual systems as follows:

Primal P Dual D
min

∑
e∈E cede, so that: max

∑k
i=1 fi, so that:

∀i : (1 ≤ i ≤ k)
∑

e∈Pi
de ≥ 1 ∀e :

∑
i|e∈Pi

fi ≤ ce

∀j : de ≥ 0 ∀i : fi ≥ 0

We note that the dual system is precisely the LP program for finding maximal flow in a
tree graph.

4 MIN-MULTICUT Algorithm

Primal condition: α = 1.
Hence ∀e ∈ E, de 6= 0 ⇒

∑
i|e∈Pi

fi = ce

In other words, each edge in the multicut is at maximal flow.
Dual condition: β = 2.
Hence ∀i, fi 6= 0 ⇒

∑
e∈Pi

de ≤ 2
In other words, in a path with nonzero flow, at most 2 edges may be added to the cut.

Initilization: We begin with a group D = ∅, and we assume ∀i : fi = 0.
We choose a vertex v, and mark it as our root. We define the depth of the root to be 0.
For any vertex u, we define u’s depth to be u’s distance from the root v.
We will define the lca (least common ancestor) of two vertices si, ti to be the vertex with
the smallest depth value on the path Pi, and we will mark this vertex lca(si, ti).
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Flow: For every vertex v in the graph, in order of nonascending depth (i.e. deepest vertices
first):
If there exist an i so that v = lca(si, ti), then we greedily increase the flow from si to ti
(i.e., raise the flow as much as the path’s capacity will allow).
We now add to D all edges which have reached their maximal flow during this iteration.
We will mark the final result as D = {e1, ...el}.

Backwards Deletion: For every 1 ≤ j ≤ l:
If D\{ej} is a multicut, remove ej from D.

Claim 6 The primal solution is a legal one.

Proof: On every path Pi, there is a sated edge which is now in the cut, else we’d have kept
increasing the flow on that path.

Claim 7 The dual solution is a legal one.

Proof: We never exceeded the capacity of any edges.

Claim 8 The primal condition is met.

Proof: We chose only the sated edges (i.e. the ones meeting this condition) for the cut.

Claim 9 The dual condition is met.

Proof: next tirgul.

Conclusion: By the Complementary Slackness Theorem, we have proved 2-approximation.
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