Lecture 7

Lecturer: Shahar Dobzinski
Scribe: Ziv Wities

1 Complementary Slackness

Given a Primal system, we will also look at its Dual system:

Primal P	Dual D
$\min \sum_{j=1}^{n} c_{j} x_{j}$, so that:	$\max \sum_{i=1}^{m} b_{i} y_{i}$, so that:
$\forall i(1 \leq i \leq m)$	$\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$
$\forall j(1 \leq j \leq n) \quad \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}$	
$\forall j(1 \leq j \leq n) \quad x_{j} \geq 0$	$\forall i(1 \leq i \leq m) \quad y_{i} \geq 0$

Theorem 1 (Complementary Slackness Principal)
If x, y are solutions to P, D, respectively, and $\alpha, \beta \geq 1$ fulfill the following conditions:

1. $\forall j: x_{j}=0$ or $\frac{c_{j}}{\alpha} \leq \sum_{i} a_{j i} y_{i} \leq c_{j}$
2. $\forall i: y_{i}=0$ or $b_{i} \leq \sum_{j} a_{j i} x_{j} \leq \beta b_{i}$

Then: $\sum_{j=1}^{n} c_{j} x_{j} \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i}$.
Let us look at the LP system for the SET-COVER problem, where U is the set of elements, $S \subseteq P(U)$, and for each set $s \in S$ we mark $c(s)$ to be the cost of set s.

- $\min \sum_{s \in S} c(s) x_{s}$ so that:
- $\forall e \in U: \sum_{s \mid e \in s} x_{s} \geq 1$
- $\forall s \in S: x_{s} \geq 0$

Let us look at its dual system:

- $\max \sum_{e \in U} y_{e}$ so that:
- $\forall s \in S: \sum_{e \mid e \in s} y_{e} \leq c(s)$
- $\forall e \in U: x_{e} \geq 0$

We shall see an f-approximation algorithm for SET-COVER.

2 SET-COVER Algorithm

Primal condition: $\alpha=1$.
Hence $\forall s \in S, x_{s} \neq 0 \Rightarrow \sum_{e \mid e \in s} y_{e}=c(s)$
Dual condition: $\beta=f$.
Hence $\forall e \in U, y_{e} \neq 0 \Rightarrow \sum_{s \mid e \in s} x_{s} \leq f$

As long as there is an element e which is not yet covered:

- Increase y_{e} until the set s is tight.
- Add s to the cover ALG.
- Remove from U all the elements covered by s.

Claim 2 Primal solution $A L G$ is a legal solution.

Proof: Because for each uncovered $e \in U$, the algorithm adds a set s which covers it to the cover.

Claim 3 The Dual solution is also legal.

Proof: Because we always increase a y_{e} only until the first set $s \in S$ is tight, never beyond $c(s)$, and so the condition $\sum_{e \mid e \in s} y_{e} \leq c(s)$ is preserved.

Claim 4 The Primal condition is met.

Proof: Because for any s in the cover (i.e. $x_{s} \neq 0$) we always increased y_{e} until the inequality was tight, hence turning it into an equation as necessary.

Claim 5 The Dual condition is also met.

Proof: Obviously the number of sets any element e is in must be smaller or equal to the frequency f, by the definition of frequency.

Conclusion: From the Complementary Slackness Theorem, we have proved f-approximation.

3 MIN-MULTICUT

We are given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a group $K=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$, where $s_{i}, t_{i} \in V$. We define $k=|K|$.
For every $e \in E$, we define a weight c_{e}.
Goal: To find a cut of minimal weight so that each pair of vertices $\left(s_{i}, t_{i}\right) \in K$ is separated by the cut.
This is a very difficult problem, even under the assumption (which we shall make) that G is a tree.

We will define variables. For each $e \in E, 0 \leq d_{e} \leq$ represents whether or not e is in the cut. For each i , we will mark as P_{i} the path between s_{i} and t_{i}. (Note: P_{i} is uniquely defined, as G is a tree.)
We will reach primal and dual systems as follows:

Primal P	Dual D
$\min \sum_{e \in E} c_{e} d_{e}$, so that:	$\max \sum_{i=1}^{k} f_{i}$, so that:
$\forall i:(1 \leq i \leq k) \quad \sum_{e \in P_{i}} d_{e} \geq 1$	$\forall e: \quad \sum_{i \mid e \in P_{i}} f_{i} \leq c_{e}$
$\forall j: \quad d_{e} \geq 0$	$\forall i: \quad f_{i} \geq 0$

We note that the dual system is precisely the LP program for finding maximal flow in a tree graph.

4 MIN-MULTICUT Algorithm

Primal condition: $\alpha=1$.
Hence $\forall e \in E, d_{e} \neq 0 \Rightarrow \sum_{i \mid e \in P_{i}} f_{i}=c_{e}$
In other words, each edge in the multicut is at maximal flow.
Dual condition: $\beta=2$.
Hence $\forall i, f_{i} \neq 0 \Rightarrow \sum_{e \in P_{i}} d_{e} \leq 2$
In other words, in a path with nonzero flow, at most 2 edges may be added to the cut.
Initilization: We begin with a group $D=\emptyset$, and we assume $\forall i: f_{i}=0$.
We choose a vertex v , and mark it as our root. We define the depth of the root to be 0 . For any vertex u, we define u 's depth to be u's distance from the root v.
We will define the lca (least common ancestor) of two vertices s_{i}, t_{i} to be the vertex with the smallest depth value on the path P_{i}, and we will mark this vertex $l c a\left(s_{i}, t_{i}\right)$.

Flow: For every vertex v in the graph, in order of nonascending depth (i.e. deepest vertices first):
If there exist an i so that $v=l c a\left(s_{i}, t_{i}\right)$, then we greedily increase the flow from s_{i} to t_{i} (i.e., raise the flow as much as the path's capacity will allow).

We now add to D all edges which have reached their maximal flow during this iteration.
We will mark the final result as $D=\left\{e_{1}, \ldots e_{l}\right\}$.
Backwards Deletion: For every $1 \leq j \leq l$:
If $D \backslash\left\{e_{j}\right\}$ is a multicut, remove e_{j} from D.

Claim 6 The primal solution is a legal one.

Proof: On every path P_{i}, there is a sated edge which is now in the cut, else we'd have kept increasing the flow on that path.

Claim 7 The dual solution is a legal one.

Proof: We never exceeded the capacity of any edges.

Claim 8 The primal condition is met.

Proof: We chose only the sated edges (i.e. the ones meeting this condition) for the cut.

Claim 9 The dual condition is met.

Proof: next tirgul.
Conclusion: By the Complementary Slackness Theorem, we have proved 2-approximation.

