
Advanced Algorithms - Exercise 3 November 20, 2005

Exercise 3

Lecturer: Shahar Dobzinski Scribe: Anton Bar

1 Continuation of Knapsack

There is a group of n items {a1, a2, ..., an}. Each item has size and profit. The goal is to
find the most profitable set of items with overall weight ≤ B.

We saw a dynamic programming algorithm that solves the problem in time O(n2P),
where P is the profit of the solution. The problem is that the representation of number of
profit P takes log(P) bits so the representation of the entire problem will take O(n2logP).
We have a pseudo-polynomial algorithm. It works at cost O(n2P), where the complexity is
polynomial only in terms of value of P, and not its representation as we would like to have.
Given an unbounded profit, our pseudo-polynomial algorithm is, in fact, exponential.

In order to deal with the representation problem we can sacrifice accuracy and gain
speed. For example we can divide all profit values by 1 million (e.g. 100, 800, 578 → 100).

1.1 Approximated Knapsack Algorithm

Lets define:

1) K = εP
n

2) ∀i : profit′(ai) =
⌊

profit(ai)
K

⌋
3) P = maxi(profit′(ai))

The algorithm finds maximal set using the Dynamic programming algorithm (ALG).

3-1

Lemma 1 |ALG| ≥ (1− ε)|OPT | - the algorithm is (1− ε)-approximation.

Proof of Lemma 1: OPT contains at most n items. While diving by K and rounding
we lose at most K, thus we lose at most n ·K.

|OPT | ≥ Kprofit′(ALG) ≥ Kprofit′(OPT) ≥ profit(OPT) − nK = profit(OPT) −
n εP

n ≥ (1− ε)profit(OPT).

Claim 2 The running time of the algorithm is polynomial in 1
ε and in n.

Proof of Claim 1: Pnew =
⌊

P
K

⌋
=

⌊
P
εP
n

⌋
=

⌊
n
ε

⌋
⇒ O(n2Pnew) = O(n3

ε).

2 Set Cover - Randomized Rounding

2.1 Definition of LP

Minimize:
∑

xsc(s). Subject to:

• ∀e ∈ U :
∑

s|e∈s xs ≥ 1

• ∀s : xs ≥ 0

2.2 Reminders

Markov’s Inequality:
If x is positive random variable, then ∀t ≥ 0 : Pr[x ≥ t] ≤ E[x]

t .

Intuition:

For example: if E[x] = 1 and t = 100, and provided that the distribution is uni-
form, the inequality says that the chance that x ≥ 100 is at most 1

100 . Assume the negation,
so if, for instance, x1 = 101, x2 = ... = x100 = 0 then E[x] > 1 in contradiction to the given
value.

Proof:

Define: y =
{

d, x > d
0, otherwise

3-2

Then 0 ≤ y ≤ x. Additionally, it follows immediately from the definition that Y is a random
variable. Computing the expected value of Y , we have that: E[x] ≥ E[y] = d · Pr[x > d].
�

Union Bound: Let B1, ..., Bn be events happening with probabilities p1, ..., pn. Union
bound defines the probability of the case when no Bi has happened: Pr[B1 ∧ ... ∧ Bn] ≤
1−

∑n
i=1 pi.

2.3 Randomized SC Algorithm

For i = 1, ..., klogn, where kgeq0 is constant, we add s to ci with probability xs.
Return ALG =

⋃
ci.

The expectation is: E[
⋃

ci] = k · logn.

Analysis:

Lemma 3 Provided B1, event when the inequality
∑

s∈ALG c(s) ≥ 4k · logn ·OPTF is true,
then probability of this event Pr(B1) ≤ 1

4 .

Lemma 4 Provided B2, event when ∃e ∈ ∪, so that, e 6∈ ALG, then probability of this
event Pr(B2) < 1

4 .

Claim 5 From Lemma 3 and Lemma 4 follows that the algorithm is 2-approximation.

Proof of Claim 5: By the union bound we know that Pr[B1 ∧B2] ≤ 1− 1
4 · 2 = 1

2 .

Proof of Lemma 3: Lets set some fixed i. Expectation of c(ci), cost of ci, is:
E[c(ci)] =

∑
s∈S Pr[s ∈ ci]c(s) =

∑
s∈S xsc(s) = OPTF .

E[ALG] ≤
∑klogn

i=1 E[c(ci) = k · logn ·OPTF .

Thus, by Markov’s inequality, Pr[E(ALG)] ≥ 4klogn ≤ 1
4 .

Proof of Lemma 4: Lets set some fixed i and will find the probability of an uncovered
edge: e 6∈ ci. Without loss of generality we will examine sets covering e : s1, ..., sr.

Pr[e 6∈ ci] =
∏r

t=1 1− xst ≤ (1 − 1
r)r ≤ 1

e . Note: the last two inequalities are true
because of the condition of LP:

∑
st ≥ 1 and some math analysis.

3-3

Probability of e not covered by ALG: Pr[e 6∈ ALG] ≤ 1
e ·

1
e · ... · 1

e . Note: 1
e is re-

peated klogn times, one for each ci. For k large enough (1
e)klogn ≤ 1

4n .

Note that for each specific item e: Pr[e 6∈ ALG] ≤ 1
4n .

Denote Be as event of e 6∈ ALG for all e, and Bt = mine∈∪Be: Pr[∃e, e 6∈ ALG] =
1− Pr[B1 ∧ ... ∧B|∪|] ≤

∑|∪|
t=1 Pr[Bt] ≤ n · 1

4n = 1
4 , provided k large enough.

Note: this approximation is optimal. It’s known that there is no better approximation.

3-4

