1 Continuation of Knapsack

There is a group of n items $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Each item has size and profit. The goal is to find the most profitable set of items with overall weight $\leq B$.

We saw a dynamic programming algorithm that solves the problem in time $O\left(n^{2} P\right)$, where P is the profit of the solution. The problem is that the representation of number of profit P takes $\log (P)$ bits so the representation of the entire problem will take $O\left(n^{2} \log P\right)$. We have a pseudo-polynomial algorithm. It works at $\operatorname{cost} O\left(n^{2} P\right)$, where the complexity is polynomial only in terms of value of P , and not its representation as we would like to have. Given an unbounded profit, our pseudo-polynomial algorithm is, in fact, exponential.

In order to deal with the representation problem we can sacrifice accuracy and gain speed. For example we can divide all profit values by 1 million (e.g. 100, $800,578 \rightarrow 100$).

1.1 Approximated Knapsack Algorithm

Lets define:

1) $K=\frac{\epsilon P}{n}$
2) $\forall i: \operatorname{profit}\left(a_{i}\right)=\left\lfloor\frac{\operatorname{profit}\left(a_{i}\right)}{K}\right\rfloor$
3) $P=\max _{i}\left(\operatorname{profit}^{\prime}\left(a_{i}\right)\right)$

The algorithm finds maximal set using the Dynamic programming algorithm (ALG).

Lemma $1|A L G| \geq(1-\epsilon)|O P T|$ - the algorithm is $(1-\epsilon)$-approximation.

Proof of Lemma 1: OPT contains at most n items. While diving by K and rounding we lose at most K, thus we lose at most $n \cdot K$.
$|O P T| \geq$ Kprofit $(A L G) \geq$ Kprofit $(O P T) \geq \operatorname{profit}(O P T)-n K=\operatorname{profit}(O P T)-$ $n \frac{\epsilon P}{n} \geq(1-\epsilon)$ profit $(O P T)$.

Claim 2 The running time of the algorithm is polynomial in $\frac{1}{\epsilon}$ and in n.

Proof of Claim 1: $\quad P_{\text {new }}=\left\lfloor\frac{P}{K}\right\rfloor=\left\lfloor\frac{P}{\frac{\epsilon P}{n}}\right\rfloor=\left\lfloor\frac{n}{\epsilon}\right\rfloor \Rightarrow O\left(n^{2} P_{n e w}\right)=O\left(\frac{n_{3}}{\epsilon}\right)$.

2 Set Cover - Randomized Rounding

2.1 Definition of LP

Minimize: $\sum x_{s} c(s)$. Subject to:

- $\forall e \in U: \sum_{s \mid e \in s} x_{s} \geq 1$
- $\forall s: x_{s} \geq 0$

2.2 Reminders

Markov's Inequality:

If x is positive random variable, then $\forall t \geq 0: \operatorname{Pr}[x \geq t] \leq \frac{E[x]}{t}$.

Intuition:

For example: if $E[x]=1$ and $t=100$, and provided that the distribution is uniform, the inequality says that the chance that $x \geq 100$ is at most $\frac{1}{100}$. Assume the negation, so if, for instance, $x_{1}=101, x_{2}=\ldots=x_{100}=0$ then $E[x]>1$ in contradiction to the given value.

Proof:
Define: $y=\left\{\begin{array}{lc}d, & x>d \\ 0, & \text { otherwise }\end{array}\right.$

Then $0 \leq y \leq x$. Additionally, it follows immediately from the definition that Y is a random variable. Computing the expected value of Y, we have that: $E[x] \geq E[y]=d \cdot \operatorname{Pr}[x>d]$.

Union Bound: Let B_{1}, \ldots, B_{n} be events happening with probabilities p_{1}, \ldots, p_{n}. Union bound defines the probability of the case when no B_{i} has happened: $\operatorname{Pr}\left[\overline{B_{1}} \wedge \ldots \wedge \overline{B_{n}}\right] \leq$ $1-\sum_{i=1}^{n} p_{i}$.

2.3 Randomized SC Algorithm

For $i=1, \ldots, k \log n$, where $k g e q 0$ is constant, we add s to c_{i} with probability x_{s}. Return $A L G=\bigcup c_{i}$.

The expectation is: $E\left[\bigcup c_{i}\right]=k \cdot \log n$.

Analysis:

Lemma 3 Provided B_{1}, event when the inequality $\sum_{s \in A L G} c(s) \geq 4 k \cdot \operatorname{logn} \cdot O P T_{F}$ is true, then probability of this event $\operatorname{Pr}\left(B_{1}\right) \leq \frac{1}{4}$.

Lemma 4 Provided B_{2}, event when $\exists e \in \cup$, so that, $e \notin A L G$, then probability of this event $\operatorname{Pr}\left(B_{2}\right)<\frac{1}{4}$.

Claim 5 From Lemma 3 and Lemma 4 follows that the algorithm is 2-approximation.

Proof of Claim 5: By the union bound we know that $\operatorname{Pr}\left[\overline{B_{1}} \wedge \overline{B_{2}}\right] \leq 1-\frac{1}{4} \cdot 2=\frac{1}{2}$.

Proof of Lemma 3: Lets set some fixed i. Expectation of $c\left(c_{i}\right)$, cost of c_{i}, is: $E\left[c\left(c_{i}\right)\right]=\sum_{s \in S} \operatorname{Pr}\left[s \in c_{i}\right] c(s)=\sum_{s \in S} x_{s} c(s)=O P T_{F}$.
$E[A L G] \leq \sum_{i=1}^{k l o g n} E\left[c\left(c_{i}\right)=k \cdot \operatorname{logn} \cdot O P T_{F}\right.$.
Thus, by Markov's inequality, $\operatorname{Pr}[E(A L G)] \geq 4 k \log n \leq \frac{1}{4}$.

Proof of Lemma 4: Lets set some fixed i and will find the probability of an uncovered edge: $e \notin c_{i}$. Without loss of generality we will examine sets covering $e: s_{1}, \ldots, s_{r}$.
$\operatorname{Pr}\left[e \notin c_{i}\right]=\prod_{t=1}^{r} 1-x_{s_{t}} \leq\left(1-\frac{1}{r}\right)^{r} \leq \frac{1}{e}$. Note: the last two inequalities are true because of the condition of LP: $\sum s_{t} \geq 1$ and some math analysis.

Probability of e not covered by $A L G: \operatorname{Pr}[e \notin A L G] \leq \frac{1}{e} \cdot \frac{1}{e} \cdot \ldots \cdot \frac{1}{e}$. Note: $\frac{1}{e}$ is repeated $k \operatorname{logn}$ times, one for each c_{i}. For k large enough $\left(\frac{1}{e}\right)^{k \operatorname{logn}} \leq \frac{1}{4 n}$.

Note that for each specific item $e: \operatorname{Pr}[e \notin A L G] \leq \frac{1}{4 n}$.
Denote B_{e} as event of $e \notin A L G$ for all e, and $B_{t}=\min _{e \in \cup} B_{e}: \operatorname{Pr}[\exists e, e \notin A L G]=$ $1-\operatorname{Pr}\left[\overline{B_{1}} \wedge \ldots \wedge \overline{B_{|\cup|}}\right] \leq \sum_{t=1}^{|\cup|} \operatorname{Pr}\left[B_{t}\right] \leq n \cdot \frac{1}{4 n}=\frac{1}{4}$, provided k large enough.

Note: this approximation is optimal. It's known that there is no better approximation.

