Advanced Algorithms - Recitation January 15, 2006

Lecture 14
Lecturer: Shahar Dobzinski Scribe: Ziv Wities

1 Demands Multicommodity Flow

Problem definition: We are given a weighted graph G = (V, E), where each edge e has a
capacity of c¢(e). We have k different goods; each good i travels the graph from s; to t;, and
has demand dem(7).

Our goal: to find and maximize f so that each good i has a flow of f * dem(i) units.

For any cut S, we define ¢(S) = >_ (g3 c(€), and dem(S) is the summation of dem(i) for
every ¢ whose flow the cut S disrupts (i.e. flow is not possible from s; to ¢; after the cut).
By these definitions, we immediately find:

f <o)
dem(S)
We will refer to d;fnig) as the sparsity of cut S.

Last lesson, we showed that the optimal (fractional) answer can be viewed as a metric over
the vertices V. In the LP problem, d. is a variable representing whether or not e is in the
cut; after relaxation d. € [0, 1]. For each two vertices u,v € V, d(u,v) is the sum of all d.s
on the shortest path from u to v.

Definition 1 A function y : 2¥ — R is said to be a (-approximate-cut-packing if for every
e € E, where d. is e’s distance in the metric,
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Theorem 2 Let (V,d) be the metric determined by LP, as seen last lesson. Let y be a
B-approzimate-cut-packing for (V,d). Of all the cuts S where y(S) # 0, let S’ be the cut

with minimal sparsity ( d;s;g) ). Then:

c(9)

< N 7
AOPT < dem(S")
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Lemma 3 Let o : V — R™ be a mapping. Then there exists a cut-packing y so the weight
each edge e feels’ (3 g .cs5y(S)) is e’s length in the metric I, under o.
In other words, for e = (u,v):

> y(S) =llo(w) = o)l
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Theorem 4 There exists an O(logn) approximation to the SPARSEST-CUT problem.

Proof: We will find a -approximation-cut-packing (-approx-CP) for g = O(logn); this
suffices to prove the theorem.

We will embed our metric (V,d) in I, using mapping o. By Bourgain, we have a distortion
of O(logn), which we will denote (3. So for every e, we find for e = (u,v)

C;e < lo(w) — o@)l, < de

Using the lemma, there exists a cut-packing y so that > g.cqy(S) = [|o(u) — o(v)[|;,, and
so we find p
< > y(S) <de
SleeS
which is precisely a S-approx-CP, as required. B

Proof: We prove the lemma for m = 1.

We have a mapping o from our n vertices to u; < uz < ... < u, € R (in order, without loss
of generality). We define:

y({v1}) = ue —wy

y({vr,v2}) = ug — uy

y({v1, e Uk}) = Uk+1 — Uk
For any set K C V not of the form {vy, v, ..., v}, we'll define y(K) = 0.
For any cut S where (u1,u,) € S, we find:

Z y(S) = Z y(S) = Z y({v1,v2, oy Uk }) = Up—Up—1F+Up—1—Up—2+F...FU2—U] = Up—U]
SleesS Slvi€S,un ¢S 1<k<n
And so we have found that (u1, up) feels up, —u1 = [Jvn, — v1];, Similarly, for any (u;, u;) € S,
1 < 7, we find
> y(S) = uj —ui = [[o; —vill,,
SleeS
since the first cut of the {v1,...,vx} form that contains v; is {v1,...,v;}, and the last that

does not contain v; is {v1,...vj—1}.
Thus, we have proved the lemma for m = 1.

It is simple to generalize to m dimensions - simply project onto each dimension separately,
and repeat the process to find the distance along that dimension. [y distance is found by
summation of the distances found along each dimension. W
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