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Lecture 14
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1 Demands Multicommodity Flow

Problem definition: We are given a weighted graph G = (V,E), where each edge e has a
capacity of c(e). We have k different goods; each good i travels the graph from si to ti, and
has demand dem(i).
Our goal: to find and maximize f so that each good i has a flow of f ∗ dem(i) units.

For any cut S, we define c(S) =
∑

e∈(S,S) c(e), and dem(S) is the summation of dem(i) for
every i whose flow the cut S disrupts (i.e. flow is not possible from si to ti after the cut).
By these definitions, we immediately find:

f ≤ c(S)
dem(S)

We will refer to c(S)
dem(S) as the sparsity of cut S.

Last lesson, we showed that the optimal (fractional) answer can be viewed as a metric over
the vertices V . In the LP problem, de is a variable representing whether or not e is in the
cut; after relaxation de ∈ [0, 1]. For each two vertices u, v ∈ V , d(u, v) is the sum of all des
on the shortest path from u to v.

Definition 1 A function y : 2V → R is said to be a β-approximate-cut-packing if for every
e ∈ E, where de is e’s distance in the metric,

de

β
≤

∑
S|e∈S

y(S) ≤ de

Theorem 2 Let (V, d) be the metric determined by LP, as seen last lesson. Let y be a
β-approximate-cut-packing for (V, d). Of all the cuts S where y(S) 6= 0, let S′ be the cut
with minimal sparsity ( c(S)

dem(S)). Then:

βOPT ≤ c(S′)
dem(S′)
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Lemma 3 Let σ : V → Rm be a mapping. Then there exists a cut-packing y so the weight
each edge e ’feels’ (

∑
S|e∈S y(S)) is e’s length in the metric l1 under σ.

In other words, for e = (u, v): ∑
S|e∈S

y(S) = ||σ(u)− σ(v)||l1

Theorem 4 There exists an O(logn) approximation to the SPARSEST-CUT problem.

Proof: We will find a β-approximation-cut-packing (β-approx-CP) for β = O(logn); this
suffices to prove the theorem.
We will embed our metric (V, d) in l1, using mapping σ. By Bourgain, we have a distortion
of O(logn), which we will denote β. So for every e, we find for e = (u, v)

de

β
≤ ||σ(u)− σ(v)||l1 ≤ de

Using the lemma, there exists a cut-packing y so that
∑

S|e∈S y(S) = ||σ(u)− σ(v)||l1 , and
so we find

de

β
≤

∑
S|e∈S

y(S) ≤ de

which is precisely a β-approx-CP, as required.

Proof: We prove the lemma for m = 1.
We have a mapping σ from our n vertices to u1 ≤ u2 ≤ ... ≤ un ∈ R (in order, without loss
of generality). We define:
y({v1}) = u2 − u1

y({v1, v2}) = u3 − u2

...
y({v1, ..., vk}) = uk+1 − uk

For any set K ⊆ V not of the form {v1, v2, ..., vk}, we’ll define y(K) = 0.
For any cut S where (u1, un) ∈ S, we find:∑
S|e∈S

y(S) =
∑

S|v1∈S,vn /∈S

y(S) =
∑

1≤k<n

y({v1, v2, ..., vk}) = un−un−1+un−1−un−2+...+u2−u1 = un−u1

And so we have found that (u1, un) feels un−u1 = ||vn − v1||l1 Similarly, for any (ui, uj) ∈ S,
i ≤ j, we find ∑

S|e∈S

y(S) = uj − ui = ||vj − vi||l1

since the first cut of the {v1, ..., vk} form that contains vi is {v1, ..., vi}, and the last that
does not contain vj is {v1, ...vj−1}.
Thus, we have proved the lemma for m = 1.

It is simple to generalize to m dimensions - simply project onto each dimension separately,
and repeat the process to find the distance along that dimension. l1 distance is found by
summation of the distances found along each dimension.
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