
Advanced Algorithms January 5, 2006

The k-Server Problem - Lecture 11

Lecturer: Yair Bartal Scribe: Anton Bar

The k-Server Problem

The k-Server Problem is a generalization of the paging problem.

A metric space is a couple M = (V, d), where V is a set of items, and d is a func-
tion d : V × V → <+ with the following properties:

• Reflexivity: D(u, v) = 0 iff u = v

• Symmetry: ∀u, v : d(u, v) = d(v, u)

• Triangle inequality: d(u, v) + d(v, w) ≥ d(u, w)

The k-Server Problem description: We are given metric space M over n items.
There are k servers on items of M . σ = σ1σ2... are series of requests, where each σi

represents an item in M . The algorithm is required to move one of the servers to σi. The
price of one movement equals to the distance between the source and the target items.

The offline version of the problem is polynomial.

Remark: the paging problem is a special case of the k-servers problem, where M is
uniform, where all distances are 1 and each item represents a single memory page. Items
with servers represent pages in cache.

There is a possible extension of the paging problem where each page has a different
price of transferring to cache. Lets assume that page i has a price wi.

11-1

Example 1: In the case of triangle we can perform the following transformation where
the server always returns to the center:

Example 2: Another example is where M is a line, such as in the case of hard disk heads,
with 3 items A, B and C such that d(A,B) < d(B,C) and two servers on A and C. In this
metric, greedy algorithm does not perform well in cases like this: σ = BABABA... (k times
BA). Greedy will pay d(A,B) · |σ|, while OPT pays only d(B,C), because it moves the
server from C to B right from the beginning of the series. This is despite the fact that a
single moving a server from A to B is less expensive.

11-2

Competitiveness: There are two definitions of competitiveness:

• Algorithm ON is competitive if there exists constant a s.t. ∀σ : ON(σ) ≤ α·OPT (σ)+

a ⇒ lim (sup|σ|→∞
ON(σ)
OPT (σ)) ≤ α.

• Algorithm ON is strongly competitive if ∀σ : ON(σ) ≤ α ·OPT (σ).

Theorem 1 (Mannase, McGeoch, and Sleator) Competitive ratio of deterministic al-
gorithms for the k-servers problem is at least k, for any metric space M.

Theorem 2 (Koutsoupias and Papdimitriou) For any metric space M, there exists an
(2k − 1)-competitive algorithm for the k-servers problem.

Theorem 3 There exists a k-competitive algorithm for the k-servers problem in a line met-
ric space.

Double Coverage Online Algorithm

Lets mark servers S1, S2,... Sk on a line from left to right. We can always keep this order
because every movement of a server can be replaced by a series of movements of adjacent
servers.

There are two different cases:

1. The request is located on one side of all servers. Without loss of generality we’ll
assume that it’s on on the right of Sk. In this case we will move Sk.

2. The request is located on point r between Si and Si+1. Assume without loss of
generality that r is closer to Si. Denote d(Si, r) = δ. We will move Si to f and also
will move Si+1 in the direction of r at the distance of δ. Note that this solves the
problem introduced in Example 2 above, because, unlike Greedy, this algorithm will
gradually move the server located at C to B.

Analysis of the Algorithm:
Lets define potential function Φ : V k × V k → <+.

We distinguish between three different cases during the handling of a single request:

1. Time t - before request t + 1 but after request t.

2. Time t′ - intermediate step when the adversary already handled the new request, but
ON did not yet.

11-3

3. Time t + 1 - ON handles the new request.

Lets find out the properties of the potential function Φ:

1. ∀t : Φt′ − Φt ≤ k ·∆ADVt, where ∆ADVt is the cost of ADV to serve request t.

2. ∀t : Φt+1 − Φt′ ≤ −∆ONt, where ∆ONt is the cost of ON to serve request t.

Lemma 4 If such Φ exists then ON is k-competitive.

Proof: From both properties follows: ∀t : Φt+1 − Φt ≤ k ·∆ADVt −∆ONt. Assuming
that the length of our request series is f ,

∑
0≤t≤f (Φt+1 − Φt) ≤ k ·∆ADV (σ)−∆ON(σ).

The sum is telescopic, hence: Φ0 ≤ Φf −Φ0 and ON(σ) ≤ k ·ADV (σ) + Φ0, where Φ0 is a
fixed cost of the initial configuration.

Now we will define the desired function Φ. It will be a combination of two functions:
Φ = kΨ + Θ, where Ψ measures the distance between ON and ADV, and Θ is a bound for
the sum constant. Order both algorithms in two parts - all servers of ON in a line on one
side and all servers of ADV in a line on the other side. Derive a fully connected bipartite
graph. Find a minimal weight bipartite matching, which in the case of line metric, will
connect ADV1 to ON1, ADV2 to ON2 and so on till ADVk to ONk.

Ψ =
∑k

i=1 d(Si, ai) and Θ =
∑k

1≤i<j≤k d(Si, Sj).

Lets analyze the properties of this function:

1. t → t′ : ∆Φ = Φt′ −Φt. Lets assume that the adversary moves server al to the request
at r, hence the cost is ∆ADVt = d(al, r), ∆Θ = 0, ∆Ψ ≤ d(al, r), ∆Φ ≤ k ·∆ADVt.

2. t′ → t + 1 : ∆Φ = Φt+1 − Φ′t.

a) The request r is on once side of all servers, assume that it’s on the right of
Sk. Thus ∆Θ = (k − 1)d(Sk, r), ∆Ψ = −d(Sk, r), ∆Φ = −k∆Ψ + ∆Θ =
−k · d(Sk, r) + (k − 1) · d(Sk, r) = −d(Sk, r) = −∆ONt.

b) The request r is between Si and Si+1. Then ∆ONt = 2d(Si, r) = 2δ (two times
because both Si and Si+1 move). Thus ∆Θ = −2δ, ∆Ψ ≤ −δ+δ (minus distance
between Si and ai, plus distance between Si+1 and ai) for both l ≤ i and for
l > i. Hence ∆Ψ ≤ −2δ = −∆ONt.

11-4

