
Advanced Algorithms - Lecture December 22, 2005

Lecture 8

Lecturer: Yair Bartal Scribe: Or Sattath

1 Semi Definite Programming

The main idea in semi definite programming is the same as LP - we want to maxi-
mize/minimize a function, but here, we let the constraints be non-linear.

Example 1 MAX-CUT let G = (V,E,W ),W : E → R+, a weighted graph. We would like
to find a partition of V into 2 groups - S, S(S = V \S) s.t. C(S) (defined bellow) will be
maximized.

Definition 1 (CUT) δ(S) = {(u, v) ∈ e | u ∈ S, v ∈ S}
C(S) =

∑
e∈δ(S) W (e)

In the first recitation we saw a 1/2 approximation.
This lesson we’ll see a better approximation by Goemans and Williamnson.

1.1 Quadratic Program

Remark We know that Quadratic Programing is NP hard. For each vertex ui we will

define a variable yi ∈ {−1, 1} in the following way:
yi = 1 ⇒ ui ∈ S; yi = −1 ⇒ ui ∈ S

We got that:
δ(S) = {(ui, uj) | yi ∗ yj = −1}.
Or alternatively:
(ui, uj) ∈ δ(S) ⇐⇒ yi ∗ yj = −1

Therefore:
1−yi∗yj

2 = 1 if (ui, uj) ∈ δ(S) , otherwise 0.
The Quadratic Program will be:
Minimizey : C(S) = sum1≤i<j≤nwi,j ∗ 1−yi∗yj

2 Subject to:

• y2
i = 1

• yi ∈ R
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Where wi,j = 1 if (ui, uj) ∈ E, 0 otherwise.
The quadratic constraint on y causes that yi ∈ {−1, 1}, which is what we want.

1.2 Vector Program

We’ll change this program to another type of a program: Vector Program (VP). For every
vertex, ui we’ll define a vector vi = (a, b). The vector program will be:

maximizev :
∑

1≤i<j≤n wi,j ∗ 1−<vi,vj>
2 Subject to:

• ∀i < vi, vi >= 1.

• ∀i vi ∈ R2.

Because we can always make vi = (yi, 0) we get OPTV P ≥ OPTQP = OPT (I). Notice that
the Vector Program doesn’t induces the groups S, S, so we don’t have a solution for the
original problem.

Generally, Vector Programming is defined by: min/maxv1,...,vn

∑
Ci,j∗ < vi, vj > Subject

to:

• ∀k
∑

i,j ai,j,k < vi, vj >= bk

• ∀i vi ∈ Rm

(notice that n can be different than m).

1.3 Semi Definite Programming

Another type of programming is Semi Definite Programming(SDP). A matrix Xn×n is
Positive Semi Definite(PSD) if there exist a matrix Y n×n s.t. X = Y tY . If we’ll write
Y = ((v1)(v2)...(vn)), then Xi,j =< vi, vj > We are trying to solve:

maximizev1,...,vn :
∑

i<j Wi,j
1−<vi,vj>

2 Subject to

• ∀i < vi, vi >= 1.

Notice that < vi, vj >= cos(θi,j). Therefore the target function becomes:

maximizev1,...,vn

∑
i<j Wi,j

1−cos(θi,j)
2

It’s worth mentioning that unlike VP, SDP has a polyomial solution. But the problem is
that if we have the optimal solution for the SDP, then how can we go back to a solution
which specifically says whether the vertex is in S or S. We’ll want that if the θi,j is big,
then the chance that they will be in different sides of the cut will be big. The next section
is about a solution that is going in that direction and called randomized rounding.
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1.4 Randomized Rounding

1. Solve the SDP. The solution is v1, ..., vn.

2. Choose randomly a vector r from the uniform distribution of the unity sphere in Rn.

3. The solution for the max cut will be:

S = {ui ∈ V |< vi, r >≥ 0}

Remark Remember that vi is the vector that represents the vertex ui.

Lemma 2 Pr[(ui, uj) ∈ δ(S)] =
θi,j

π

Proof: From the defintion of randomized rounding we get:
Pr[(ui, uj) ∈ δ(S)] = Pr[vi, vj in the opposite sides of the surface of r] =
= Pr[(< vi, r >> 0∧ < vj, r >< 0) ∨ (< vi, r >< 0∧ < vj, r >> 0)]
Now, let r′ be the normalized projection of r on the plane that is created by the span vi, vj .
The angle φ is the angle between r′ and vi. φ is distributed uniformly on [0, 2π] (because r
was selected uniformly). See figure 1.

Pr[vi, vj in the opposite sides of the surface of r] = Pr[φ ∈ A ∪ B] = 2 ∗ θi,j

2π =
θi,j

π .

Therefore: E[c(S)] =
∑

i<j wi,j
θ
π

We would like to find α such that:

E[c(S)] ≥ αOPTSDP (I)

The reason that we want that is because we know that OPTSDP (I) ≥ OPT (I) , and
therefore we’ll have E[c(S)] ≥ αOPT (I) - that is an α approximation.

Further development shows that: α = minθ
2π

π(1−cos(θ)) > 0.878...
Recently it was shown that this approximation is tight, assuming some computational as-
sumptions (for details on the assupmtions - see http://weblog.fortnow.com/2005/06/unique-
games-conjecture.html).
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1.5 Choosing The Random Vector

We’ll now show how one can implement part 2 of the algorithm: choose randomly a vector
r from the uniform distribution of the unity sphere in Rn.

Define ∀i ∈ 1, .., n , Xi ∼ N(0, 1) I.I.D. (normal distribution with expectation of 0,
and variance of 1). That can be done from a uniform distribution using the Box-Muller
transformation, see http://en.wikipedia.org/wiki/Box-Muller transform for details. Let
X = (X1, ...,Xn), and r = X

‖X‖2
.

fr(y1, ..., yn) =

n∏

i=1

1√
2π

exp(
−y2

i

2
) =

1

(2π)n/2
exp(−

n∑

i=1

y2
i

2
) = constant

Example 2 Let’s look at the flow problem of the triangle graph, with weights of 1 on each
edge - see figure 2. Obviously, OPT (I) is 2. The Vector Program in two dimensions
(notice that the SDP will be in 3 dimensions), will be as figure 3. So we get: OPTV P (I) =∑3

i=1 w(ei)(
1−<vi,vj>

2 = 3 ∗ 1−cos(2π/3)
2 = 9

4
OPT (I)

OPTV P (I) = 8
9
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