Lecture 8

Lecturer: Yair Bartal

1 Semi Definite Programming

The main idea in semi definite programming is the same as LP - we want to maximize/minimize a function, but here, we let the constraints be non-linear.

Example 1 MAX-CUT let $G=(V, E, W), W: E \rightarrow \mathbf{R}^{+}$, a weighted graph. We would like to find a partition of V into 2 groups $-S, \bar{S}(\bar{S}=V \backslash S)$ s.t. $C(S)$ (defined bellow) will be maximized.

Definition 1 (CUT) $\delta(S)=\{(u, v) \in e \mid u \in S, v \in \bar{S}\}$
$C(S)=\sum_{e \in \delta(S)} W(e)$
In the first recitation we saw a $1 / 2$ approximation.
This lesson we'll see a better approximation by Goemans and Williamnson.

1.1 Quadratic Program

Remark We know that Quadratic Programing is NP hard. For each vertex u_{i} we will
define a variable $y_{i} \in\{-1,1\}$ in the following way:
$y_{i}=1 \Rightarrow u_{i} \in S ; y_{i}=-1 \Rightarrow u_{i} \in \bar{S}$
We got that:
$\delta(S)=\left\{\left(u_{i}, u_{j}\right) \mid y_{i} * y_{j}=-1\right\}$.
Or alternatively:
$\left(u_{i}, u_{j}\right) \in \delta(S) \Longleftrightarrow y_{i} * y_{j}=-1$
Therefore: $\frac{1-y_{i} * y_{j}}{2}=1$ if $\left(u_{i}, u_{j}\right) \in \delta(S)$, otherwise 0 .
The Quadratic Program will be:
Minimize $_{y}: C(S)=\operatorname{sum}_{1 \leq i<j \leq n} w_{i, j} * \frac{1-y_{i} * y_{j}}{2}$ Subject to:

- $y_{i}^{2}=1$
- $y_{i} \in \mathbf{R}$

Where $w_{i, j}=1$ if $\left(u_{i}, u_{j}\right) \in E, 0$ otherwise.
The quadratic constraint on y causes that $y_{i} \in\{-1,1\}$, which is what we want.

1.2 Vector Program

We'll change this program to another type of a program: Vector Program (VP). For every vertex, u_{i} we'll define a vector $v_{i}=(a, b)$. The vector program will be:
$\operatorname{maximize}_{v}: \sum_{1 \leq i<j \leq n} w_{i, j} * \frac{1-\left\langle v_{i}, v_{j}\right\rangle}{2}$ Subject to:

- $\forall i<v_{i}, v_{i}>=1$.
- $\forall i \quad v_{i} \in \mathbf{R}^{2}$.

Because we can always make $v_{i}=\left(y_{i}, 0\right)$ we get $O P T_{V P} \geq O P T_{Q P}=O P T(I)$. Notice that the Vector Program doesn't induces the groups S, \bar{S}, so we don't have a solution for the original problem.

Generally, Vector Programming is defined by: $\min / \max _{v_{1}, \ldots, v_{n}} \sum C_{i, j} *<v_{i}, v_{j}>$ Subject to:

- $\forall k \sum_{i, j} a_{i, j, k}<v_{i}, v_{j}>=b_{k}$
- $\forall i \quad v_{i} \in \mathbf{R}^{m}$
(notice that n can be different than m).

1.3 Semi Definite Programming

Another type of programming is Semi Definite Programming(SDP). A matrix $X^{n \times n}$ is Positive Semi Definite(PSD) if there exist a matrix $Y^{n \times n}$ s.t. $X=Y^{t} Y$. If we'll write $Y=\left(\left(v_{1}\right)\left(v_{2}\right) \ldots\left(v_{n}\right)\right)$, then $X_{i, j}=<v_{i}, v_{j}>$ We are trying to solve:
$\operatorname{maximize}_{v_{1}, \ldots, v_{n}}: \sum_{i<j} W_{i, j} \frac{\left.1-<v_{i}, v_{j}\right\rangle}{2}$ Subject to

- $\forall i<v_{i}, v_{i}>=1$.

Notice that $\left.<v_{i}, v_{j}\right\rangle=\cos \left(\theta_{i, j}\right)$. Therefore the target function becomes:
$\operatorname{maximize}_{v_{1}, \ldots, v_{n}} \sum_{i<j} W_{i, j} \frac{1-\cos \left(\theta_{i, j}\right)}{2}$
It's worth mentioning that unlike VP, SDP has a polyomial solution. But the problem is that if we have the optimal solution for the SDP, then how can we go back to a solution which specifically says whether the vertex is in S or \bar{S}. We'll want that if the $\theta_{i, j}$ is big, then the chance that they will be in different sides of the cut will be big. The next section is about a solution that is going in that direction and called randomized rounding.

Figure 1:

1.4 Randomized Rounding

1. Solve the SDP. The solution is v_{1}, \ldots, v_{n}.
2. Choose randomly a vector r from the uniform distribution of the unity sphere in \mathbf{R}^{n}.
3. The solution for the max cut will be:

$$
S=\left\{u_{i} \in V \mid<v_{i}, r>\geq 0\right\}
$$

Remark Remember that v_{i} is the vector that represents the vertex u_{i}.

Lemma $2 \operatorname{Pr}\left[\left(u_{i}, u_{j}\right) \in \delta(S)\right]=\frac{\theta_{i, j}}{\pi}$
Proof: From the defintion of randomized rounding we get:
$\operatorname{Pr}\left[\left(u_{i}, u_{j}\right) \in \delta(S)\right]=\operatorname{Pr}\left[v_{i}, v_{j}\right.$ in the opposite sides of the surface of $\left.r\right]=$
$=\operatorname{Pr}\left[\left(<v_{i}, r \gg 0 \wedge<v_{j}, r><0\right) \vee\left(<v_{i}, r><0 \wedge<v_{j}, r \gg 0\right)\right]$
Now, let r^{\prime} be the normalized projection of r on the plane that is created by the span v_{i}, v_{j}. The angle ϕ is the angle between r^{\prime} and v_{i}. ϕ is distributed uniformly on $[0,2 \pi]$ (because r was selected uniformly). See figure 1.
$\operatorname{Pr}\left[v_{i}, v_{j}\right.$ in the opposite sides of the surface of $\left.r\right]=\operatorname{Pr}[\phi \in A \cup B]=2 * \frac{\theta_{i, j}}{2 \pi}=\frac{\theta_{i, j}}{\pi}$.
Therefore: $E[c(S)]=\sum_{i<j} w_{i, j} \frac{\theta}{\pi}$
We would like to find α such that:

$$
E[c(S)] \geq \alpha O P T_{S D P}(I)
$$

The reason that we want that is because we know that $O P T_{S D P}(I) \geq O P T(I)$, and therefore we'll have $E[c(S)] \geq \alpha O P T(I)$ - that is an α approximation.
Further development shows that: $\alpha=\min _{\theta} \frac{2 \pi}{\pi(1-\cos (\theta))}>0.878 \ldots$
Recently it was shown that this approximation is tight, assuming some computational assumptions (for details on the assupmtions - see http://weblog.fortnow.com/2005/06/unique-games-conjecture.html).

Figure 2:

Figure 3:

1.5 Choosing The Random Vector

We'll now show how one can implement part 2 of the algorithm: choose randomly a vector r from the uniform distribution of the unity sphere in \mathbf{R}^{n}.

Define $\forall i \in 1, . ., n, \quad X_{i} \sim N(0,1)$ I.I.D. (normal distribution with expectation of 0 , and variance of 1). That can be done from a uniform distribution using the Box-Muller transformation, see http://en.wikipedia.org/wiki/Box-Muller_transform for details. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, and $r=\frac{X}{\|X\|_{2}}$.

$$
f_{r}\left(y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-y_{i}^{2}}{2}\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\sum_{i=1}^{n} \frac{y_{i}^{2}}{2}\right)=\text { constant }
$$

Example 2 Let's look at the flow problem of the triangle graph, with weights of 1 on each edge - see figure 2. Obviously, $O P T(I)$ is 2. The Vector Program in two dimensions (notice that the SDP will be in 3 dimensions), will be as figure 3. So we get: $O P T_{V P}(I)=$ $\sum_{i=1}^{3} w\left(e_{i}\right)\left(\frac{1-\left\langle v_{i}, v_{j}\right\rangle}{2}=3 * \frac{1-\cos (2 \pi / 3)}{2}=\frac{9}{4}\right.$ $\frac{O P T(I)}{O P T_{V P}(I)}=\frac{8}{9}$

