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Lecture 1
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1 MAX-SAT Continued

We will begin this lecture by filling in some of the details regarding the algorithm for
MAX-SAT we presented in the previous lecture. We shall then show how this algorithm
can be derandomized. Let us begin with a short reminder: The algorithm comprises two
sub-algorithms. The first sub-algorithm simply guesses the assignment of each variable.
The expectation that this algorithm satisfies clause j (of length k) is clearly Efirst[cj ] =
1−(1− 1

2 )k (let αk = 1−(1− 1
2)k). The linearity of expectation guarantees this approximation

for the entire boolean formula. The second algorithm (we shall refer to as GW ) is such that
Esecond[cj ] ≥ βkzj (with bk = 1 − (1 − 1

k
)k).

We shall show that by randomly picking one of the two algorithms we manage to get a
good approximation ratio. The intuition for this is that one gets better as k increases and
the other gets better as k decreases. The expectation that clause j is satisfied by this new
algorithms is E[cj ] = 1

2(αk +βk)zj . We wish to show that E[cj ] ≥
3
4zj . Hence, it suffices to

show that αk + βk ≥ 3
2 for all values of k. One can easily verify that this is indeed correct

(by assigning k = 1, 2, 3).

Now that we have designed a randomized algorithm with a good expectation of success, we
shall show how it can be converted into an algorithm that succeeds with high probability.
Consider a minimization problem. Let A be an algorithm, and I be an instance of the
problem, such that E[A(I)] < αOPT (I). According to the Markov bound:

Pr[X ≥ tE[X]] ≤
1

t

Hence:

Pr[A(I) > (1 + δ)αOPT (I)] ≤
1

1 + δ

And so we have that by repeating our algorithm m times the probability of failure is
≤ ( 1

1+δ
)m. For m = O( 1

δ
log n) we have that the probability of failure is polynomially low

(in n).

We now turn to derandomizing the MAX-SAT algorithm. We do this using the conditional
expectation technique. We know that the randomized algorithm we have has an expectation
of success of at least 4

3 of the optimal solution. Define some arbitrary order on the boolean
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variables x1, ..., xn. We shall define a vertex (a1, ..., al) for every 1 ≤ l ≤ n and such that
ai ∈ {0, 1}. This vertex corresponds to the instance of the problem we get if assign xi

the value of ai for every 1 ≤ i ≤ l. Observe that for every such vertex v we can compute
the expectation of the number of satisfied clauses (given the algorithm) for the instance
represented by v, in polynomial time. We shall denote this expectation by Ev.

We shall now present the simple deterministic algorithm for MAX-SAT.

• Start with v = (∅).

• While the number of coordinates in v is smaller than n perform the following
step: if v = (a1, ..., al), Let v0 = ((a1, ..., al, 0) and v1 = ((a1, ..., al, 0). Assign
v = argmaxi∈{0,1}Evi

.

To see why this algorithm let us start by considering the first step. v = (∅), and so we
know that Ev is at least a 3

4 fraction of the optimal solution (we are guaranteed this by the
approximation ration of the algorithm). Assume that the randomized algorithm chooses
v0 with probability p0 and v1 with probability p1. Then, Ev = poEv0

+ p1Ev1
≤ maxiEvi

.
And so, by choosing the vi that maximizes the expectation Evi

we are still guaranteed a
good approximation. We can now repeat this step over and over again without reducing
the value of the guaranteed expectation.

2 On Chebyshev and Chernoff Bounds

Theorem 1 (The Chebyshev bound:) Pr[|X − E[X]| > tσ] < 1
t2

Proof: Set Y = (X − E[X])2 and apply the Markov bound.

Theorem 2 (The Chernoff bound:) Let Xi (1 ≤ i ≤ n) be n random variables such that
Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi. Let X = ΣiXi and µ = E[X]. Then:

Pr[X < (1 − δ)µ] < (
e−δ

(1 − δ)(1−δ)
)µ < e

−δ2µ
2

Pr[X > (1 + δ)µ] < (
eδ

(1 + δ)(1+δ)
)µ

For instance, if we were to toss a fair coin 10000 times what is the probability that we get
heads in less that 4500 tosses. In this case µ = 5000, δ = 1

10 and n = 10000, and so, by the
Chernoff bound, the probability is less than e−25.

Let us consider a use of of the Chebychev bound. The problem we will look at is finding
the number of satisfying assignments for a DNF boolean formula. For every clause ci with
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ri literals denote by Si the number of satisfying assignments. Clearly, |Si| = 2n−ri . And
so, we denote the number of satisfying solutions for a formula f by #f = |

⋃
i Si|. Let M

be the multiset that contains the elements is all the Si’s (including repetitions of the same
elements). Obviously, |M | = Σi|Si|. For every assignment a define c(a) to be the number of
clauses satisfied by a. We wish to choose a random assignment r by assigning a probability
of c(a)

|M | to every assignment a. First, we randomly choose a clause ci with probability |Si|
|M | .

We shall now uniformly choose one of the assignments in Si. We now have that

Pr[assignment a is chosen] = Σa∈Si
(
|Si|

|M |

1

|Si|
) =

c(a)

|M |

For every assignment a we define a random variable X(a) such that X(a) = |M |
c(a) if a is

chosen and 0 otherwise. Let X = ΣaX(a).

Lemma 3 E[X] = #f

This is easy to verify. The proof of the next lemma is omitted.

Lemma 4 Let vk be the average of k independent samples of X. Then, ∀ε > 0,

Pr[|vk − #f | ≤ ε#f ] ≥
3

4

.
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