Lecture 1

Lecturer: Yair Bartal

1 MAX-SAT Continued

We will begin this lecture by filling in some of the details regarding the algorithm for MAX-SAT we presented in the previous lecture. We shall then show how this algorithm can be derandomized. Let us begin with a short reminder: The algorithm comprises two sub-algorithms. The first sub-algorithm simply guesses the assignment of each variable. The expectation that this algorithm satisfies clause j (of length k) is clearly $E_{\text {first }}\left[c_{j}\right]=$ $1-\left(1-\frac{1}{2}\right)^{k}\left(\right.$ let $\left.\alpha_{k}=1-\left(1-\frac{1}{2}\right)^{k}\right)$. The linearity of expectation guarantees this approximation for the entire boolean formula. The second algorithm (we shall refer to as $G W$) is such that $E_{\text {second }}\left[c_{j}\right] \geq \beta_{k} z_{j}\left(\right.$ with $\left.b_{k}=1-\left(1-\frac{1}{k}\right)^{k}\right)$.

We shall show that by randomly picking one of the two algorithms we manage to get a good approximation ratio. The intuition for this is that one gets better as k increases and the other gets better as k decreases. The expectation that clause j is satisfied by this new algorithms is $E\left[c_{j}\right]=\frac{1}{2}\left(\alpha_{k}+\beta_{k}\right) z_{j}$. We wish to show that $E\left[c_{j}\right] \geq \frac{3}{4} z_{j}$. Hence, it suffices to show that $\alpha_{k}+\beta_{k} \geq \frac{3}{2}$ for all values of k. One can easily verify that this is indeed correct (by assigning $k=1,2,3$).

Now that we have designed a randomized algorithm with a good expectation of success, we shall show how it can be converted into an algorithm that succeeds with high probability. Consider a minimization problem. Let A be an algorithm, and I be an instance of the problem, such that $E[A(I)]<\alpha O P T(I)$. According to the Markov bound:

$$
\operatorname{Pr}[X \geq t E[X]] \leq \frac{1}{t}
$$

Hence:

$$
\operatorname{Pr}[A(I)>(1+\delta) \alpha O P T(I)] \leq \frac{1}{1+\delta}
$$

And so we have that by repeating our algorithm m times the probability of failure is $\leq\left(\frac{1}{1+\delta}\right)^{m}$. For $m=O\left(\frac{1}{\delta} \log n\right)$ we have that the probability of failure is polynomially low (in n).

We now turn to derandomizing the MAX-SAT algorithm. We do this using the conditional expectation technique. We know that the randomized algorithm we have has an expectation of success of at least $\frac{4}{3}$ of the optimal solution. Define some arbitrary order on the boolean
variables x_{1}, \ldots, x_{n}. We shall define a vertex $\left(a_{1}, \ldots, a_{l}\right)$ for every $1 \leq l \leq n$ and such that $a_{i} \in\{0,1\}$. This vertex corresponds to the instance of the problem we get if assign x_{i} the value of a_{i} for every $1 \leq i \leq l$. Observe that for every such vertex v we can compute the expectation of the number of satisfied clauses (given the algorithm) for the instance represented by v, in polynomial time. We shall denote this expectation by E_{v}.

We shall now present the simple deterministic algorithm for MAX-SAT.

- Start with $v=(\emptyset)$.
- While the number of coordinates in v is smaller than n perform the following step: if $v=\left(a_{1}, \ldots, a_{l}\right)$, Let $v_{0}=\left(\left(a_{1}, \ldots, a_{l}, 0\right)\right.$ and $v_{1}=\left(\left(a_{1}, \ldots, a_{l}, 0\right)\right.$. Assign $v=\operatorname{argmax}_{i \in\{0,1\}} E_{v_{i}}$.

To see why this algorithm let us start by considering the first step. $v=(\emptyset)$, and so we know that E_{v} is at least a $\frac{3}{4}$ fraction of the optimal solution (we are guaranteed this by the approximation ration of the algorithm). Assume that the randomized algorithm chooses v_{0} with probability p_{0} and v_{1} with probability p_{1}. Then, $E_{v}=p_{o} E_{v_{0}}+p_{1} E_{v_{1}} \leq \max E_{v_{i}}$. And so, by choosing the v_{i} that maximizes the expectation $E_{v_{i}}$ we are still guaranteed a good approximation. We can now repeat this step over and over again without reducing the value of the guaranteed expectation.

2 On Chebyshev and Chernoff Bounds

Theorem 1 (The Chebyshev bound:) $\operatorname{Pr}[|X-E[X]|>t \sigma]<\frac{1}{t^{2}}$
Proof: Set $Y=(X-E[X])^{2}$ and apply the Markov bound.

Theorem 2 (The Chernoff bound:) Let $X_{i}(1 \leq i \leq n)$ be n random variables such that $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ and $\operatorname{Pr}\left[X_{i}=0\right]=1-p_{i}$. Let $X=\Sigma_{i} X_{i}$ and $\mu=E[X]$. Then:

$$
\begin{gathered}
\operatorname{Pr}[X<(1-\delta) \mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}<e^{\frac{-\delta^{2} \mu}{2}} \\
\operatorname{Pr}[X>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
\end{gathered}
$$

For instance, if we were to toss a fair coin 10000 times what is the probability that we get heads in less that 4500 tosses. In this case $\mu=5000, \delta=\frac{1}{10}$ and $n=10000$, and so, by the Chernoff bound, the probability is less than e^{-25}.

Let us consider a use of of the Chebychev bound. The problem we will look at is finding the number of satisfying assignments for a DNF boolean formula. For every clause c_{i} with
r_{i} literals denote by S_{i} the number of satisfying assignments. Clearly, $\left|S_{i}\right|=2^{n-r_{i}}$. And so, we denote the number of satisfying solutions for a formula f by $\# f=\left|\bigcup_{i} S_{i}\right|$. Let M be the multiset that contains the elements is all the S_{i} 's (including repetitions of the same elements). Obviously, $|M|=\Sigma_{i}\left|S_{i}\right|$. For every assignment a define $c(a)$ to be the number of clauses satisfied by a. We wish to choose a random assignment r by assigning a probability of $\frac{c(a)}{|M|}$ to every assignment a. First, we randomly choose a clause c_{i} with probability $\frac{\left|S_{i}\right|}{|M|}$. We shall now uniformly choose one of the assignments in S_{i}. We now have that

$$
\operatorname{Pr}[\text { assignment } a \text { is chosen }]=\Sigma_{a \in S_{i}}\left(\frac{\left|S_{i}\right|}{|M|} \frac{1}{\left|S_{i}\right|}\right)=\frac{c(a)}{|M|}
$$

For every assignment a we define a random variable $X(a)$ such that $X(a)=\frac{|M|}{c(a)}$ if a is chosen and 0 otherwise. Let $X=\Sigma_{a} X(a)$.

Lemma $3 E[X]=\# f$

This is easy to verify. The proof of the next lemma is omitted.

Lemma 4 Let v_{k} be the average of k independent samples of X. Then, $\forall \epsilon>0$,

$$
\operatorname{Pr}\left[\left|v_{k}-\# f\right| \leq \epsilon \# f\right] \geq \frac{3}{4}
$$

