Lecture 3

Lecturer: Yair Bartal
Scribe: Anton Bar

MAX-SAT

Note: LP problem (relaxation of ILP) is solvable in polynomial time. In this course we will not study solving LP, instead we will use it as a black box technique. We solve ILP problem by solving a similar LP problem and rounding the fractions to 0 and 1 .

Today we will handle a slightly more difficult problem: MAX-SAT.
Given CNF formula: $f=\bigwedge_{j=1}^{m} C_{j}$, where C_{j} is a clause of size k_{j}. Each clause is k_{j} iterals u_{i} of the following form: $C_{j}=\bigvee_{i}^{k_{j}} u_{i}$, where u_{i} is one of variables x_{1}, \ldots, x_{n} or its negation. w_{j} is weight of clause C_{j}. Without loss of generality we can assume that each variable or its negation appears only once in each clause.

The goal is to find an assignment for all variables x_{1}, \ldots, x_{n}, s.t. weight of all satisfied clauses is maximal.
$C_{j}=\left\{\begin{array}{cc}1, & \text { if } C_{j} \text { is satisfied } \\ 0, & \text { otherwise }\end{array}\right.$
There are two interesting variations:

1. MAX-K-SAT, $\forall j, \operatorname{size}\left(C_{j}\right) \leq k$
2. MAX-EK-SAT, $\forall j, \operatorname{size}\left(C_{j}\right)=k$ (Exact K-SAT)

Now we will analyze few randomized algorithms - which are algorithms that flip coin and decide. Its natural to talk about expectation.

Definition 1 Randomized algorithm A has approximation ratio $\alpha<1$ if A runs in polynomial time and $\forall I: E[A(I)] \geq \alpha \cdot O P T(I)$, where I is input of A.

Algorithm I - Johnson

Algorithm: In order to round a solution for LP to a solution for ILP - replace each fraction by randomly picked 0 or 1 , so that $\operatorname{Pr}[0]=\operatorname{Pr}[1]=\frac{1}{2}$.

Theorem 1: Approximation ratio of algorithm I is 2.

Proof: Lets analyze clause c_{j} of size k_{j}. We want to calculate the expectation $E\left[c_{j}\right]$. Expectation of the solution is $E[W]=E\left[\sum_{j} w_{j} c_{j}\right]$, where $W=\sum_{1 \geq j \geq m} w_{j} c_{j}$ and $w_{j} \geq 0$.
$E[W]=E\left[\sum_{j} w_{j} c_{j}\right]=\sum_{j} w_{j} E\left[c_{j}\right]$
Lets define $\alpha=1-\left(\frac{1}{2}\right)^{k_{j}}$.

$$
\operatorname{Pr}\left[c_{j}\right]=1 \cdot \operatorname{Pr}\left[c_{j}=1\right]+0 \cdot \operatorname{Pr}\left[c_{j}=0\right]=\operatorname{Pr}\left[c_{j}=1\right]=1-\operatorname{Pr}\left[c_{j}=0\right]=1-\left(\frac{1}{2}\right)^{k_{j}}=\alpha_{k_{j}} \geq \frac{1}{2}
$$

Notes:

- Probability of a negative clause is $\frac{1}{2}$ in power of size of the clause.
- The larger is the clause, the bigger is the expected value.
- Shorter clauses is the weak point of this algorithm. Examples: when $k=1: \alpha=$ $\frac{1}{2}, k=2: \alpha=1-\frac{1}{4}=\frac{3}{4}$.

Now we replace $E\left[c_{j}\right]$ by α and receive: $\sum_{j} w_{j} E\left[c_{j}\right] \geq \frac{1}{2} \sum w_{j} \geq \frac{1}{2} O P T(I)$, because we can't satisfy more than $O P T(I)$ clauses.

Note: It's possible to use this algorithm in order to build deterministic algorithm. We will learn it later on as part of an exercise.

Algorithm II - Goemans-Williamson

This algorithm is based on ILP, lets define it:
Maximize: $\sum_{1 \leq j \leq m} w_{j} c_{j}$. Subject to:

- $\forall j: \sum_{i \in P_{j}} x_{i}+\sum_{i \in N_{j}}\left(1-x_{i}\right) \geq c_{j}$, where $P_{j}=\left\{i \mid x_{i} \in c_{j}\right\}$ (all indexes of positive variables) and $N_{j}=\left\{i \mid \overline{x_{i}} \in c_{j}\right\}$ (all indexes of negative variables)
- $c_{j} \in\{0,1\}$
- $x_{i} \in\{0,1\}$

Now lets define the related LP:

Maximize: $\sum_{j} w_{j} z_{j}$. Subject to:

- $\forall j: \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}$
- $\forall j: 0 \leq z_{j} \leq 1$
- $\forall i: 0 \leq y_{i} \leq 1$

The algorithm will solve the LP and produce optimal fractional solution $O P T_{F}$ with variables z_{j}, where $1 \geq j \geq m$, and y_{i}, where $1 \geq i \geq m$. We will flip a biased coin that shows value $x_{i}=1$ with probability y_{i} and value $x_{i}=0$ with probability $1-y_{i}$, and the value of c_{j} is calculated directly from the assignment.

This technique is called Rounding because we round fractional solution to integer. In this case we used randomization, thus it is also called Randomized Rounding.

Theorem 2: Approximation ratio of algorithm $I I \geq 1-\frac{1}{e}$.

Claim: Let c_{j} be a clause of size $k_{j} . \quad E\left[c_{j}\right] \geq \beta_{k_{j}} \cdot z_{j}$, where $\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k}$. $\lim _{k \rightarrow \infty} \beta_{k}=1-\frac{1}{e}$. For example, for $k=1: \beta_{k}=1$.

Note: we want an algorithm where short clauses will contribute more.

Proof of the theorem using the claim:

$E[w]=\sum_{j} w_{j} E\left[c_{j}\right] \geq \sum_{j} \beta_{k} w_{j} z_{j} \geq\left(1-\frac{1}{e}\right) \sum_{j} w_{j} z_{j}=\left(1-\frac{1}{e}\right) O P T_{F} \geq\left(1-\frac{1}{e}\right) O P T$.

Proof of the claim:

$E\left[c_{j}\right]=\operatorname{Pr}\left[c_{j}=1\right]=1-\operatorname{Pr}\left[c_{j}=0\right]$
$\operatorname{Pr}\left[c_{j}=0\right]=\prod_{i \in P_{j}} 1-y_{i} \prod_{i \in N_{j}} y_{i}$
Now we use the Arithmetic-Geometric Means Inequality: for $\left.a_{1}, \ldots, a_{k} \geq 0: \sqrt[k]{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}} \leq \frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)$.

From the inequality follows:
$\operatorname{Pr}\left[c_{j}=0\right]=\left(\sqrt[k_{j}]{\prod_{i \in P_{j}}\left(1-y_{i}\right) \prod_{i \in N_{j}} y_{i}}\right)^{k_{j}} \leq\left[\frac{\sum_{i \in P_{j}}\left(1-y_{i}\right)+\sum_{i \in N_{j}} y_{i}}{k_{j}}\right]^{k_{j}}=$ $\left[\frac{\left|P_{j}\right|-\sum_{i \in P_{j}} y_{i}+\left|N_{j}\right|-\sum_{i \in N_{j}}\left(1-y_{i}\right)}{k_{j}}\right]^{k_{j}}=\left[1-\frac{\sum_{i \in P_{j}} y_{i}+\left|N_{j}\right|-\sum_{i \in N_{j}}\left(1-y_{i}\right)}{k_{j}}\right]^{k_{j}} \leq\left(1-\frac{z_{i}}{k_{j}}\right)^{k_{j}}$
$E\left[c_{j}\right] \geq 1-\left(1-\frac{z_{i}}{k_{j}}\right)^{k_{j}} \geq\left(1-\left(1-\frac{1}{k_{j}}\right)^{k_{j}}\right) \cdot z_{j}$
In order to prove that $f(z)=1-\left(1-\frac{z}{k}\right)^{k} \geq \beta_{k} \cdot z$, it is enough to observe that for $0 \leq z \leq 1,1-\frac{1}{e}>\beta_{k} \cdot z$, where k is natural ≥ 1.

Algorithm III - (combination of I and II)

The algorithm flips a fair coin and if it shows 1 - runs algorithm I, otherwise algorithm II.

Theorem 3: Approximation ratio of algorithm III is $\frac{3}{4}$

Claim:

$\forall c_{j}: E\left[c_{j}\right] \geq \frac{3}{4} z_{j}$

Proof of the theorem using the claim:

$E[w]=\sum_{j} w_{j} c_{j} \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} O P T_{F}(I) \geq \frac{3}{4} O P T(I)$.

Proof of the claim:

$E\left[c_{j}\right]=\frac{1}{2} \alpha_{k_{j}}+\frac{1}{2} \beta_{k_{j}} z_{j} \geq \frac{1}{2}\left(\alpha_{k_{j}}+\beta_{k_{j}}\right) z_{j}$. This is true because $0 \leq z_{j} \leq 1$.
$\forall k:\left(\alpha_{k_{j}}+\beta_{k_{j}}\right) \geq \frac{3}{2}$.
We divide it by 2 and receive the desired approximation ratio of $\frac{3}{4}$:
$\forall k: \frac{\left(\alpha_{k_{j}}+\beta_{k_{j}}\right)}{2} \geq \frac{3}{4}$.

Integrality Gap

The question is whether exists algorithm B, s.t. $\frac{B(I)}{O P T_{F}(I)}>\frac{3}{4}$, where $O P T_{F}(I)$ is the optimal fractional solution. We will see that there exists problem instance I, s.t. $\frac{O P T(I)}{O P T_{F}(I)} \leq \frac{3}{4}$.

Lets analyze the following expression: $f=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right)$, where all clauses have equal weights w_{j}. Obviously, $O P T(I)=3$ because we can't satisfy all 4 clauses. $O P T_{F}(I)=4$ because $y_{1}=y_{2}=\frac{1}{2} \Rightarrow \forall i: y_{1}+y_{2} \geq z_{i}$. The integrality gap therefore is $\frac{O P T(I)}{O P T_{F}(I)}=\frac{3}{4}$.

