
Advanced Algorithms - Lecture 3 November 17, 2005

Lecture 3

Lecturer: Yair Bartal Scribe: Anton Bar

MAX-SAT

Note: LP problem (relaxation of ILP) is solvable in polynomial time. In this course we
will not study solving LP, instead we will use it as a black box technique. We solve ILP
problem by solving a similar LP problem and rounding the fractions to 0 and 1.

Today we will handle a slightly more difficult problem: MAX-SAT.

Given CNF formula: f =
∧m

j=1 Cj , where Cj is a clause of size kj . Each clause is kj iterals

ui of the following form: Cj =
∨kj

i ui, where ui is one of variables x1, ..., xn or its negation.
wj is weight of clause Cj . Without loss of generality we can assume that each variable or
its negation appears only once in each clause.

The goal is to find an assignment for all variables x1, ..., xn, s.t. weight of all satisfied clauses
is maximal.

Cj =
{

1, if Cj is satisfied
0, otherwise

There are two interesting variations:

1. MAX-K-SAT, ∀j, size(Cj) ≤ k

2. MAX-EK-SAT, ∀j, size(Cj) = k (Exact K-SAT)

Now we will analyze few randomized algorithms - which are algorithms that flip coin and
decide. Its natural to talk about expectation.

Definition 1 Randomized algorithm A has approximation ratio α < 1 if A runs in polyno-
mial time and ∀I : E[A(I)] ≥ α ·OPT (I), where I is input of A.

Algorithm I - Johnson

Algorithm: In order to round a solution for LP to a solution for ILP - replace each fraction
by randomly picked 0 or 1, so that Pr[0] = Pr[1] = 1

2 .

3-1

Theorem 1: Approximation ratio of algorithm I is 2.

Proof: Lets analyze clause cj of size kj . We want to calculate the expectation E[cj].
Expectation of the solution is E[W] = E[

∑
j wjcj], where W =

∑
1≥j≥m wjcj and wj ≥ 0.

E[W] = E[
∑

j wjcj] =
∑

j wjE[cj]

Lets define α = 1− (1
2)kj .

Pr[cj] = 1 ·Pr[cj = 1] + 0 ·Pr[cj = 0] = Pr[cj = 1] = 1−Pr[cj = 0] = 1− (1
2)kj = αkj

≥ 1
2

Notes:

• Probability of a negative clause is 1
2 in power of size of the clause.

• The larger is the clause, the bigger is the expected value.

• Shorter clauses is the weak point of this algorithm. Examples: when k = 1 : α =
1
2 , k = 2 : α = 1− 1

4 = 3
4 .

Now we replace E[cj] by α and receive:
∑

j wjE[cj] ≥ 1
2

∑
wj ≥ 1

2OPT (I), because we
can’t satisfy more than OPT (I) clauses.

Note: It’s possible to use this algorithm in order to build deterministic algorithm. We will
learn it later on as part of an exercise.

Algorithm II - Goemans-Williamson

This algorithm is based on ILP, lets define it:

Maximize:
∑

1≤j≤m wjcj . Subject to:

• ∀j :
∑

i∈Pj
xi +

∑
i∈Nj

(1− xi) ≥ cj , where Pj = {i|xi ∈ cj} (all indexes of positive
variables) and Nj = {i|xi ∈ cj} (all indexes of negative variables)

• cj ∈ {0, 1}

• xi ∈ {0, 1}

3-2

Now lets define the related LP:

Maximize:
∑

j wjzj . Subject to:

• ∀j :
∑

i∈Pj
yi +

∑
i∈Nj

(1− yi) ≥ zj

• ∀j : 0 ≤ zj ≤ 1

• ∀i : 0 ≤ yi ≤ 1

The algorithm will solve the LP and produce optimal fractional solution OPTF with
variables zj , where 1 ≥ j ≥ m, and yi, where 1 ≥ i ≥ m. We will flip a biased coin that
shows value xi = 1 with probability yi and value xi = 0 with probability 1 − yi, and the
value of cj is calculated directly from the assignment.

This technique is called Rounding because we round fractional solution to integer.
In this case we used randomization, thus it is also called Randomized Rounding.

Theorem 2: Approximation ratio of algorithm II ≥ 1− 1
e .

Claim: Let cj be a clause of size kj . E[cj] ≥ βkj
· zj , where βk = 1 − (1 − 1

k)k.
limk→∞ βk = 1− 1

e . For example, for k = 1 : βk = 1.

Note: we want an algorithm where short clauses will contribute more.

Proof of the theorem using the claim:
E[w] =

∑
j wjE[cj] ≥

∑
j βkwjzj ≥ (1− 1

e)
∑

j wjzj = (1− 1
e)OPTF ≥ (1− 1

e)OPT.

Proof of the claim:
E[cj] = Pr[cj = 1] = 1− Pr[cj = 0]
Pr[cj = 0] =

∏
i∈Pj

1− yi
∏

i∈Nj
yi

Now we use the Arithmetic-Geometric Means Inequality:
for a1, ..., ak ≥ 0: k

√
a1 · a2 · ... · ak ≤ a1+a2+...+ak

k).

From the inequality follows:

Pr[cj = 0] =
(

kj

√∏
i∈Pj

(1− yi)
∏

i∈Nj
yi

)kj

≤
[P

i∈Pj
(1−yi)+

P
i∈Nj

yi

kj

]kj

=[
|Pj |−

P
i∈Pj

yi+|Nj |−
P

i∈Nj
(1−yi)

kj

]kj

=
[
1−

P
i∈Pj

yi+|Nj |−
P

i∈Nj
(1−yi)

kj

]kj

≤
(
1− zi

kj

)kj

3-3

E[cj] ≥ 1−
(
1− zi

kj

)kj

≥
(

1−
(
1− 1

kj

)kj
)
· zj

In order to prove that f(z) = 1 − (1 − z
k)k ≥ βk · z, it is enough to observe that

for 0 ≤ z ≤ 1, 1− 1
e > βk · z, where k is natural ≥ 1. �

Algorithm III - (combination of I and II)

The algorithm flips a fair coin and if it shows 1 - runs algorithm I, otherwise algorithm II.

Theorem 3: Approximation ratio of algorithm III is 3
4

Claim:
∀cj : E[cj] ≥ 3

4zj

Proof of the theorem using the claim:
E[w] =

∑
j wjcj ≥ 3

4

∑
j wjzj ≥ 3

4OPTF (I) ≥ 3
4OPT (I). �

Proof of the claim:
E[cj] = 1

2αkj
+ 1

2βkj
zj ≥ 1

2(αkj
+ βkj

)zj . This is true because 0 ≤ zj ≤ 1.

∀k : (αkj
+ βkj

) ≥ 3
2 .

We divide it by 2 and receive the desired approximation ratio of 3
4 :

∀k :
(αkj

+βkj
)

2 ≥ 3
4 .

Integrality Gap

The question is whether exists algorithm B, s.t. B(I)
OPTF (I) > 3

4 , where OPTF (I) is the opti-

mal fractional solution. We will see that there exists problem instance I, s.t. OPT (I)
OPTF (I) ≤

3
4 .

Lets analyze the following expression: f = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2),
where all clauses have equal weights wj . Obviously, OPT (I) = 3 because we can’t satisfy
all 4 clauses. OPTF (I) = 4 because y1 = y2 = 1

2 ⇒ ∀i : y1 + y2 ≥ zi. The integrality gap
therefore is OPT (I)

OPTF (I) = 3
4 .

3-4

