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1 Probabilistic Embedding of Metric Spaces

1.1 The Steinter Tree Problem and Metrical Embedding

This problem is a min problem.

Input: A graph G, and a weight function: W : E −→ R+, and a subset of the vertices, S.

Output: A “minimum weighted” spanning tree on S (the spanning tree can have vertices
from all of G). The idea of “minimum weighted” is that the sum of the weights of all the
edges in the spanning tree will be minimized.

This problem has an online version - All the graph is known in stage zero. In every stage we
add a vertex to the wanted span tree, and the algorithm should add edges that will cause
that vertex to be in the spanning tree.(once an edge is added, it can’t be removed in a later
stage). If the graph was a tree, then the solution is optimal (the approximation factor is 1).
There is a solution that is θ(log(n)) approximation.

Lemma 1 Assume there is a metric space (X, dX ), for which there is an embedding by a
bijective function (HAD HAD ERKI AND AL in Hebrew), f, into another metric space
(Y, dY ) , where (Y, dY ) is a tree, and the distortion factor is α. (Embedding - SHIKUN in
Hebrew, is just a function between one metric space to another metric space). So, if there
is an algorithm for solving a problem on Y , AY , which is β approximation to the offline
algorithm on Y , then X has an αβ approximation.

Proof: Assume w.l.o.g. that f isn’t shrinking dX(u, v) ≤ dY (fY (u), fY (v)). For any
order σ over X, f induces an order σY over Y .
Run AY on σY , and simulate it on X.

A(σ) ≤ AY (σY )

Assume there is an adversary ADVX on X. We’ll define a new adversary AY that simulates
ADVX on Y . We get:

ADVY (σY ) ≤ α ∗ ADVX(σ)

A(σ) ≤ AY (σY ) ≤ β ∗ ADVY (σY ) ≤ αβ ∗ ADVX(σ)
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Figure 1:
r

The problem with this idea is that the distortion factor is Ω(n) - for example the circle
graph.

1.2 Probabilistic Embedding

Definition 2 (probabilistic embedding) Given a metric space (X, dX ), and a set S of
all the metic spaces of trees with size |X|, and for each Y ∈ S there is a function fY : X → Y
that is not shrinking. If there is a distribution over S s.t. ∀u, v ∈ X,E[dY (fY (u), fY (v))] ≤
αdX(u, v) Then it is called a probabilistic embedding with distortion factor α.

Lemma 3 if (X, dX ) has probabilistic embedding to S, and ∀Y ∈ S exists an algorithm AY

that is β competitive, then X has a random algroithm that is αβ- competitive.

Proof: Very similar to lemma 1.

E[ADVY (σY )] ≤ α ∗ ADVX(σ)

E[A(σ)] ≤ E[AY (σY )] ≤ E[β ∗ ADVY (σY )] ≤ αβ ∗ ADVX(σ)

Lemma 4 a wighted circle graph over n verices has probabilistic embedding in trees (or
more specifically in a line metric) with a distortion factor 2.

Proof: Randomally choose a point from the circle r, where the length of the circle is the
sum of all the weights. Create the line graph, by removing the edge where the point was
picked up from. See figure 1 for visualization. Assuming that the length of the circle is 1,
we get:

E[dTX(u,v)
] = Pr[x /∈ (u, v)] ∗ [1 − d(u, v)] + Pr[x ∈ (u, v)] ∗ d(u, v) ≤

Pr[x /∈ (u, v)] ∗ 1 + Pr[x ∈ (u, v)] ∗ d(u, v) ≤ 2d(u, v)
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Theorem 5 (Bartal and FRT) evey metric space over n points has probabilistic embed-
ding in trees with distortion factor O(log(n)).

Definition 6 (k-HST(hierarchial seperated tree)) A tree, where for each vertex u,
there is a label ∆(u) ∈ R+. The mertic space is only on the leaves, and for every 2 leaves,

u, v , d(u, v) = ∆(lca(u, v)), and for every junction u, and it’s descendant v ∆(v) ≤ ∆(u)
k

and for every leaf u, ∆(u) = 0.

Remark: HST is a generalization of an ultrametric tree - (1-HST is an ultrametric tree).

The previous theorem applies for all k with O(k ∗ logk(n)).

Proof: We’ll not do all the proof in this lecture. We’ll need the following definition:

Definition 7 ((λ,∆) probabilistic partition) M = (V, d) - a metric space. A partition
with diameter ∆ is a partition of V to clusters C1, C2, ..., Ct s.t.

⋃
i Ci = V, ∀i, j i 6=

j, Ci ∩ Cj = ∅ ,and ∀i diam(Ci) ≤ ∆.
The diameter of a set is the maximum distance between two elements in the group:
diam(A) = maxa,b∈Ad(a, b).
A (λ,∆) probabilistic partition is a distribution over partitions with a diamater ∆ ,
s.t ∀u, v Pr[u, v isn′t in the same cluster] ≤ λ

∆d(u, v), where λ ≥ 1.

Lemma 8 Let M be a metric space s.t. ∀∆ ∃(λ,∆) probabilistic partition. Then M has
a probabilistic embedding of an k-HST with a distortion factor of O(λk ∗ logkD), where
D = diam(M).
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