
Advanced Algorithms - Lecture January 19, 2006

Lecture 1

Lecturer: Yair Bartal Scribe: Michael Schapira

1 Metric Embeddings - The Bourgain Theorem

We shall start this lecture by presenting Bourgain theorem:

Theorem 1 It is possible to embed every metric space M = (V, d) with n points in l2 with

a distortion of o(log n).

We shall require the use of what is known as the Frechet embedding. We will randomly
create t sets, Ai ⊆ V (1 ≤ i ≤ t). We shall then define t functions, fi : V → R such that
fi(u) = d(u,Ai) = minx∈Ai

d(u, x). The embedding will then be defined by f : V → Rt,
such that f(u) = (f1(u), ..., ft(u)).

|fi(u)− fi(v)| = |d(u,Ai)− d(v,Ai)| ≤ |d(u,X)− d(v, x)| ≤ d(u, v)

Therefore,

||f(u)− f(v)|| ≤ td(u, v)

We randomly pick the set Ai by picking every v ∈ V with probability 1
2i . We would like our

fi’s to fulfil the following requirement: d(u,v)
24 ≤ ||f(u)− f(v)||. If this will indeed hold then

the expansion would be at most O(log n) and the contraction is 1
24 and so the distribution

is O(logn).

We will first prove the Bourgain theorem for l1. Assume that there are t real values,
∆1, ...,∆t, E(|fi(i)−fi(v)) ≥

Σi∆1

6 and Σi ≥
d(u,v)
6 . If so, then ||f(u)−f(v)|| = ΣiE[|fi(u)−

fi(v)|] ≥ Σi
∆i

6 ≥
d(u,v
24 .

Fix u, v ∈ V . Define B(x, r) = {y ∈ V |d(x, y) ≤ r} and B0(x, r) = {y ∈ V |d(x, y) < r}.
Let ri = mind{|B(u, d)| ≥ 2i |B(v, d) ≥ 2i} and ∆i = ri − ri−1. W.l.o.g. |B(v, r)| ≥ 2i and
|B0(u, r) < 2i|. Consider the expression d(u,Ai) − d(v,Ai). Look at the case in which (*)
in B(u, ri) there is no point from Ai and (**) in B(v, ri−1) there is a point from Ai. In this

case d(u,Ai) − d(v,Ai) ≥ max{ri − ri−1,
d(u,v)
24 }. The probability that this case happens
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is constant because (*) happens with probability (1 − 1
2i )

2i

≥ 1
e
and (**) happens with

probability 1
2 .

We now have that:

E[d(u,Ai)− d(v,Ai)] ≥
ri − ri−1

6
≥

1

6

d(u, v)

4
=

d(u, v)

24

Now we shall randomly pick, for every i, s independent sets, A1i , ..., A
s
i , as before. For

every 1 ≤ j ≤ s and 1 ≤ i ≤ tlet f
j
i (u) = d(u,Aj

i ). The number of coordinates is
now st = o(log2 n). We define the function f such that the (i, j)’th coordinate of f(u) is
fij(u) =

1
st
f
j
i (u). It is easy to verify that, as before, ||f(u)− f(v)|| ≤ d(u, v).

||f(u) − f(v)|| = 1
s
Σj(

1
t
Σi|f

j
i (u) − f

j
i (v)|). Let Xj be the random variable that gets the

value of 1
t
Σi|f

j
i (u)− f

j
i (v)|. We already know that d(u,v)

24t ≤ E[Xj ]. Let Y = 1
s
ΣjXj .

As a conclusion from they Chernoff bounds it can be shown that Pr[Y < (1 − δ)E[X]] <

e−fracδ2s2. That means that for s = 32 lnn and δ = 1
2 we have that Pr[Y < 1

2
d(u,v)
24t ] <

e−4 lnn < 1
2n2 .

Since there are n points, the probability that we have ”failed” for any of the pairs is at
most n2 1

2n2 = 1
2 . This finishes the proof of the theorem for l1.

In order to handle the l2 case the normalization will be in 1√
st
. We will then have that:

||f(u)− f(v)||22 =
1

st
(Σi,j |f

j
i (u)− f

j
i (v)|

2) ≤ d(u, v)2

||f(u)− f(v)|| =
Σ|f j

i (u)− f
j
i (v)|

2

st
=

1

s
(
Σ|f j

i (u)− f
j
i (v)|

2

t
)

We shall now show that E[ 1
t
Σ|f j

i (u)− f
j
i (v)|

2] ≥ (d(u,v)24t )2. To do this we only need to show

that 1
t
Σ|f j

i (u) − f
j
i (v)|

2 ≥ (1
t
Σ|f j

i (u) − f
j
i (v)|)

2. The last inequality is derived form the
Cauchy Schwartz inequality.
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