1 Metric Embeddings - The Bourgain Theorem

We shall start this lecture by presenting Bourgain theorem:

Theorem 1 It is possible to embed every metric space $M=(V, d)$ with n points in l_{2} with a distortion of o $(\log n)$.

We shall require the use of what is known as the Frechet embedding. We will randomly create t sets, $A_{i} \subseteq V(1 \leq i \leq t)$. We shall then define t functions, $f_{i}: V \rightarrow R$ such that $f_{i}(u)=d\left(u, A_{i}\right)=\min _{x \in A_{i}} d(u, x)$. The embedding will then be defined by $f: V \rightarrow R^{t}$, such that $f(u)=\left(f_{1}(u), \ldots, f_{t}(u)\right)$.

$$
\left|f_{i}(u)-f_{i}(v)\right|=\left|d\left(u, A_{i}\right)-d\left(v, A_{i}\right)\right| \leq|d(u, X)-d(v, x)| \leq d(u, v)
$$

Therefore,

$$
\|f(u)-f(v)\| \leq t d(u, v)
$$

We randomly pick the set A_{i} by picking every $v \in V$ with probability $\frac{1}{2^{i}}$. We would like our f_{i} 's to fulfil the following requirement: $\frac{d(u, v)}{24} \leq\|f(u)-f(v)\|$. If this will indeed hold then the expansion would be at most $O(\log n)$ and the contraction is $\frac{1}{24}$ and so the distribution is $O(\log n)$.

We will first prove the Bourgain theorem for l_{1}. Assume that there are t real values, $\Delta_{1}, \ldots, \Delta_{t}, E\left(\mid f_{i}(i)-f_{i}(v)\right) \geq \frac{\Sigma_{i} \Delta_{1}}{6}$ and $\Sigma_{i} \geq \frac{d(u, v)}{6}$. If so, then $\|f(u)-f(v)\|=\Sigma_{i} E\left[\mid f_{i}(u)-\right.$ $\left.f_{i}(v) \mid\right] \geq \Sigma_{i} \frac{\Delta_{i}}{6} \geq \frac{d(u, v}{24}$.

Fix $u, v \in V$. Define $B(x, r)=\{y \in V \mid d(x, y) \leq r\}$ and $B^{0}(x, r)=\{y \in V \mid d(x, y)<r\}$. Let $r_{i}=\min _{d}\left\{|B(u, d)| \geq 2^{i} \mid B(v, d) \geq 2^{i}\right\}$ and $\Delta_{i}=r_{i}-r_{i-1}$. W.l.o.g. $|B(v, r)| \geq 2^{i}$ and $\left|B^{0}(u, r)<2^{i}\right|$. Consider the expression $d\left(u, A_{i}\right)-d\left(v, A_{i}\right)$. Look at the case in which (*) in $B\left(u, r_{i}\right)$ there is no point from A_{i} and $\left({ }^{* *}\right)$ in $B\left(v, r_{i-1}\right)$ there is a point from A_{i}. In this case $d\left(u, A_{i}\right)-d\left(v, A_{i}\right) \geq \max \left\{r_{i}-r_{i-1}, \frac{d(u, v)}{24}\right\}$. The probability that this case happens
is constant because $\left(^{*}\right)$ happens with probability $\left(1-\frac{1}{2^{i}}\right)^{2^{i}} \geq \frac{1}{e}$ and $\left({ }^{* *}\right)$ happens with probability $\frac{1}{2}$.

We now have that:

$$
E\left[d\left(u, A_{i}\right)-d\left(v, A_{i}\right)\right] \geq \frac{r_{i}-r_{i-1}}{6} \geq \frac{1}{6} \frac{d(u, v)}{4}=\frac{d(u, v)}{24}
$$

Now we shall randomly pick, for every i, s independent sets, $A_{i}^{1}, \ldots, A_{i}^{s}$, as before. For every $1 \leq j \leq s$ and $1 \leq i \leq t$ let $f_{i}^{j}(u)=d\left(u, A_{i}^{j}\right)$. The number of coordinates is now st $=o\left(\log ^{2} n\right)$. We define the function f such that the $(i, j)^{\prime}$ th coordinate of $f(u)$ is $f_{i j}(u)=\frac{1}{s t} f_{i}^{j}(u)$. It is easy to verify that, as before, $\|f(u)-f(v)\| \leq d(u, v)$.
$\|f(u)-f(v)\|=\frac{1}{s} \Sigma_{j}\left(\frac{1}{t} \Sigma_{i}\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|\right)$. Let X_{j} be the random variable that gets the value of $\frac{1}{t} \Sigma_{i}\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|$. We already know that $\frac{d(u, v)}{24 t} \leq E\left[X_{j}\right]$. Let $Y=\frac{1}{s} \Sigma_{j} X_{j}$.

As a conclusion from they Chernoff bounds it can be shown that $\operatorname{Pr}[Y<(1-\delta) E[X]]<$ $e^{-f r a c \delta^{2} s 2}$. That means that for $s=32 \ln n$ and $\delta=\frac{1}{2}$ we have that $\operatorname{Pr}\left[Y<\frac{1}{2} \frac{d(u, v)}{24 t}\right]<$ $e^{-4 \ln n}<\frac{1}{2 n^{2}}$.
Since there are n points, the probability that we have "failed" for any of the pairs is at most $n^{2} \frac{1}{2 n^{2}}=\frac{1}{2}$. This finishes the proof of the theorem for l_{1}.
In order to handle the l_{2} case the normalization will be in $\frac{1}{\sqrt{s t}}$. We will then have that:

$$
\begin{gathered}
\|f(u)-f(v)\|_{2}^{2}=\frac{1}{s t}\left(\Sigma_{i, j}\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|^{2}\right) \leq d(u, v)^{2} \\
\|f(u)-f(v)\|=\frac{\Sigma\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|^{2}}{s t}=\frac{1}{s}\left(\frac{\Sigma\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|^{2}}{t}\right)
\end{gathered}
$$

We shall now show that $E\left[\frac{1}{t} \Sigma\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|^{2}\right] \geq\left(\frac{d(u, v)}{24 t}\right)^{2}$. To do this we only need to show that $\frac{1}{t} \Sigma\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|^{2} \geq\left(\frac{1}{t} \Sigma\left|f_{i}^{j}(u)-f_{i}^{j}(v)\right|\right)^{2}$. The last inequality is derived form the Cauchy Schwartz inequality.

