Advanced Algorithms - Lecture January 19, 2006

Lecture 1

Lecturer: Yair Bartal Scribe: Michael Schapira

1 Metric Embeddings - The Bourgain Theorem
We shall start this lecture by presenting Bourgain theorem:

Theorem 1 [t is possible to embed every metric space M = (V,d) with n points in loy with
a distortion of o(logn).

We shall require the use of what is known as the Frechet embedding. We will randomly
create t sets, 4; C V (1 < i <t). We shall then define t functions, f; : V' — R such that
fi(u) = d(u, A;) = mingea,d(u,z). The embedding will then be defined by f : V — RY,
such that f(u) = (f1(w), ..., fr(w)).

|fi(u) = fi(v)| = |d(u, Ai) — d(v, Ai)| < |d(u, X) = d(v, 2)| < d(u,v)

Therefore,

1 (u) = f0)l] < td(u, v)

We randomly pick the set A; by picking every v € V with probability % We would like our

fi’s to fulfil the following requirement: % < ||f(u) = f(v)||- If this will indeed hold then
the expansion would be at most O(logn) and the contraction is ﬁ and so the distribution
is O(logn).

We will first prove the Bourgain theorem for [;. Assume that there are ¢ real values,
Aty Ay E(fi(8) = fi(v)) > 280 and 5, > 40 Tt g0, then || f(u) - f(0)|] = SB[ fi(u) -

; d(u,v
fi)]] > 58 > e,

Fix u,v € V. Define B(x,r) = {y € V|d(x,y) < r} and B%(x,r) = {y € Vl]d(z,y) < r}.
Let r; = ming{|B(u,d)| > 2! |B(v,d) > 2'} and A; = r; — ri—1. W.Lo.g. |B(v,r)| > 2¢ and
|B®(u,r) < 2. Consider the expression d(u, 4;) — d(v, A;). Look at the case in which (*)
in B(u, ;) there is no point from A4; and (**) in B(v,r;_1) there is a point from A;. In this
case d(u, A;) — d(v, A;) > max{r; — r;_1, 4

5 f)}. The probability that this case happens
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is constant because (*) happens with probability (1 — %)22 > 1 and (**) happens with
probability %

We now have that:

Ty —Ti—1

6

d(u,v)  d(u,v)

Eld(u, A;) — d(v, A;)] > Y]

1
> =
6

Now we shall randomly pick, for every i, s independent sets, AZ-I, ..., A7, as before. For
every 1 < j < sand 1 < i < tlet ff(u) = d(u,Ag). The number of coordinates is
now st = o(log?n). We define the function f such that the (i,j)th coordinate of f(u) is
fij(u) = éff(u) It is easy to verify that, as before, ||f(u) — f(v)|| < d(u,v).

[|f(uw) — f(v)]] = %E](%Ezﬁf(u) - ff(v)|) Let X; be the random variable that gets the
value of 13;|f/ (u) — f{(v)|. We already know that d(;fl’f) < E[X;]. Let Y = 1%,X;.

As a conclusion from they Chernoff bounds it can be shown that Pr[Y < (1 — §)E[X]] <

e~Iacd®s2  That means that for s = 32Inn and § = % we have that Pr[Y < %d(;i,:)] <

—41lnn 1
[ < VR

Since there are n points, the probability that we have ”failed” for any of the pairs is at

most n?sy = 1. This finishes the proof of the theorem for ;.

n? T 2

In order to handle the Iy case the normalization will be in ﬁ We will then have that:

1) = F@IB = — (Sl ) — F@)P) < d(u,)?

DT HOERHO 1(E\f{(U) aHOIs
st s t

|1 (u) = F (o)l = )

We shall now show that E[%E\ff(u) - fij(v)|2] > (d(;fl’f) )2. To do this we only need to show

that 13| f7 (u) — f](v)]? > (25| (u) — f/(v)])?. The last inequality is derived form the
Cauchy Schwartz inequality.
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