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ABSTRACT
This paper presents a cost minimization approach to the problem of
human behavior recognition. Using full-body motion capture data
acquired from human subjects, our system recognizes the behav-
iors that a human subject is performing from a set of military ma-
neuvers, based on the subject’s motion type and proximity to land-
marks. Low-level motion classification is performed using support
vector machines (SVMs) and a hidden Markov Model (HMM); out-
put from the classifier is used as an input feature for the behavior
recognizer. Given the dynamic and highly reactive nature of the
domain, our system must handle behavior sequences that are fre-
quently interrupted and often interleaved. To recognize such be-
havior sequences, we employ dynamic programming in conjunc-
tion with a behavior transition cost function to efficiently select
the most parsimonious explanation for the human’s actions. We
demonstrate that our system is robust to action classification er-
rors and deviations by the human subject from the expected set of
behaviors. Our approach is well suited for incorporation into syn-
thetic agents that cooperate or compete against human subjects in
virtual reality training environments.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Miscellaneous; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Plan execution, formation,
and generation

General Terms
Algorithms

Keywords
plan recognition, motion capture, support vector machines, dynamic
programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
In cooperative and competitive domains, it is often important for

agents to be able to reason about the future behavior of their fellow
agents based on past observations; this knowledge can be incor-
porated into the agent’s planning to guide its future actions. This
process ofplan recognitionis especially critical in adversarial do-
mains where it is advantageous for opponent agents not to reveal
their intentions and in cooperative domains in which the cost of
communication is too high for agents to synchronize their plans.

An additional complication is introduced when humans are added
to the system as teammates, and agents must assist humans or par-
ticipate in mixed-initiative teamwork tasks. In such cases, commu-
nication is even more expensive due to the difficulties of human-
agent communication (lack of common vocabulary, need to include
extra technologies such as natural language parsing or speech recog-
nition/generation). By recognizing human behavior directly from
observation traces, an agent can potentially function as a more ef-
fective partner, even in the absence of communication, and a more
formidable adversary.

In this paper, we introduce a new approach tohuman behav-
ior recognitionbased on the use of cost minimization to select the
most parsimonious explanation for sequences of physical actions
performed by the human. By combining information about the hu-
man’s motion with proximity to geographic landmarks, we can dis-
ambiguate between different types of actions performed in similar
geographic locations. We demonstrate the approach in the domain
of MOUT planning (Military Operations in Urban Terrain). MOUT
is a rich domain for behavior recognition since synthetic MOUT
soldiers have opportunities for adversarial maneuvers (ambushing
enemies), assistive plans (rescuing wounded teammates), and both
loosely and tightly coupled teamwork tasks (performing surveil-
lance, moving in formation). Our technique is well suited to han-
dle behavior interruptions which occur in the dynamic MOUT do-
main and to account for incorrectly executed behaviors performed
by novice human subjects.

2. BACKGROUND

2.1 Problem Description
The following domain properties make behavior recognition chal-

lenging:

large state spaces:Although traditional AI plan recognition has
been demonstrated in small, closed world domains [1], real-
world domains with large state spaces make exact inference
methods slow or intractable.
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noisy observations: Robotic domains are plagued by noisy obser-
vations which make the problem of recognizing the robot’s
state difficult. Since successful behavior recognition relies
on being able to correctly classify sequences of states, the
problem becomes very difficult; these domains are often mod-
eled using dynamic Bayesian networks [4].

behavior interruption: In dynamic domains, the agent will inter-
rupt behaviors before completion due to the need to immedi-
ately respond to unforeseen actions (e.g., an enemy’s surprise
attack). Also in continuous domains, such as Robocup [9],
even segmenting fully completed behaviors can be difficult
problem if there are no obvious transitions marking the tran-
sition of one behavior into the next.

hierarchical behaviors: Plans (or behaviors) can be structured in
a hierarchical way such that the probability of executing an
action is not only dependent on the current state of the agent
but also on the current level of plan hierarchy. Models such
as PSDG (Probabilistic State-Dependent Grammar) [17] or
AHMEM (Abstract Hidden Markov Memory Model) [4] have
been developed to handle these types of behaviors.

unmodeled actions: In open world environments, there is no guar-
antee that the agent is limited to executing domain specific
actions. For instance, our human subjects can decide to spon-
taneously tie their shoes in the middle of executing a se-
quence of military maneuvers.

behavior deviations: The human’s execution of behaviors might
deviate slightly from the officially recognized military strat-
egy, either due to individual differences or errors. Recent
work [13] also addresses the problem of detecting anoma-
lous user behavior.

In this paper, we focus on handling the effects of behavior inter-
ruptions, unmodeled actions, and human behavior deviations. Al-
though there is uncertainty about the motion being executed by the
human subject, we assume that the(x,y) position of the person is
very accurately measured by the motion capture setup as described
in Section 5.3.

Our behaviors are represented using directed acyclic graphs as
shown in Figure 1; behaviors are often interrupted and resumed.
For our MOUT domain, we have not made an attempt to create a
hierarchy of plans and sub-plans; each of our behaviors is atomic
and represents a complete sequence of recognizable actions. Any
behavior can legally follow any behavior, assuming the state tran-
sition is valid. Behavior deviations occur when the detected transi-
tion is not in the library of valid behaviors, either because it’s part
of an unmodeled action or the subject has deviated in the execution
of a behavior.

Our representation of the MOUT domain has a relatively small
state space (about 11,000 state state transitions) due to the proxi-
mal feature selection mechanism incorporated into our simulator;
our system hashes state transitions for constant-time retrieval. To
scale our system to larger state spaces, we would employ a tree-
based technique, such as the one described by Kaminka and Avra-
hami [12].

2.2 Related Work
Related work on the problem of human behavior recognition

has emerged from three communities: computer vision researchers
who have examined the problem of activity inferencing with tem-
poral constraints [21], graphics researchers who address the prob-
lems of clustering and segmenting unlabeled motion capture data [2,

Figure 1: MOUT Behavior Representation: Surveillance. The
surveillancebehavior is used when a soldier wants to examine a
building from the outside in preparation for entering the build-
ing, either as part of an attack or a building clearing operation.
Any of the states listed in the diagram are valid starting points
for the behavior; there is no single state transition that must
always occur at the start of every surveillance behavior.

11] and artificial intelligence plan recognition researchers [1, 4, 6,
8, 10, 17, 23] who have traditionally focused on behavior inference
mechanisms. No single dominant approach has emerged that is
both computationally efficient and deals well with all of the difficult
aspects of the problem; typically researchers adapt their approaches
to the characteristics of the domain.

Several research groups have examined the problem of recogniz-
ing single person indoor activities (household or office tasks) from
movement trajectories extracted from camera data [16] or wireless
sensor signal strength [25]. These approaches define actions based
on the closest specific geographic landmarks such asRoom1, Hall-
way2, or Refrigeratorand infer high-level goals from sequences of
low-level actions. In our work, we introduce general categories of
environmental features that allow us to generalize from actions per-
formed in different places. Also by using motion capture apparatus
to measure the human’s movement, we can accurately classify the
person’s mode of movement (walking, crouching, probing) without
relying on velocity difference measurements.

3. MOUT DOMAIN
In this paper we examine the problem of behavior recognition

within the MOUT (Military Operations in Urban Terrain) infantry
domain. In MOUT scenarios, platoons of soldiers have to achieve
strategic objectives, such as clearing buildings, escorting convoys,
and attacking enemy positions, within a cluttered, hazardous urban
environment. The commanding officers must react to new threats
in the environment and changes in spatial layout (blocked roads,
booby-trapped zones) without direct guidance from the chain of
command. Individual soldiers must coordinate with their team-
mates to move through hazardous areas in defensive formations
(e.g., bounding overwatch). Often it is unclear whether people
moving around the combat zone are civilians or enemy snipers.
Spatial environmental features (buildings, intersections, doorways)
are important features which influence planning [3]; soldiers also
must be able to quickly execute reactive behaviors in the face of
immediate threat. Previous work on simulating MOUT agents has
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addressed the creation of accurate physical capability models for
simulated MOUT soldiers [22], but has not tackled the problem of
behavior recognition.

Although there are many interesting plan recognition problems
possible in the MOUT domain, here we focus on the problem of
recognizing the behavior of individual MOUT soldiers in the con-
text of physical actions and spatial environment features. MOUT
soldier behaviors include scouting, ambushing, retreating, search-
ing for hazards, and clearing rooms; we also model less structured
behaviors appropriate for civilians in combat zones such as flee-
ing and hiding. In future work, we plan to extend our approach to
the recognition of team behaviors, but that is not addressed in this
paper.

4. REPRESENTATION
Our representation for single soldier behaviors in the MOUT do-

main includes physical actions, environmental features, states, and
state transitions. Behaviors are described as directed acyclic graphs
as shown in Figure 1.

• Physical actions{ walk, run, sneak, probe, woundedmove-
ment1, rise, crouch} are physical movements (Figure 4) clas-
sified from human motion capture traces using a support vec-
tor machine (SVM) action classifier as described in Section 5.5.
Shoot and radio are special physical actions with auditory ef-
fects that are assumed to be reliably detected without relying
on the action classifier.

• Environmental features{ NEAR HAZARD , BEHIND COVER -
INT, BEHIND COVER EXT, NEAR CROSSING, NEAR INTER-
SECTION, IN CORRIDOR, IN STREET, IN ROOM, NEAR INT -
DOOR, NEAR EXT DOOR, IN BUILDING , OUTSIDE} are de-
rived directly from the simulator based on the human’s(x,y)
location as described in Section 5.8 and are assumed to be
reliable.

• Statesare represented as a combination of the 9 recognized
human actions with the 12 environment features (108 possi-
ble states).

• Observation tracesare sequences of observed state transi-
tions; since all of our states are self-connecting, only transi-
tions between different states are recorded in this trace.

Humanbehaviorsare represented as directed acyclic graphs of states,
similar to the representation commonly used for robotic behav-
iors. For constant-time retrieval efficiency, this is implemented as a
hashtable that maps state transitions to the set of behaviors consis-
tent with the given observation. For the MOUT soldier domain,
we created a library of 20 behaviors including ambush, bound-
ing, scouting, and guarding. The behavior author need not ex-
plicitly describe every state transition in the graph; the system will
automatically expand general feature descriptions into a complete
set of legal state transitions for the specification. For instance,
the surveillance behavior (Figure 1) includes the descriptionsneak
OUTSIDE which could refer to many possible states (such assneak
IN STREETor sneakIN BUILDING ). All of the transitions between
these expanded states are automatically generated when the behav-
ior library is compiled.

1In this paper, we only consider leg wounds, in which the human
subject is limping with either their right or left leg. In the future,
we plan to include crawling as a physical action; however it is dif-
ficult to acquire good crawling data with a ceiling ring of motion
capture cameras since many of the markers on the subject’s body
are obscured.

Figure 2: System diagram. The purpose of our system is to rec-
ognize and produce an accurate description of physicalbehav-
iors performed by a single human subject engaged in a MOUT
scenario. The human’sphysical actionsare recorded using a
motion capture system as described in Section 5.3 and classi-
fied by our classifier (Section 5.5). These actions are used by
an environment simulator (Section 5.8) to generatestatetransi-
tions; these sequences of state transitions, orobservation traces,
are used as the input to the behavior recognition system.

5. METHOD

5.1 System Architecture
The purpose of our system is to recognize and produce an ac-

curate description of physicalbehaviorsperformed by a single hu-
man subject engaged in a MOUT scenario. The human’sphysical
actionsare recorded using a motion capture system as described
in Section 5.3 and classified by our classifier (Section 5.5). These
actions are used by an environment simulator (Section 5.8) to gen-
eratestatetransitions; these sequences of state transitions, orob-
servation traces, are used as the input to the behavior recognition
system. To better understand the effectiveness of the individual
components we decompose the process into two separate tasks,
physical action classification and behavior recognition, and eval-
uate them separately.

Although the current implementation of our system operates in
an off-line mode (data from the subject is recorded in the motion
capture lab and then processed off-line), we plan to integrate the
system into a virtual environment that trains humans to perform
physical MOUT tasks. Other training environments have been de-
veloped for military tasks [14, 19], but those systems have focused
on the cognitive and language aspects of the task rather than the
physical maneuvers.

5.2 Procedure
The human subject is instructed to perform a sequence of physi-

cal actions in the motion capture lab while wearing a retro-reflective
marker set (Figure 3); the process of recording data is described in
Section 5.3. This produces a stream of high dimensional data de-
scribing the human’s trajectory over time while performing speci-
fied physical actions. This data is collected and processed offline
to produce training and test set for our action classifiers; to im-
prove the classification performance we preprocess the data using
principal components analysis (PCA) to reduce the dimensionality
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Figure 3: A subject wearing a retro-reflective marker set in the
CMU motion capture laboratory.

(Section 5.4). Pairs of reduced-dimension motion capture frames
are used as input for our action classifiers (Section 5.5); a hidden
Markov model is used to post-process the raw classifications to re-
duce the occurrence of spurious state transitions as described in
Section 5.6.

To test our behavior recognition, we use a simulator (Section 5.8)
that generates environmental features such asNEAR BUILDING ,
NEAR DOORWAY to supplement the motion capture data. Our as-
sumption is that such features can be generated trivially from knowl-
edge of the subject’s(x,y) location (given by motion capture) and
the simulated scenario environment. We synthesize observation
traces in the simulator which serve as input to the behavior recog-
nition (Section 5.7).

5.3 Motion Capture Data
The human motion data was captured with a Vicon optical mo-

tion capture system. The system has twelve cameras, each of which
is capable of recording at 120Hz with images of 1000×1000 res-
olution. We use a marker set with 43 14mm markers that is an
adaptation of a standard biomechanical marker set with additional
markers to facilitate distinguishing the left side of the body from
the right side in an automatic fashion. The motions are captured in
a working volume for the subject of approximately 8’×24’. A sub-
ject is shown in the motion capture laboratory in Figure 3. The data
can be captured in an on-line fashion for immediate use or collected
off-line for training purposes. Each motion sequence contains tra-
jectories for the position and orientation of the root node (pelvis) as
well as relative joint angles for each body part expressed as Euler
angles, stored in the Acclaim AMC format, along with a skele-
ton that includes the subject’s limb lengths and joint range of mo-
tion (computed automatically during a calibration phase), stored in
an Acclaim ASF format. For our experiments, motion sequences
were acquired at a rate of 30 frames per second. Out data has
been included in the CMU Motion Capture database, available at
http://mocap.cs.cmu.edu/ .

5.4 Dimensionality Reduction
To improve the robustness of action classification and prevent

overfitting, we preprocess the motion capture data as follows. First,
in order to make our action classifier invariant to global position, we
transform the motion capture data to position the root node at the
origin. Second, we eliminate trajectories of the minor appendages
(fingers, thumbs, and toes) which are noisy and unimportant for

the MOUT domain. Finally, we use Principal Components Anal-
ysis (PCA) [7] to reduce the pose vector to a manageable size, as
described below. PCA has been employed in many applications,
including the segmentation of motion capture data sequences [2].

PCA, also known as the discrete Karhunen-Loève transform, is
an optimal linear method for reducing data redundancy in the least
mean-squared reconstruction error sense. Using PCA, points inℜd

are projected intoℜm (wherem < d, typically m� d). The in-
tuition is that many real-world high-dimensional data sets can be
well-approximated by lower dimensional manifolds embedded in
the original space. We believe that the intrinsic dimensionality
of poses relevant to our domain is much lower than the raw pose
vector generated by the motion capture system. Each raw motion
capture frame can be expressed as a pose vector,x ∈ ℜd, where
d = 56. This high-dimensional vector can be approximated by the
low-dimensional feature vector,θ ∈ ℜm, using the linear projec-
tion:

θ = WT(x−µ), (1)

whereW is the principal components basis andµ is the average
pose vector,µ = 1

N ∑N
i=1xi . The projection matrix,W, is learned

from a training set ofN = 16055 frames of motion capture data,
spanning the set of physical actions in our domain.W consists of
the eigenvectors corresponding to them largest eigenvalues of the
training data covariance matrix, which are extracted using singu-
lar value decomposition (SVD). This reconstruction is theoretically
perfect only whenm= d; however, in our application,m= 20 pro-
duces reconstructions that are visually indistinguishable from the
raw data (these components account for more than 95% of the en-
ergy in the data). The principal components are only computed
once, in an off-line phase; dimensionality reduction of incoming
motion capture frames is achieved by the efficient linear projection
described by Equation 1.

5.5 Physical Action Classification
The goal of physical action classification is to label a short se-

quence of frames as a member of one ofk categories (e.g., run,
sneak, radio). We perform this classification using support vector
machines [24]. Support vector machines (SVM) are a supervised
binary classification algorithm that have been demonstrated to per-
form well on real-world visual pattern classification tasks [20]. In-
tuitively the support vector machine projects data points into a higher
dimensional space, specified by a kernel function, and computes
a maximum-margin hyperplane decision surface that separates the
two classes (e.g., run from walk). Support vectors are those data
points that lie closest to this decision surface; if these data points
were removed from the training data, the decision surface would
change. More formally, given a labeled training set

{(x1,y1),(x2,y2), . . . ,(xl ,yl )}

wherexi ∈ ℜN is a feature vector andyi ∈ {−1,+1} is its binary
class label, an SVM requires solving the following optimization
problem:

min
w,b,ξ

1
2

wTw+C
l

∑
i=1

ξi

constrained by:

yi(wTφ(xi)+b)≥ 1−ξi ,

ξi ≥ 0.

The functionφ(.) that maps data points into the higher dimen-
sional space is not explicitly represented; rather, akernelfunction,
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walk run sneak wounded probe crouch rise

Figure 4: Representative poses for the subject’s physical actions.

K(xi ,x j ) ≡ φ(xi)φ(x j ), is used to implicitly specify this mapping.
In our application, we use the popular radial basis function (RBF)
kernel:

K(xi ,x j ) = exp(−γ||xi −x j ||2),γ > 0.

Many efficient implementations of SVMs are publicly available;
we use LIBSVM [5] because it includes good routines for auto-
matic data scaling and model selection (appropriate choice ofC
andγ using cross-validation). To use SVMs fork-class classifica-
tion, we trainkC2 pair-wise binary classifiers and assign the most
popular label.

After applying PCA to the raw motion capture data, the hu-
man’s pose in each frame is represented by a 20-dimensional vec-
tor. To train our action classifier, we form 40-dimensional vec-
tors by concatenating 2 pose vectors separated by 1/3 second (10
frames). Our accuracy using a single frame without concatenation
is about 20% worse; intuitively certain action classifications (e.g.,
walk vs. sneak) are much more difficult without information about
how the pose evolves over time.

To train and evaluate our action classifier, we collected motion
capture data of the subject performing the domain physical actions
(Figure 4). We acquired 17 minutes of motion capture data stored
in 25 AMC files. From the 32,111 total data frames, we divided
the first half of the frames in each file to use as the training set and
used the second half for testing. Using LIBSVM, we ran cross-
validation on the training set to determine the best parametersC
and γ for the RBF kernel. The confusion matrix for our action
classification on the test data is shown in Table 1. The left column
shows the label of the correct behavior, and the top row shows the
assigned label. The average classification accuracy over the testing
dataset was 76.9%. For the locomotion actions (walk, run, etc.)
we achieved higher accuracies than on the non-locomotion actions
(crouch, rise, probe). To improve performance on these physical
actions, we believe that we need to increase our training set size
since our initial motion clips of those actions were short compared
to the other actions (only about 2000 frames per action class rather
than 6000).

5.6 State Transition Filtering
To reduce spurious state transitions caused by false detections

we filter our raw SVM classifications using a hand-coded hidden
Markov model. To do this, we treat the classification labels gen-
erated by the SVM as observations and the true motion label as a
hidden state. The most likely path of state transitions for a given se-
quence of observations is computed using the Viterbi algorithm [18]
as implemented in the Hidden Markov Model toolbox [15].

Our model is parameterized by the following:

• N = 7, the number of hidden motion states (walk, run, sneak,
probe, woundedmovement, probe, crouch, rise).

• A = {ai j }, the matrix of state transition probabilities, where
ai j = Pr(qt+1 = j|qt = i),∀i, j and qt denotes the state at

Table 1: Confusion matrix for SVM action classification using
pairs of concatenated frames with a1/3 second (10 frame) sep-
aration (40-dimensional vectors). The left column shows the
label of the correct behavior, and the top row shows the as-
signed label. High results down the diagonal indicate good per-
formance. The average classification accuracy over the testing
dataset was 76.9%.

walk run sneak wound probe crouch rise
walk 85.4% 3.9% 7.8% 0.6% 1.8% 0.5% 0.0%
run 12.5% 75.8% 7.9% 0.5% 2.8% 0.5% 0.0%
sneak 6.4% 0.8% 81.9% 0.0% 1.7% 9.2% 0.0%
wound 1.3% 3.4% 0.8% 93.9% 0.4% 0.3% 0.0%
probe 8.8% 3.6% 8.7% 19.3% 56.5% 0.6% 2.5%
crouch 2.9% 18.0% 10.3% 20.0% 11.2% 35.7% 1.9%
rise 12.1% 3.7% 15.1% 32.2% 6.4% 16.3% 14.2%

framet. For all states we assume that the probability of re-
maining in a given motion state (Pr(qt+1 = i|qt = i)) is high
and transitioning to any of the other six motions is equally
likely.

• B = {bi(ot)}, the vector of observation probabilities derived
from the confusion matrix (Table 1). Intuitively the confu-
sion matrix captures how the classifier label (observation) is
correlated with the ground truth (hidden motion state).

• π = {πi}, the initial state distribution. All initial states are
assumed to be equally likely.

5.7 Behavior Recognition
During the final behavior recognition phase, we assign behavior

labels to observation traces (sequences of state transitions). Obser-
vation traces are generated using the simulator as described in Sec-
tion 5.8. These state transitions are of the form(physicalaction1
LOCATION 1 physicalaction2 LOCATION 2) where some change
has occurred such thatphysicalaction1 6= physicalaction2 and
LOCATION1 6= LOCATION2.

First we initialize the behavior recognition with a table hashing
state transitions (about 11000 entries) to sets of legal behaviors (hy-
pothesis sets). The hashtable is compiled directly from the behavior
specifications to enable efficient searching; behaviors that include
states with general features (e.g., outside) are expanded to include
legal transitions for more specific cases (e.g.,NEAR BUILDING ,
NEAR INTERSECTION).

The domain author designates a cost function to be applied to
each potentialbehavior transition. A simple parsimonious cost
function is to penalize any behavior transition by a fixed amount;
self-transitions (explaining the subsequent behavior with the same
label) are not penalized. This type of cost function delays as long as
possible before assigning a new behavior label to state transitions.

Using the behavior library and the cost function, we search for
the minimum cost explanation for the sequence of state-transitions;
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this is a shortest path problem which we solve efficiently using dy-
namic programming.

Bq
t+1 = min

∀p
{Bp

t +Tp,q}

Tp,q =
{

0 if p = q
1 if p 6= q

Bq
t+1 is the cost of explaining a state-transition with behavior label

q at timet +1; this cost can be calculated by finding the minimum
of over all previous behavior labelsp of explaining a set withBp

t
combined with the cost transition function,Tp,q.

5.8 Environmental Simulator
To test new plan libraries and cost functions without the pro-

hibitive expense of acquiring human data in the motion capture
lab, we implemented an environmental simulator system capable of
generating valid observation traces that correspond to a sequence
of known behaviors performed in a specific MOUT environment,
composed of typical urban terrain features.

The simulator is equipped with behavior descriptions, either known
ones taken from the library used by the behavior recognizer or new
ones written to represent cases in which the human deviates from
the correct military procedure. The input to the simulator is a list
of behaviors from which the simulator stochastically generates one
run of valid observation traces that could have occurred if the hu-
man performed those behaviors in that MOUT environment layout.
Currently our stochastic model is very simple; all possible state
transitions exiting a state are equally likely.

Environmental feature descriptors (e.g.,NEAR DOORWAY, NEAR -
INTERSECTION) are generated by selecting the location nearest
to the soldier’s(x,y) location; there is a preference order (e.g.,
NEAR HAZARD dominates features such asNEAR INTERSECTION)
that dictates which environmental feature is reported if the human
is equally close to multiple annotated map regions.

In the simple case, we assume that all state transitions are ac-
curately detected; to model the effects of imperfect state transi-
tion detection we use the confusion matrix (Table 1) to stochas-
tically model the likely output of our action classifier. For in-
stance, the true state transition might be (walk NEAR DOORWAY

walk NEAR DOORWAY); consulting the top row of the confusion
matrix we see that the walk physical action has an 85.4% chance of
being detected correctly as walk, 3.9% chance of being classified as
a run, 7.8% of being classified as a sneak, and a negligible chance
of being detected as anything else. Using the confusion matrix as
our simulator noise model we can systematically generate faulty
data that realistically models the effects of imperfectly classified
the motion capture data. Also, as we improve our classification
procedure, we can quickly assess the impact on the behavior recog-
nition.

6. RESULTS
We examine our cost minimization approach to behavior recog-

nition in the context of a common MOUT scenario to assess the
impact of the following factors:

behavior transition cost function: how does changing the transi-
tion cost function affect the behavior explanation generated?
Is there a good method for using domain knowledge to author
a functionTp,q that produces good recognition results?

human behavior deviations: how should we model human devi-
ations from the textbook military behaviors? Can we effec-
tively recognize these deviations?

Figure 5: MOUT Scenario: Building Clearing. An overhead
view of the schematic used by our simulator to generate obser-
vation traces for an example building clearing scenario. The
standard followed military procedure would be to use the fol-
lowing sequence of behaviors: traversestreet, scout, enter-
building, enter room, traverse corridor, enter room. Since the
room marked by the star appears cluttered and might poten-
tially contain booby-traps, the soldier should choose to check
the area for hazards (clearhazard).

6.1 MOUT Scenario: Building Clearing
Building clearing, the process of investigating a building and

eliminating hostile occupants and hazards within, is a common
goal in MOUT operations. The standard followed military pro-
cedure used to clear the building shown in Figure 5 would be to use
the following sequence of behaviors:traverse street, scout, en-
ter building , enter room, traverse corridor , enter room. Since
the room marked by the star appears cluttered and might potentially
contain booby-traps, the soldier should choose to check the area
for hazards (clear hazard). In the final state, the soldier remains
to guard the building to ensure that no one enters the building. If
there are enemy forces in the area that fire on the soldier during the
traverse street behavior, the soldier should make a strategic with-
drawal and counterattack; this can be accomplished by executing
the behavior sequence,retaliate retreat fast bound andambush,
before returning to the original building clearing operation.

6.2 Impact of Cost on Behavior Recognition
The behavior transition cost function,Tp,q, directly affects the

explanation generated by the dynamic programming search pro-
cess. Using the parsimonious cost function described in Section 5.7,
we analyze stochastically-generated state transition sequences for
the building clearing operation (traverse street, scout, enter build-
ing, enter room, traverse corridor , enter room, clear hazard,
guard). Typically, this behavior sequence generates about 50 state
transitions; in the absence of classification noise, the recognizer
with parsimonious cost function correctly labels between 90–100%
of the state transitions. Often it mislabels the final guard behavior
as being part of aenter room behavior, because many of the same
state transitions appear in both. However using our domain knowl-
edge we know that the soldier should guard an area after clear-
ing it; to represent that domain knowledge we decrease the cost of
clear hazard followed byguard. Injecting noisy state-transitions
only causes a slight degradation in the classification of the remain-
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ing non-noisy state transitions.
We believe that the cost function is closely related to the appli-

cation as well as the domain. For instance if the agent is attempting
to model an opponent, using a paranoid cost function that is sen-
sitive to the ambush behavior (allowing cheaper transitions from
common behaviors to ambush) might be more useful, even at the
expense of a slight decrease in overall behavior recognition accu-
racy. The interaction between behavior recognition accuracy, appli-
cation objectives (teamwork, opponent modeling, human training)
and behavior transition cost functions is complicated and worthy of
further study.

6.3 Human Behavior Deviations
Potentially more problematic than the action labelling noise is

the concern that the behavior executed by human subjects could
deviate from the state transitions specified by the domain expert’s
behavior library. There are two types of potential deviations: (1)
rarely-executed action sequences that are correct but inadequately
represented by our behavior library; and (2) errors made by hu-
man trainees that should be flagged for correction. For instance,
a human clearing an area of hazards with the probe physical ac-
tion might occasionally crouch to visually inspect the area from a
different vantage point; this less commonly used physical action
is not currently represented as a valid state transition in the probe
behavior. However, it is a tactical error for a soldier to enter an un-
known building without executing a defensive physical action (e.g.,
crouch, sneak, or shoot); yet this is a mistake that novice trainees
might make if they relaxed their guard in the absence of an obvious
threat.

To deal with novice errors we explicitly developed alternate be-
haviors encoding common novice mistakes as well as behaviors
suitable for panicked soldier or civilian (e.g.,flee or hide). Since
our MOUT domain is relatively structured compared to other activity-
inferencing tasks such as food preparation, most of the deviation in
the subject’s behavior can be attributed to error rather than individ-
ual variation. The behavior transition cost function can be explic-
itly tailored to be hypersensitive to potential errors (preferentially
selecting the error in favor of other explanations) or to only flag
transitions as errors if no valid behavior explanation exists.

7. DISCUSSION
We believe that the efficacy of behavior recognition algorithms

should be evaluated within an application-specific context. Our
interest in behavior recognition is focused in the context of three
problems often found in virtual training environment applications:
(1) mixed initiative agent-human teamwork; (2) effective modeling
of human opponents to make the training applications challenging
and instructive; (3) the detection and correction of novice human
errors.

By incorporating a behavior transition cost function into the be-
havior recognition process, we can use the same behavior library
for all three tasks by adjusting the cost function. For instance,
during behavior recognition for teamwork, we want our agent to
be sensitive to potential assistive actions (e.g., aiding an injured
teammate or coordinating to ambush an enemy); by modifying the
cost function to make certain behavior transitions cheaper we en-
sure that the appropriate behavior explanations are preferred when
they are possible. The behavior transition cost function implicitly
codes the agent’s signal detection preferences— whether false-hits
for certain behaviors are preferable to missed detections.

Our default parsimonious behavior transition cost function, as
described in Section 5.7, is similar to Kautz’s minimum cardinal-
ity assumption (MCA) [1]; the assumption is that it is desirable

to choose the minimal set of behaviors to explain the observation
trace. Our transition cost function minimizes the number of tran-
sitions between behaviors by penalizing every additional behavior
transition; this usually produces the same results as minimizing the
number of behaviors. However, in uncommon cases where mul-
tiple behavior sequences have identical transition costs, the dy-
namic programming solution does not necessarily prefer the se-
quence with the fewest different behaviors.

8. CONCLUSION
This paper introduces a cost minimization approach to the prob-

lem of behavior recognition and demonstrates how it can be used
to recognize physical behaviors even with imperfect action classi-
fication. Once the classifier has been trained, the action classifi-
cation plus behavior recognition executes within seconds making
it suitable for online applications such as team coordination and
opponent modeling.
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