
Comparing Two Approaches to Dynamic, Distributed
Constraint Satisfaction∗

Roger Mailler
Cornell University
5160 Upson Hall
Ithaca, NY 14853

rmailler@cs.cornell.edu

ABSTRACT
It is now fairly well understood that a vast number of AI
problems can be formulated as Constraint Satisfaction Prob-
lems (CSPs) and striking improvements have been made in
solving them using both centralized and distributed meth-
ods. However, many real world problems change over time
and very little work has been done in developing methods,
particularly distributed ones, for solving problems which ex-
hibit this behavior.

This paper presents two new protocols for solving dy-
namic, distributed constraint satisfaction problems which
are based on the classic Distributed Breakout Algorithm
(DBA) and the Asynchronous Partial Overlay (APO) algo-
rithm. These two new algorithms are compared on a broad
class of problems varying the problems’ overall difficulty as
well as the rate at which they change over time. The results
indicate that neither of the algorithms complete dominates
the other on all problem types, but that depending on envi-
ronmental conditions and the needs of the user, one method
may be preferable over the other.
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1. INTRODUCTION
Over the past 15 years, tremendous strides have been

made to improve the efficiency and reach of both central-
ized and distributed constraint satisfaction problem (CSP)
solvers. Centralized problem solvers can now handle prob-
lems with millions of variables and clauses and distributed
solvers can solve problems with hundreds of variables and
clauses.

Unfortunately, with very few exceptions, little work has
been done on solving CSPs which change over time. There
are a number of reasons why a CSP may change over time.
For example, the CSP may represent a scheduling problem
in which users can insert and remove new events or it may
be a airspace deconfliction problem where new objects enter
and leave the airspace as time goes by.

The earliest mention of this class of problems can be
found in [2] where it was first referred to as dynamic CSP
(DynCSP). Loosely defined, a DynCSP is a sequence of
CSPs which differ from one another by the addition (re-
striction) or removal (relaxation) of a constraint.

Since then, several techniques have been developed for
handling dynamics using centralized solvers. For example
in [13], the authors present a method for solving DynCSPs
which utilizes local changes to the preexisting variable val-
ues. Another method, which can be found in [11] maintains
state information about the removal of a possible solution.
In this work, when a nogood is created, it is annotated with
a justification. Justifications are composed of the subset of
constraints which are violated by the values contained within
nogood. Because of this, when a constraint is removed, it is
easy to identify the nogoods which no longer apply and the
solution can be repaired. Lastly, hill-climbing methods such
as GSAT [12], can be used to solve DynCSPs because they
are designed to repair previously derived solutions.

Following from the work in centralized DynCSPs, two
methods have evolved within the realm of dynamic, dis-
tributed constraint satisfaction (DynDCSP). The first method
is a distributed hill-climbing technique called Peer-to-Peer
(P2P) [3]. P2P works by having each agent find the best
value for its variable based on its constraints and the val-
ues of the variables it shares constraints with. If this value
is different from the variable’s current value, it changes to
the new value with some low probability, then sends out up-
date messages. Overall the behavior is very close to that of
centralized hill-climbing techniques.

The second method, which was presented in [9], is an
adaptation of the Asynchronous Weak Commitment (AWC)
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protocol [14]. In this work, agents annotate their nogoods
with the current value of their variable when they are stored.
This has a similar effect to the annotation done in cen-
tralized problem solving. The key difference, however, is
that because the constraints are not explicitly known to the
agents, the technique is limited to only handling local con-
straint changes such as the addition or removal of a domain
element. This is why it the algorithm is called Locally Dy-
namic AWC (LD-AWC).

This paper presents and compares two new methods for
solving DynDCSPs. The first is an adaptation of the Dis-
tributed Breakout Algorithm (DBA) [15] and is therefore
called DynDBA. Like its static counterpart, DynDBA works
by making local adaptations to the variable values and is
therefore an incomplete search technique. This means that
DynDBA continuously works to find minimal conflicting so-
lutions even when the problem is unsatisfiable.

The second algorithm is a modified version of the Asyn-
chronous Partial Overlay (APO) algorithm [6] and is called
DynAPO. DynAPO is quite different from DynDBA in a
number of ways. The most profound is that, like APO, it
is a complete search technique and as such is able to re-
port when it has determined that a problem is unsatisfiable.
Because of this, DynAPO often enters period of quiescence
when the problem is satisfied or has been determined to be
unsatisfiable. The side effect of this, though, is that Dy-
nAPO lacks the pure minimization flavor of DynDBA.

To compare these two algorithms, an adaptation of dis-
tributed graph coloring was developed which allows for test-
ing problems of various difficulty and that exhibit different
rates of dynamics. The results of this testing show that nei-
ther of these techniques completely dominates the other in
all cases. These results seem to indicate the need for tech-
niques which adapt their behavior not only based on the
difficulty of the problem, but on how fast the problem is
changing as well.

In the rest of this paper, we will present a formaliza-
tion of the dynamic distributed constraint satisfaction prob-
lem. Unlike other formalizations of this problem, this for-
malization incorporates a function which dictates the rate
at which the constraints change. This explicit connection
with time means that changes in the problem’s structure
are not viewed as episodic (changing only between execu-
tions of the problem solvers), but occur continuously while
the algorithms attempt to solve them. In sections 3 and 4,
the DynDBA and DynAPO algorithms will be presented. In
section 5, the experimental setup and results of the testing
will be discussed. Section 6 gives conclusion on this work
and presents some future directions.

2. DYNAMIC, DISTRIBUTED CONSTRAINT
SATISFACTION

A static Constraint Satisfaction Problem (CSP),
P = 〈V, D, R〉, consists of the following:

• a set of n variables V = {x1, . . . , xn}.
• discrete, finite domains for each of the variables D =

{D1, . . . , Dn}.
• a set of constraints R = {R1, . . . , Rm} where each

Ri(di1, . . . , dij) is a predicate on the Cartesian product
Di1×· · ·×Dij that returns true iff the values assigned
to the variables satisfies the constraint.

The problem is to find an assignment A = {d1, . . . , dn|di ∈
Di} such that each of the constraints in R is satisfied. CSP
has been shown to be NP-complete, making some form of
search a necessity.

Further extending the problem to the dynamic case, a
Dynamic CSP is a structure 〈Pinitial, ∆〉 where Pinitial is a
initial CSP and ∆ : Pt �→ Pt+1 is a function which maps
the CSP at time t to a new CSP at time t + 1 by adding
and removing constraints. We can measure the amount of
change from one instance of a CSP to another by counting
the number of added and removed constraints. We can fur-
ther define a rate function δ = ∆′, the first derivative of ∆,
which defines how fast the dynamic CSP transitions from
one static CSP to the other with relation to time. In this
paper, we consider ∆ to be a linear function which makes δ
a constant.

This definition differs from the classic formulation pre-
sented in [2] in only one important. Namely, it introduces
the function ∆. The ∆ function is important because it al-
lows us to measure the usefulness of a particular approach
to solving a problem in relation to how fast the problem
changes over time. As the rate, δ, is increased, more reactive
(and potentially less optimal) problem solving is expected to
be more useful. In fact, it is sometimes the case that the
problem changes faster than the problem solvers can keep
up.

In the distributed case (DynDCSP), each agent is assigned
one or more variables along with the constraints on their
variables. The goal of each agent, from a local perspective,
is to ensure that the constraints on its variable is satisfied.
Clearly, each agent’s goal is not independent of the goals of
the other agents in the system. In fact, in all but the sim-
plest cases, the goals of the agents are strongly interrelated.

In this paper, for the sake of clarity, we restrict ourselves
to cases where each agent is assigned a single variable and
is given knowledge of the constraints and changes to the
constraints on their variable. Since each agent is assigned
a single variable, we will refer to the agent by the name
of the variable it manages. Also, we restrict ourselves to
considering only binary constraints which are of the form
Ri(xi1, xi2). Both of these protocols can be extended to
handle cases where one or both of these restrictions are re-
moved. In addition, throughout the paper, we use the term
neighbor to refer to variables which share a constraint and
the constraint graph to mean the graph formed by repre-
senting the variables as nodes and the constraints as edges.

3. DYNAMIC, DISTRIBUTED BREAKOUT
ALGORITHM

3.1 Distributed Breakout
The Distributed Breakout Algorithm (DBA) [15] is an dis-

tributed adaptation of the centralized Breakout algorithm
[10]. DBA works by alternating between two modes. The
first mode (see figure 1) is called the wait ok? mode. Dur-
ing this mode, the agent collects ok? messages from each
of its neighbors. Once this has happened, the agent cal-
culates the best new value for its variable along with the
improvement in its local evaluation. The agent then send
out improve? message to each of its neighbors then changes
to the wait improve? mode. In the wait improve mode (see
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when received (ok?, xj , dj) do
if mode == wait improve

add message to queue;
return;

else
add (xj , dj) to agent view;
when received ok? messages from all neighbors do

send improve;
mode ← wait improve;

end do;
end if;

end do;

procedure send improve
current eval ← evaluation value of current value;
my improve ← possible maximum improvement;
new value ← the value which yields the

best improvement;
send (improve, xi, my improve, current eval)

to neighbors;
end send improve;

Figure 1: The procedures of the wait ok? mode in
Distributed Breakout.

figure 2), the agent collects improve? messages from each
of its neighbors. Once all of the messages have been re-
ceived, the agent checks to see if its improvement is the best
amongst its neighbors. If it is, it changes its value to the
new improved value. If the agent believes it is in a quasi-
local-minimum (QLM), it increase the weights on all the of
violated constraints. Finally, the agent sends ok? messages
to each of its neighbors and changes back to the wait ok?
mode. The algorithm starts up with each agent sending ok?
messages and going into the wait ok? mode.

A quasi-local-minimum is a weaker condition than what is
typically thought of as a local minimum. For an agent to be
in a QLM they need to have at least one violated constraint,
have a possible improvement of 0 and have each of their
neighbors report a 0 improvement as well. Although, a QLM
sometimes reports a minimum when one doesn’t truly exist,
it never fails to report one.

Because of the strict locking mechanism employed in the
algorithm, the overall behavior of the agents is to simultane-
ously switch back and forth between the two modes. If one
or more of the agents reacts slowly or messages are delayed,
the neighboring agents wait for the correct message to ar-
rive. This also makes the protocol’s communication usage
very predictable because in each mode, each agent sends ex-
actly one message to each of its neighbors. Meaning that if
there are m constraints, exactly 2m messages are transmit-
ted during each step.

Overall, DBA can be classified as a two-step algorithm be-
cause it takes a sequence of two messages for any one agent
to change its value. As will be shown, this makes the algo-
rithm very reactive to changes in the environment. Along
with that, the hill-climbing nature of the protocol provides
fairly good results on problems that are unsatisfiable, but
causes it to be unable to determine that the problem cannot
be solved.

3.2 Modifying DBA for Dynamic Environments
Adapting the DBA protocol to work in dynamic environ-

ments is a fairly straight forward process. Figure 3 gives two

when received (improve, xj , improve, eval) do
if mode == wait ok

add message to queue;
return;

else
record message;
when received improve messages from all

neighbors do
send ok;
clear agent view;
mode ← wait ok;

end do;
end if;

end do;

procedure send ok
if my improve is better than all of my neighbors

current value ← new value;
end if;
when in a quasi-local-minimum do

increase the weights on all violated constraints;
end do;
send (ok?, xi, current value) to neighbors;

end send ok;

Figure 2: The procedures of the wait improve?
mode in Distributed Breakout.

additional procedures that are needed in the protocol. Both
of these procedures can be triggered by an external event or
by some internal change within the agents.

The add constraint procedure works by adding each new
neighbor into a list of pending additions, then sends either
an ok? or improve? message depending on the agent’s
mode. The pending additions list in necessary because of
the strict locking mechanism within the protocol. Consider
the following example. Let’s say that agent xi has had no
neighbors for a while and is therefore in the wait ok? mode,
then is given a new neighbor xj . Because it is in this mode, it
will wait for xj to send it a ok? message before continuing.
For the sake of argument, let’s say that xj , who has had
neighbors all along, is in the wait improve? mode. It is
expecting to get an improve? message from xi. Since xi is
unaware of xj ’s mode, it sends an ok? message assuming
that xj is in the same mode. Likewise, xj sends an improve?
message. When xi and xj receive their messages, they queue
them because they are not in the proper mode, and the the
protocol immediately deadlocks.

To avoid deadlocking like this, agents remain on the pend-
ing list until a message is received from them and the agent
is in the correct mode to process it. So, in our example
above, xj can continue to process until it changes mode,
then it processes the ok? message from xi, moves xi from
pending to its neighbors list and sends xi an ok? message.
This causes xi to synchronize with xj and the protocol can
continue executing.

The remove constraint procedure works by removing any
neighbors that are unique to the removed constraint from
the list of neighbors and from the pending list. It then
deletes any stored improve? or ok? that may be awaiting
processing. Finally, if the agent no longer has any neighbors,
it changes to the wait ok? mode. This last step prevents
two agents that are not connected to any neighbors, then
have a constraint added between them from deadlocking. To
understand this point, consider the case when both of the
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when add constraint (Ri) do
add all new neighbors in Ri to pending;
if mode == wait improve

send (improve, xi, my improve, current eval)
to new neighbors;

else
send (ok?, xi, current value) to new neighbors;

end if;
end do;

when remove constraint (Ri) do
remove all removed neighbors in Ri from neighbors;
remove all removed neighbors in Ri from pending;
if mode == wait improve

delete any stored improve messages from
removed neighbors;

else
delete all removed neighbors from agent view;

if xi has no neighbors
mode == wait ok;

end do;

Figure 3: The procedures for adding and removing
constraints in Distributed Breakout.

agents are in different modes when the constraint is added
between them.

4. DYNAMIC ASYNCHRONOUS PARTIAL
OVERLAY

4.1 Asynchronous Partial Overlay
The Asynchronous Partial Overlay (APO) [6] algorithm is

based on the concept of cooperative mediation. Cooperative
mediation entails three main principles. The first is that
agents should use local, centralized search to solve portions
of the overall problem. Second, agents should use experi-
ence to dynamically increase their understanding of their
role in the overall problem. Lastly, agents should overlap
the knowledge that they have to promote coherence. To-
gether these three ideas create a powerful paradigm which
has been applied to several distributed problems. [5, 7]

Figures 4, 5, 6, 7, and 8 present the basic APO algorithm.
The algorithm works by constructing a good list and main-
taining a structure called the agent view. The agent view
holds the names, values, domains, and constraints of vari-
ables to which an agent is linked. The good list holds the
names of the variables that are known to be connected to
the owner by a path in the constraint graph.

As the problem solving unfolds, each agent tries to solve
the subproblem it has centralized within its good list or de-
termine that it is unsolvable which indicates the entire global
problem is over-constrained. To do this, agents take the role
of the mediator and attempt to change the values of the
variables within the mediation session to achieve a satisfied
subsystem. When this cannot be achieved without causing a
violation for agents outside of the session, the mediator links
with those agents assuming that they are somehow related
to the mediator’s variable. This process continues until one
of the agents finds an unsatisfiable subsystem, or all of the
conflicts have been removed.

procedure initialize
di ← random d ∈ Di;
pi ← sizeof(neighbors) + 1;
mi ← true;
mediate ← false;
add xi to the good list;
send (init, (xi, pi, di, mi, Di, Ci)) to neighbors;
initList ← neighbors;

end initialize;

when received (init, (xj , pj , dj , mj , Dj , Cj)) do
Add (xj , pj , dj , mj , Dj , Cj) to agent view;
if xj is a neighbor of some xk ∈ good list do

add xj to the good list;
add all xl ∈ agent view ∧ xl /∈ good list

that can now be connected to the good list;
pi ← sizeof(good list);

end if;
if xj /∈ initList do

send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
else

remove xj from initList;
check agent view;

end do;

Figure 4: The APO procedures for initialization and
linking.

4.1.1 Initialization (Figure 4)
On startup, the agents are provided with the value (they

pick it randomly if one isn’t assigned) and the constraints
on their variable. Initialization proceeds by having each of
the agents send out an init message to its neighbors.

When an agent receives an initialization message (either
during the initialization or through a later link request), it
records the information in its agent view and adds the vari-
able to the good list if it can. An variable is only added
to the good list if it is a neighbor of another variable al-
ready in the list which ensures that the graph created by
the variables in the good list always remains connected.

4.1.2 Checking the agent view (Figure 5)
Whenever the agent receives a message which indicates a

possible change to the status of its variable, it executes the
check agent view procedure. In this procedure, the current
agent view (which contains the assigned, known variable
values) is checked to identify conflicts between the variable
owned by the agent and its neighbors. If, during this check,
an agent finds a conflict with one or more of its neighbors
and has not been told by a higher priority agent that they
want to mediate, it assumes the role of the mediator.

As the mediator, an agent first attempts to rectify the
conflict(s) by changing its own variable. This simple, but
effective technique prevents sessions from occurring unnec-
essarily, which stabilizes the system and saves message and
time. If the mediator finds a value that removes the conflict,
it makes the change and sends out an ok? message to the
agents in its agent view. If it cannot find a non-conflicting
value, it starts a mediation session.

4.1.3 Mediation (Figures 6, 7, and 8)
The most complex and certainly most interesting part of

the protocol is the mediation. The mediation starts with
the mediator sending out evaluate? messages to each of the
agents in its good list. The purpose of this message is two-
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when received (ok?, (xj , pj , dj , mj)) do
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

procedure check agent view
if initList 	= ∅ or mediate 	=false do

return;
m′

i ← hasConflict(xi);
if m′

i and ¬∃j(pj > pi ∧ mj == true)
if ∃(d′

i ∈ Di) (d′
i ∪ agent view does not conflict)

and conflicts exclusively
with lower priority neighbors

di ← d′
i;

send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
else

do mediate;
else if mi 	= m′

i

mi ← m′
i;

send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
end if;

end check agent view;

Figure 5: The procedures for doing local resolution,
updating the agent view and the good list.

fold. First, it informs the receiving agent that a mediation
is about to begin and tries to obtain a lock from that agent.
This lock, referred to as mediate in the figures, prevents the
agent from engaging in two sessions simultaneously or from
doing a local value change during the course of a session.
The second purpose of the message is to obtain information
from the agent about the effects of making them change
their local value. This is a key point. By obtaining this
information, the mediator gains information about variables
and constraints outside of its local view without having to
actually link with those agents.

When an agent receives a mediation request, it will re-
spond with either a wait! or evaluate! message. The wait
message indicates to the requester that the agent is currently
involved in a session or is expecting a request from a agent of
higher priority than the requester. If the agent is available,
it labels each of its domain elements with the names of the
agents that it would be in conflict with if it were asked to
take that value which is returned in an evaluate! message.

When the mediator has received either a wait! or evaluate!
message from all of the agents that it has sent a request to,
it computes a solution using a Branch and Bound search [4].
The goal of the search is to find a solution where all of the
constraints are satisfied and the number of outside conflicts
is minimized (like the min-conflict heuristic [8]).

If no satisfying assignments are found, the agent announces
that the problem is unsatisfiable and the algorithm termi-
nates. If a solution is found,accept! messages are sent to the
agents in the session, ok? messages to the agents that are
in its agent view, but for whatever reason were not in the
session, and the mediator sends init messages to any agent
that is outside of its agent view, but it caused conflict for
as a result of selecting its solution.

Overall, APO has a very hill-climbing like nature when
it first starts up because agents are only linked with their
neighbors. As time goes on and the agents begin to central-
ize more of the problem, the problem solving become less
parallel and more focused. However, since the initial hill

procedure mediate
preferences ← ∅;
counter ← 0;
for each xj ∈ good list do

send (evaluate?, (xi, pi)) to xj ;
counter ++;

end do;
mediate ← true;

end mediate;

when receive (wait!, (xj , pj)) do
update agent view with (xj, pj);
counter - -;
if counter == 0 do choose solution;

end do;

when receive (evaluate!, (xj , pj , labeled Dj)) do
record (xj, labeled Dj) in preferences;
update agent view with (xj, pj);
counter - -;
if counter == 0 do choose solution;

end do;

Figure 6: The procedures for mediating a session.

climbing removes most of the constraint violations, massive
parallelism is no longer needed. Based on the type and dif-
ficulty of the constraint violations, APO can act as either
a one or four step protocol. Most often because of the me-
diation process, however, it takes four steps to change a
variable’s value.

4.2 Modifying APO for Dynamic Environments
Because we wanted to maintain its completeness, modi-

fying the APO algorithm to work in dynamic environments
was quite a bit more difficult than the modifications that
were needed for DBA. Although APO’s session based de-
sign lends itself to being able to handle changing constraints
while it is in a mediation session, the biggest problem in the
adaptation was in preventing the agents from continuously
increasing the size of the problem they were centralizing.
This necessitated the addition of a remove message.

The remove message is sent from one agent to another
whenever they wish to remove their link. The main difficulty
with the unlink request is that APO was designed to have
bi-directional links. This means that if agent xi is linked to
xj then xj is linked to xi. In fact, the completeness of the
algorithm is dependent on this property because if agent xi

wants to mediate over xj and xi is high enough priority, then
xj must know about it and eventually allow the mediation
to occur. This is a key point, because the bi-directionality
of links in APO really means that if agent xi has xj in its
good list then xj must have xi in its agent view.

This key insight means that agents can send requests
for a removal when they want to take a variable out of
their good list but, may only remove the variable from their
agent view when they do not have it in their good list and
are sure that the owner of the variable does not have their
variable in its good list.

The mechanism used to handle removals involves main-
taining two lists; one for remove requests sent and one for
remove requests received. If an agent sends a remove re-
quest, it adds the variable to the removes sent list. Once it
receives a response to the remove, it deletes the agent from
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procedure choose solution
select a solution s using a search that:

1. satisfies the constraints between agents in
the good list

2. minimizes the violations for agents outside of
the session

if ¬∃s that satisfies the constraints do
broadcast no solution;

for each xj ∈ agent view do
if xj ∈ preferences do

if d′
j ∈ s violates an xk and xk /∈ agent view do

send (init, (xi, pi, di, mi, Di, Ci)) to xk;
add xk to initList;

end if;
send (accept!, (d′

j , xi, pi, di, mi)) to xj ;
update agent view for xj

else
send (ok?, (xi, pi, di, mi)) to xj ;

end if;
end do;
mediate ← false;
check agent view;

end choose solution;

Figure 7: The procedure for choosing a solution dur-
ing an APO mediation.

its agent view and its sent list. If an agent receives a remove
request, it either immediately removes the variable from it
agent view and sends a response or it stores the request in
its removes received list. If at some later time it wants to re-
move the variable, it removes the request from the removes
received list and responses with a remove. If an agent sends
a request or responds to a removal and later determines that
it wants to relink with that variable, it must re-initialize the
link by sending an init. This step ensures that the links and
the remove lists remain correctly balanced.

In the current implementation of DynAPO, agents remove
all non-neighbor variables from their good list whenever a
constraint is removed from their variable. The side effect
of this is that in more dynamic environments, the agents
very rarely extend their view past their immediate neigh-
bors, making the algorithm behave like a four step version
of DBA. As will be shown in the next section, the combi-
nation of limiting the view in this way along with the four
step process of a mediation session causes the performance
of DynAPO to degrade rapidly as the speed at which the
constraints change increases.

Several modifications were also made to DynAPO to han-
dle the times when the problem became unsatisfiable. The
first change is that whenever a mediator identifies a subprob-
lem that is unsatisfiable, it chooses a value for its variable
that minimizes the conflicts with its neighbors. In addition,
the mediator also announces that it has found an unsolv-
able subproblem by returning the value null in the accept!
message that is sent to the agents at the end of the session.
By sending the null value, the agents within the session be-
come aware that mediator no longer wishes to work on the
problem and that any one of them is free to take over as the
mediator. Basically, this allows the lower priority agents
to work on their subproblems in order to further minimize
conflict.

Once an agent has discovered an unsatisfiable subproblem,
they switch into a locally minimizing mode. During this

when received (evaluate?, (xj , pj)) do
mj ← true;
if mediate == true or ∃k(pk > pj ∧ mk == true) do

send (wait!, (xi, pi));
else

mediate ← true;
label each d ∈ Di with the names of the agents

that would be violated by setting di ← d;
send (evaluate!, (xi, pi, labeled Di));

end if;
end do;

when received (accept!, (d, xj , pj , dj , mj)) do
di ← d;
mediate ← false;
send (ok?, (xi, pi, di, mi)) to all xj in agent view;
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

Figure 8: Procedures for receiving a session.

mode, whenever an agent checks its agent view, it calculates
the minimal conflicting value for its variable and if it is not
in or expecting a mediator session, changes to the new value.
Agents move out of this mode is one of their constraints is
removed, or if one of the constraints on the agents in their
good list is removed. This ensures that the agents always
continue to work when it is possible that a solution might
exist and they haven’t found it.

5. EXPERIMENTAL SETUP AND RESULTS
To test the DynDBA and DynAPO algorithms we used a

modified version of the distributed 3-coloring problem. In
distributed 3-coloring, each agent is assigned one variable
and given the names of their neighbors in the constraint
graph. The goal of the agents is to find a coloring for its
variable such that it is different from the colors of its neigh-
bors. The domain of each of the variable is, as the name
implies, the same three colors.

In the dynamic version, a simulator is used to modify the
constraints on the variables as the scenario unfolds. During
these experiments, the simulator changed the constraints at
a rate of δ constraints per execution cycle. So for instance,
at a rate of δ = 3, three constraints are added or removed
each cycle. To ensure that the problem remained at a con-
stant difficulty, or overall graph density, the number of adds
and removes per unit time were always equal. In essence,
the constraints were changed. For the sake of clarity, dur-
ing a cycle, each agent is given control, allowed to process
each of its incoming messages and queues up outgoing mes-
sages to be sent at the beginning of the next cycle. The
amount of actual processing time allocated to each agent
varies depending on the amount of work needed to process
the messages, compute solutions, etc.

For the test series, 30 node graphs were used. The test
series varied the edge density of the graphs, testing graphs
with average degrees of 2.0, 2.3, and 2.5. These particular
values were chosen because they represent three distinct re-
gion in the phase transition for random 3-coloring graphs
[1]. Graphs with a density of 2.0 are likely to be satisfiable,
2.3 are within the phase transition, and 2.5 are likely to be
unsatisfiable.
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DynAPO Mean DynDBA Mean
Density δ Error Messages % Correct Error Messages % Correct

0.2 0.9 28,035 50.6 1.6 119,958 25.7
1.0 2.1 44,507 16.6 2.6 120,758 6.7

2.0 2.0 3.2 65,306 5.7 3.4 121,754 2.7
4.0 4.9 96,317 1.2 4.5 123,519 0.8
6.0 6.2 123,939 0.3 5.5 125,277 0.3
0.2 1.9 62,285 26.0 2.2 137,922 15.2
1.0 3.1 73,407 8.9 3.5 138,722 4.0

2.3 2.0 4.3 90,491 2.8 4.1 139,718 1.9
4.0 6.2 121,717 0.6 5.3 141,429 0.5
6.0 7.6 147,730 0.2 6.3 143,147 0.2
0.2 2.8 91,673 12.2 2.8 149,898 8.6
1.0 4.0 95,352 5.5 4.0 150,698 2.7

2.5 2.0 5.1 109,916 1.5 4.6 151,694 1.2
4.0 6.9 138,353 0.4 5.7 153,430 0.4
6.0 8.4 164,298 0.2 7.6 155,073 0.2

Figure 9: Results of testing DynAPO and DynDBA on 30 node, dynamic 3-coloring problems.

The series also varied the rate of constraint changes in
the environment. Values of δ = (0.2, 1.0, 2.0, 4.0, 6.0) were
tested where the number of constraint additions and re-
movals were kept in balance. For each combination of graph
density and δ, 20 graphs were generated, then the simula-
tion run for 1000 cycles. So, for δ = 6.0, 3 constraint were
added and 3 were removed each cycle making a total of 6000
changes to the original graph over the run. To make the
comparison fair between the two methods, the seeds used
for the random number generator were saved and reused.
This ensured that each algorithm was exposed to exactly
the same set of graphs, initial starting values, and the same
series of changes.

During the run, data was collected on the number of con-
straint violations at each time step and the number of mes-
sages used. In addition, whenever one or more constraints
were added or removed from the previous step, the optimal
bound was computed. This allow for the error and “cor-
rectness” of each algorithm to be measured. The error is
the mean of the difference between the optimal value and
the current solution for each cycle. The correctness is calcu-
lated as the percentage of time that the algorithm’s solution
satisfied the optimal number of constraints.

The results of these tests can be seen in Table 9 and figure
10, 11, and 12. As can be seen, both protocols significantly
outperform a static solution, which is a solution to the initial
problem that does not change over time. In addition, Dy-
nAPO had a smaller mean error on problems that changed
slowly. As the rate of change increased, however, the two-
step nature of the DynDBA protocol began to dominate.
These results are actually fairly intuitive once one considers
the number of constraint changes that take place during a
single DynAPO mediation session.

The next interesting result from these tests is that Dy-
nAPO used considerably fewer messages than DynDBA on
slowly changing problems, but its usage increased rapidly as
δ increased. The most reasonable explanation for this be-
havior is that when the problem changes slowly, DynAPO of-
ten reaches quiescence between successive changes. In addi-
tion, because constraint removals happen very infrequently,
the agent views of the agents grow quite large. This means
that when the agents mediate, change values, add or remove
constraints they have to send a large number of messages
to inform all of the agents that they are link to about the
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Figure 10: Instantaneous error of DynAPO, Dyn-
DBA, and a static solution on 3-coloring instances
with density = 2.0n.

change. As δ increases, the agents communicate more fre-
quently to keep their internal states up-to-date. In addition,
because constraints are removed very frequently, the agents
maintain very small subproblems and therefore only medi-
ate with a small number of agents decreasing the standard
deviation.

The last result that bares mentioning is the percentage of
time that each of the protocols has a correct solution. As
the result show, DynAPO is, on average, more accurate than
DynDBA. There are a number of explanations for this, but
the most likely cause is that DynAPO is a complete method
and DynDBA is an incomplete method. This means that
when no solution exists, DynAPO is aware of it, and just
stops working. DynDBA on the other hand, keeps trying to
solve the problem which causing it to move away from the
optimal solution.

6. CONCLUSIONS AND FUTURE WORK
This paper presented two new algorithms for solving dy-

namic, distributed constraint satisfaction problems. The
first algorithm is called DynDBA and is an adaptation of the
DBA algorithm. The second, is an adaptation of the APO
algorithm and is called DynAPO. A new formulation of the
Dynamic DCSP was also presented which directly relates
the amount of change in the DCSPs to time. Using this for-
mulation an algorithms performance can be measured in re-
lation to how quickly the problem changes during the prob-
lem solving process. Lastly, the DynAPO and DynDBA
algorithms were tested using a dynamic version of the dis-
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Figure 11: Instantaneous error of DynAPO, Dyn-
DBA, and a static solution on 3-coloring instances
with density = 2.3n.

tributed 3-coloring problem. The results of these tests were
mixed, with neither algorithm being completely dominate.
This seems to indicate that determining which algorithm is
best largely depends on the dynamics of the environment,
the problems overall difficulty, and a users particular needs.

There is a vast amount of future work to be done. First
and foremost, additional algorithms need to be tested and
additional dynamic environments need to be developed. It
would be interesting to see how a one-step algorithms like
P2P performs and whether something more general could
be found about the relationship between the rate of change
in a problem and the best problem solving strategy. In ad-
dition, it seems, at this point, clear that algorithms could be
developed which monitor environmental dynamics and alter
their behavior to optimize their performance.

Lastly, although the simulators used for these tests al-
lowed us to relate a notion of time to change, it did not relate
real-time to change. One has to wonder about the exact per-
formance of these algorithms when the cost for computation
during a cycle becomes explicit.
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