
Valuations of Possible States (VPS): A Quantitative
Framework for Analysis of Privacy Loss Among

Collaborative Personal Assistant Agents

Rajiv T. Maheswaran, Jonathan P. Pearce, Pradeep Varakantham,
Emma Bowring and Milind Tambe

University of Southern California

(maheswar,jppearce,varakant,bowring, tambe)@usc.edu

ABSTRACT
For agents deployed in real-world settings, such as businesses, uni-
versities and research laboratories, it is critical that agents protect
their individual users’ privacy when interacting with others entities.
Indeed, privacy is recognized as a key motivating factor in design
of several multiagent algorithms, such as distributed constraint op-
timization (DCOP) algorithms. Unfortunately, rigorous and gen-
eral quantitative metrics for analysis and comparison of such mul-
tiagent algorithms with respect to privacy loss are lacking. This
paper takes a key step towards developing a general quantitative
model from which one can analyze and generate metrics of pri-
vacy loss by introducing the VPS (Valuations of Possible States)
framework. VPS is shown to capture various existing measures of
privacy created for specific domains of distributed constraint satis-
factions problems (DCSPs). The utility of VPS is further illustrated
via analysis of DCOP algorithms, when such algorithms are used
by personal assistant agents to schedule meetings among users. In
addition, VPS allows us to quantitatively evaluate the properties of
several privacy metrics generated through qualitative notions. We
obtain the unexpected result that decentralization does not automat-
ically guarantee superior protection of privacy.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance, Security

Keywords
Privacy, Personal Assistant Agents, Collaborative Negotiation

1. INTRODUCTION
Personal assistant agents are an emerging application whose in-

tegration into office environments promises to enhance productiv-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

ity by performing routine or mundane tasks and expediting coordi-
nated activities [1]. To effectively accomplish these tasks, agents
must be endowed with information about their users, that would
preferably be kept private. However, in domains where humans
and their agent counterparts have to collaborate with other human-
agent pairs, and agents are given the autonomy to negotiate on their
users’ behalves, the exchange of private information is necessary
to achieve a good team solution. Some of these situations include
meeting scheduling, where users’ valuations of certain blocks of
time in a schedule or the relative importance of different meetings
can be the information desired to be kept private. In team task as-
signment problems, the private information could be a user’s capa-
bility to perform various tasks and the personal priority they assign
to those tasks. To develop trust in, and hence promote the use of,
personal assistant agents, humans must believe their privacy will
be sufficiently protected by the processes employed by their agents.
Thus, understanding how privacy is lost in these contexts is critical
for evaluating the effectiveness of strategies used to govern these
interactions.

While research on security has provided methods to protect a col-
laborating set of agents from outside parties obtaining internal in-
formation, we focus on privacy which captures information loss in-
herent in the negotiation within the collaborating set. Earlier work
focused on using cryptographic methods to provide privacy, how-
ever this required the existence of multiple external servers which
is not always desirable or available [13]. While there has been addi-
tional recent work on addressing privacy in constraint satisfaction,
and though these investigations have quantitative elements, they are
not immediately portable to other models where one might want to
optimize instead of satisfy [2, 12, 6]. What is lacking is a principled
quantitative approach to deriving metrics for privacy for general do-
mains. To address this need, we propose the Valuation of Possible
States (VPS) framework to quantitatively evaluate privacy loss in
multiagent settings. We apply these ideas in a distributed meeting
scheduling domain modeled as a distributed constraint optimization
problem (DCOP). We then develop techniques to analyze privacy
loss when using the OptAPO [5] and SynchBB [3] algorithms to
solve the DCOP.

A key implication of our experiments is that centralization can
outperform some dececntralized approaches for constraint optimiza-
tion with respect to privacy loss over many metrics. Another is that
the qualitative properties of privacy loss can vary widely depend-
ing on the metric chosen, for example privacy loss may increase
or decrease as a function of the length of the schedule depending
on which metric one chooses. Finally, we observe that the key to
preserving privacy is to minimize the inferences that other agents
can make about one’s possible states.

1030

2. VALUATIONS OF POSSIBLE STATES
FRAMEWORK

Given a setting where a group of N agents, indexed by the set
N := {1, . . .N}, each representing a single user, must collaborate
to achieve some task, each agent must be endowed with some pri-
vate information about its user to ensure that it accurately repre-
sents their status, capabilities or preferences in the joint task. This
private information can be modeled as a state among a set of pos-
sible states. In a meeting scheduling domain, agents might need to
protect calendar information while in a task allocation problem, a
personal assistant agent might want to protect information about its
users’ capabilities or priorities. Consider a scenario where personal
assistant agents collaborate to order lunch [9]. Each user could pre-
fer one of three restaurants. To observers, a person can exist in one
of three possible states. Each observer also has an estimate of the
likelihood that a person lies in each of these possible states. Privacy
can then be interpreted as a valuation on the other agents’ estimates
about the possible states that one lives in. Simply put, privacy is
our level of comfort with what others know about us. In this paper,
we will often use the term agent to refer to an entity with private
information though person or user can be equivalently substituted.

E 1. Meeting Scheduling. Consider a scenario where
three agents (A,B,C) have to negotiate a meeting for either 9:00
AM or 4:00 PM. The user of each agent has a preference or avail-
ability denoted by 0 or 1 for each time. Thus, each agent (user)
belongs in one of four states ([0 0], [0 1], [1 0], [1 1]) where the el-
ements of the vector denote the preference for 9:00 AM and 4:00
PM, respectively. At the beginning of the negotiation, all agents
model the other agents with some probability distribution of over
these states. A uniform distribution represents no a priori knowl-
edge. After negotiation, agents will alter these probabilities due to
inferences being made from the messages received. Given a metric
for privacy, represented as a valuation function over a probability
distribution, we can measure the loss of privacy by subtracting the
value of the probability distribution at the end of negotiation from
the value of the probability distribution at the beginning of negoti-
ation. �

To express these ideas more formally, let the private information
of the ith agent be modeled as a state si ∈ S i, where S i is a set
of possible states that the ith agent may occupy. For simplicity,
we assume that {S i}

N
i=1 are discrete sets, though these ideas can be

extended to continuous sets. Then, let

�− j = S 1 × S 2 × · · · × S j−1 × S j+1 × · · · × S N−1 × S N ,

be the set of all possible states of all agents except the jth agent.
The jth agent knows that the other agents’ private information is
captured by an element of the set S − j. In Example 1, agent A mod-
els agents B and C as an element of the set �−A = S B × S C where
S B = S C = {[0 0], [0 1], [1 0], [1 1]}. Since an agent does not know
the private information of other agents exactly we can model the
jth agent’s knowledge as a probability distribution over the possi-
ble states of all other agents �− j, i.e. � j(�− j). Given that we have
discrete sets, we will have a probability mass function,

�
j(�− j) = [P j(s̃1) · · · P j(s̃k) · · · P j(s̃K1)],

where s̃k ∈ �− j is a possible state of all other agents. There are
K1 = Πz, j|S z| possible states and since the vector is a probability
mass function, we have the conditions P j(s̃k) ≥ 0,

∑
s̃∈�− j

P j(s̃) = 1.
In Example 1, agent A’s knowledge of the other agents would be a
probability vector of length K1 = 16.

Thus, an agent’s knowledge of other agents is a joint probability
mass function over the product set of possible states of all other
agents. The jth agent’s knowledge of a particular agent, say the
ith agent, is then the marginal probability of this distribution with
respect to i, as follows:

�
j
i (S i) = [P j

i (s1) · · · P j
i (si) · · · P

j
i (sK2)], (1)

si ∈ S i, K2 = |S i|, P j
i (si) =

∑
s̃∈�− j:s̃i=si

P j(s̃)

where s̃i refers to the state of the ith agent in the tuple s̃ ∈ �− j. In
Example 1, the probability that agent A thinks that agent B is in the
state [0 1] is the sum of of the probabilities that it thinks B-C are
in the states {[0 1 0 0], [0 1 0 1], [0 1 1 0], [0 1 1 1]}.

The knowledge that other N − 1 agents have about the ith agent
can then be expressed as follows:

�i((S i)N−1) = [�1
i (S i) �2

i (S i) · · ·

�
i−1
i (S i) �i+1

i (S i) · · · �N−1
i (S i) �N

i (S i)]

where � j
i (S i) is as defined in (1). In Example 1, the information

other agents have about agent A is �A((S A)2) = [�B
A(S A) �C

A(S A)].
The above model assumes that agents do not share there informa-
tion or estimates about other agents. If sharing does occur, this can
be captured by the �G

i (S i) where G ⊂ N is a group of agents that
share information to obtain a better estimate of the ith agent’s state,
where i < G. In this case �i((S i)N−1) would be composed of group
estimates �G

i (S i) where G is an element of the power set of N .
The ith agent can then put a value for each distribution that the

collection of other agents could hold, yielding a value function
�i(�i((S i)N−1)). For example, in the lunch ordering scenario, one
agent may value highly the ability to hide his restaurant prefer-
ences (it wants � j

i (S i) to be uniformly distributed over S i,∀ j , i)
while another may value highly that others know its preference (it
wants � j

i (S i) to be an accurate delta function ∀ j , i), e.g. if the
agent (or more appropriately, its user) is a vegetarian. In Exam-
ple 1, a simple value function is the number of possible states that
other agents have not eliminated (i.e. states with nonzero probabil-
ity). Additional metrics for meeting scheduling will be discussed
later. This framework is essentially a utilitarian model of informa-
tion states and thus captures the notion of privacy as a special case.
Given this framework, a single agent can measure loss of privacy
in a collaboration by measuring the changes in�i and an organiza-
tion can measure the loss of privacy from a process by calculating
the changes in some function f (�1, · · · ,�N) which aggregates the
valuation of possible states for the entire set of agents.

3. UNIFICATION OF EXPRESSION WITH
VALUATIONS OF POSSIBLE STATES
FRAMEWORK

One of the motivations for introducing VPS was to build a uni-
fying framework for privacy. A successful model must then be able
to capture existing notions of privacy. In this section, we show that
VPS indeed passes this test by representing three metrics proposed
by prominent researchers in the field within our framework. While
some of the metrics were expressed quantitatively, by presenting
them in VPS, we connect them to a common fundamental frame-
work which facilitates cross-metric comparison.

• In [10], Silaghi and Faltings consider Distributed Constraint
Satisfaction Problems (DCSPs) where agents have a cost as-
sociated with the revelation of whether some tuple of values

1031

(such as a meeting location and time) is feasible (i.e., the
agent’s user is willing to have a meeting at that place and
time). The agents begin exchanging messages and each agent
pays a cost if the feasibility of some tuple is fully determined
by other agents. This continues until a solution is reached
or to the point where the cost of a tuple whose feasibility is
about to be fully revealed is greater than the potential reward
of the collaboration. If the latter occurs, the negotiation is
terminated. Putting this in VPS form, we have S i is the set of
all vectors of length Ti whose components are either 0 or 1,
where Ti is the cardinality of all tuples of the ith agent. The
ith agent is then characterized by some element si ∈ S i where
si(t) denotes the feasibility of tuple t. This metric of privacy
can expressed as:

�i(�G
i (S i)) :=

Ti∑
t=1

ci(t)
[
I{�G

i (S t
i)=0} + I{�G

i (S t
i)=1}

]
where G = N \ i, ci(t) is the cost of revealing tuple t, I{·} is an
indicator function,

S t
i := {si ∈ S i : si(t) = 0}, and �G

i (S t
i) =
∑
s∈S t

i

�
G
i (s).

Since revelation for the ith agent is considered with respect
to information gathered by all other agents G, we consider
the joint knowledge of all other agents, �G

i . The expression
for the valuation captures that a cost ci(t) is paid whenever
the feasibility of that tuple has been identified. The expres-
sions inside the indicator functions capture whether a tuple
has been identified by seeing if the probability on a tuple be-
ing identified as available is zero or one, i.e. anything else
would indicate a distribution on more than one possibility.

• In [2], Franzin, Rossi, Freuder and Wallace consider a dis-
tributed meeting scheduling problem, where each agent as-
signs a preference from the discrete set {0.1, 0.2, . . . , 1} to
each location/time-slot combination. The measure of privacy
loss is entropy with respect to the size of the possible state
space that can exist. Thus, in VPS, S i is the set of all vectors
of length TiLi where Ti is the number of time slots and Li is
the number of locations, where each component of the vec-
tor can take one of 10 values. Privacy metric, which applies
entropy to the uncertainty in valuation for each particular lo-
cation / time-slot combination, can be expressed as:

�i(�G
i (S i)) :=

TiLi∑
k=1

log2

 10∑10
j=1 I{�G

i (si(k)= j/10)>0}

where G = N \ i is the set of all agents except the ith agent as
information sharing is part of the assumption in privacy loss.
The indicator function in the denominator because the au-
thors consider whether a particular valuation has been elim-
inated as viable for a time slot, hence the key difference is
whether the probability is positive or zero (hence, no prob-
ability multiplier before the log). The 10 in the numerator
indicates that all 10 preferences are possible at the beginning
of negotiation.

• In [11], Silaghi and Mitra present a privacy model for a set-
ting where each agent has a cost for scheduling a particu-
lar meeting at a particular time and location. They propose
a model where agents can share information amongst each

other. The privacy metric is the size of the smallest coali-
tion necessary to deduce a particular agent’s costs exactly.
In VPS, each agent is modeled as an element si of the set S i

which is the set of all vectors of length TiLi Mi where Ti is the
number of time slots, Li is the number of locations and Mi is
the number of meetings. The components of the vector are
some elements of a finite set of costs. Even this distinctive
model can be captured in VPS as follows:

�i(�i(S i)) := min
G∈G
|G| where

G :=

G ⊂ N :
∑
si∈S i

PG
i (si) log PG

i (si) = 0

 .
The set G is the set of all coalitions that have deduced the ith

agent’s costs exactly. Deducing the costs exactly is identical
to saying that the entropy of the knowledge distribution is
zero. If the entropy measure on �G

i is zero, then the estimate
of the group G about the ith agent must be a delta function (all
probability on one state) and therefore, the ith agent’s state is
known exactly by the group G.

The fact that VPS can capture such a diverse set of metrics in-
dicates not only its ability to unify expression of privacy but also
that it mathematically represents the basic and intrinsic properties
of privacy.

4. DISTRIBUTED MEETING SCHEDULING
MODEL

To investigate the usefulness of VPS as a generative tool, we ap-
plied it to a personal assistant domain: distributed meeting schedul-
ing. We present here the distributed multi-event scheduling (DiMES)
model presented in [4] that captures many fundamental character-
istics of distributed scheduling in an optimization framework. We
then describe how we can map the DiMES problem to a distributed
constraint optimization problem (DCOP), which can be solved by
agents on a structure that prevents a priori privacy loss.

4.1 DiMES
The original DiMES model mapped the scheduling of arbitrary

resources. Here, we address a meeting scheduling problem. We
begin with a set of people R := {R1, . . . ,RN} of cardinality N and
an event set E := {E1, . . . , EK} of cardinality K. Let us consider
the minimal expression for the time interval [Tearliest,Tlatest] over
which all events are to be scheduled. Let T ∈ � be a natural num-
ber and ∆ be a length such that T · ∆ = Tlatest − Tearliest. We can
then characterize the time domain by the set T := {1, . . . ,T } of
cardinality T where the element t ∈ T refers to the time interval
[Tearliest + (t − 1)∆,Tearliest + t∆]. Thus, a business day from 8AM
- 6PM partitioned into half-hour time slots would be represented
by T = {1, . . . , 20}, where time slot 8 is the interval [11:30 AM,
12:00 PM]. Here, we assume equal-length time slots, though this
can easily be relaxed.

Let us characterize the kth event with the tuple Ek := (Ak, Lk; Vk)
where Ak ⊂ R is the subset of people that are required to attend.
Lk ∈ T , is the length of the event in contiguous time slots. The
heterogeneous importance of an event to each attendee is described
in a value vector Vk. If Rn ∈ Ak, then Vk

n will be an element of Vk

which denotes the value per time slot to the nth person for schedul-
ing event k. Let V0

n (t) : T → �+ denote the nth person’s valua-
tion for keeping time slot t free. These valuations allow agents to
compare the relative importance of events and also to compare the
importance of the event to the value of a person’s time.

1032

Given the above framework, we now present the scheduling prob-
lem. Let us define a schedule S as a mapping from the event set to
the time domain where S (Ek) ⊂ T denotes the time slots commit-
ted for event k. All people in Ak must agree to assign the time slots
S (Ek) to event Ek in order for the event to be considered scheduled,
thus allowing the people to obtain the utility for attending it.

Let us define a person’s utility to be the difference between the
sum of the values from scheduled events and the aggregated val-
ues of the time slots utilized for scheduled events if they were kept
free. This measures the net gain between the opportunity bene-
fit and opportunity cost of scheduling various events. The organi-
zation wants to maximize the sum of utilities of all its members
as it represents the best use of all assets within the team. Thus,
we define the fundamental problem in this general framework as:
maxS

{∑K
k=1
∑

n∈Ak
∑

t∈S (Ek)

(
Vk

n − V0
n (t)
)}

such that S (Ek1)∩S (Ek2) =
∅ ∀k1, k2 ∈ {1, . . . ,K}, k1 , k2, Ak1 ∩ Ak2 , ∅.

4.2 PEAV-DCOP
Given a problem captured by the DiMES framework, we need

an approach to obtain the optimal solution. As we are optimiz-
ing a global objective with local restrictions (eliminating conflicts
in resource assignment), DCOP [7] presents itself as a useful and
appropriate approach.

Our challenge is to convert a given DiMES problem into a DCOP
with binary constraints. We may then apply any algorithm devel-
oped for DCOP to obtain a solution. In [4], three DCOP formu-
lations for DiMES were proposed. As we are investigating pri-
vacy, we choose the PEAV formulation, which was created such
that there would be no loss of private information prior to negotia-
tion.

Thus, given events and values, we are able to construct a graph
and assign constraint link utilities from which a group of personal
assistant agents can apply a DCOP algorithm and obtain an optimal
solution to the DiMES problem.

5. PRIVACY IN PEAV-DCOPS FOR DIMES
In this section, we apply our VPS ideas to the DiMES model and

generate several instantiations of valuations to quantitatively mea-
sure the privacy loss when agents apply known DCOP algorithms
to a distributed meeting scheduling scenario.

5.1 VPS for DiMES
The initial task is to identify the information that an agent should

consider private, i.e. the data that identifies the state of its human
user. In DiMES, it is clear that the valuation of time, V0

i (t), ex-
plicitly captures the preferences that will be used in the collabora-
tive process. In addition, the rewards for attending various events
{Vk

i : i ∈ Ak} is another component that agents may wish to keep
private. For the sake of simplicity, we will assume a setting where
event rewards are public, though the analysis can be extended to
capture situations where this information is private. If V0

i (t) ∈ V
where V is a discrete set and there are T time slots in a schedule,
the state si of the ith agent is an element of the set S i = V

T and can
be expressed as a vector of length T . This is because users have
assigned a valuation from V to each of their T time slots based on
their preferences. Before negotiation, each agent knows only that
the other agents exist in one of |V|T possible states. After negotia-
tion, each agent will be modeled by all other agents whose estimate
of the observed agent is captured by �i((S i)N−1). The question now
is how an agent should assign values to these estimates of possi-
ble states through which others see it. The method introduced in
[10] does not apply here because we are not in a satisfaction setting

and the method in [11] is not viable because information sharing
is not an appropriate assumption in this domain. We do consider
the entropy-based metric introduced in [2] and captured in VPS in
Section 3. We remove the factor Li that captures location and adjust
to account for privacy loss to other individual agents:

�i(�i(S i)) :=
∑
j,n

T∑
k=1

log2

∑|V|

m=1 I
{maxsi∈S i :si (k)=m �

j
i (si(k)=m)>0}

|V|

 (2)

We extend this to the case where entropy is applied to the distribu-
tion over the entire schedule as opposed to time slot by time slot.
In this case, we have

�i(�G
i (S i)) := log2

∑|V|T

j=1 I{�G
i (s j)>0}

|V|T

 (3)

where G = N \ i. Using entropy, it is possible for the privacy loss
to get arbitrarily high as the number of initial states increases (due
to T or |V|). To facilitate cross-metric comparison, we shift and
normalize each metric �̃ = 1+ α�, with an appropriate constant α
so that the valuation for the worst-case privacy level, i.e. the case
where the entire schedule is known, is zero and the ideal level is
one.

Due to the nature of the messaging in DCOPs, the most typical
form of information gathered is the elimination of a possible state.
Thus, a straightforward choice for �n would be

�i(�i((S i)N−1)) =
∑
j,i

∑
si∈S i

I
{�

j
i (si)>0} (4)

which can be extended to a time-slot-by-time-slot version:

�i(�i((S i)N−1)) =
∑
j,i

T∑
k=1

|V|∑
m=1

I
{maxsi∈S i :si (k)=m �

j
i (si(k)=m)>0} (5)

where I{·} is an indicator function. The first essentially aggregates
the number of states that have not been eliminated by an observing
agent in the system. The second aggregates the number of valua-
tions (per time slot) that have not been eliminated. We can scale
both functions with a transformation of the form �̃ = α(� − β)
with appropriate choices of α and β such that the valuations span
[0 1] with zero being the worst level and one being the ideal level
of privacy.

We note that these are linear functions in possible states. Con-
sider when one agent has been able to eliminate one possible state
of another agent. The observed agent may not value that loss equally
if the observer went from 1000 states to 999, as opposed going from
2 to 1. To address this idea, we introduce the following nonlinear
metrics for privacy:

�i(�i((S i)N−1) =
∑
j,i

1 − 1∑
s∈S i

I
{�

j
i (s)>0}

 (6)

and its per-time-slot analogue:

�i(�i((S i)N−1) =
∑
j,i

T∑
k=1

1 − 1∑|V|
m=1 I

{maxsi∈S i :si (k)=m �
j
i (si(k)=m)>0}

 .
(7)

These valuations model privacy as the probability that an observer
agent will be unable to guess the observed agent’s state accurately
given that their guess is chosen uniformly over their set of possi-
ble states for the observed agent. For the first, the other agents are
trying to guess the entire schedule accurately while in the second

1033

they are guessing time slot by time slot. Again, we can scale both
functions with a transformation of the form �̃ = α(� − β) with
appropriate choices of α and β such that the valuations span [0 1]
with zero being the worst level and one being the ideal level of pri-
vacy. We refer to these metrics as LogTS (2), LogS (3), Linear-S
(4), LinearTS (5), GuessS (6) and GuessTS (7) where the numbers
in parentheses refer to the equations that characterize them. We ap-
ply these metrics to various algorithms in an experimental domain
discussed below.

5.2 Experimental Domain
We choose an instantiation of the DiMES problem where there

are three personal assistant agents, each representing a single user,
whose joint task is to schedule two meetings. One meeting in-
volves all three agents and another involves only two. Each meet-
ing lasts for one time slot. Formally, we have R = {A, B,C}, E1 =

[{A, B,C}, 1,V1], E2 = [{A, B}, 1,V2]. The private information ac-
cessible to the agents are the valuations of time {V0

A,V
0
B,V

0
C} which

are vectors of length T , whose components can take values from the
set V := {1, · · · ,K}. In our experiments, we varied both K and T
from the set {3, 4, 5, 6, 7}. For the privacy of the entire agent group,
we choose to average their individual levels, i.e. f (�A,�B,�C) =
(�A + �B + �C)/3. To solve this scheduling problem, a group of
agents can employ a variety of techniques. We now analyze the
privacy loss for several of these algorithms.

5.3 Analysis of Algorithms
As we have argued, privacy is a critical property in the realm of

personal assistant agents. Thus, it is important to evaluate privacy
loss when deciding which methods to embed in these agents for
solving team problems. For meeting scheduling, we will apply our
metrics on two DCOP algorithms: OptAPO [5] and SynchBB [3],
in addition to the baseline centralized solution.

We first look at centralization as a solution because one main ar-
gument for decentralization is the need to protect privacy [4]. Con-
sequently, it is important to identify if and when this argument is
justified. A quantitative analysis tool gives us the opportunity to
compare various algorithms in a rigorous manner. We calculate av-
erage privacy loss, where we aggregate the privacy loss by all the
agents (which may be and often is asymmetric) and divide by the
total possible privacy loss for all the agents. Each agent has the
potential to use 2 units of privacy (one to each of the other two
agents) and the system has 6 units to lose. In a centralized solution,
all agents except one would give up their entire valuation vector to
a single agent. The central agent will then be able to narrow all
other agents’ possible states to one, while non-central agents re-
main at their initial estimates. Because we have scaled our metrics
to span [0 1], the two non-central agents go from a privacy level of
two to a privacy level of one (due to the privacy loss to the central
agent) and the central agent remains at two. Thus two agents lose
one unit of privacy and and one agent loses no privacy, which leads
to an average privacy loss of 2/6 = 1/3. For N agents, centralization
would yield an average privacy loss of 1/N as we lose N − 1 units
of privacy lost in the interaction and the total possible privacy loss
for all N agents is N(N − 1).

To apply decentralized techniques, we map the experiment to a
DCOP graph using the PEAV structure as shown in Figure 1. In
OptAPO, agents exchange their constraints with all their neighbors
in the initial phase. In our example, all agents will be able to iden-
tify the exact states of other agents with the exception that agents B
and C will not know anything about each other immediately after
the initial phase. The dynamics of OptAPO after the initial phase
are not deterministically predictable. It is possible that by the end,

AB

ABC

A C

AB ABC

ABC

B

Figure 1: DCOP Graph of Experimental Domain in PEAV Structure

agents B and C will be able to learn each others’ preferences. How-
ever, it is also possible that the privacy loss may remain at the same
level as after the initial phase. For purposes of analysis, we will
assign to OptAPO the privacy loss after the initial phase, which is
a lower bound on actual privacy loss. Here, agent A will go from
2 to 0 (as it reveals its preferences to agents B and C) while agents
B and C go from 2 to 1 (as they reveal only to agent A). Thus, the
average loss is 4/6=2/3. We see that OptAPO yields worse privacy
loss than centralization.

Thus, if privacy protection is the main concern for a group of
agents, it would be better for them to use a centralized solution
rather than use OptAPO. We note that our metric weights privacy
loss equally with regard to the agent to whom privacy was lost.
In some situations, where the weights are heterogeneous (an agent
would prefer to tell certain agents about their preferences over other
agents) and the central agent is chosen poorly, OptAPO may yield
lower privacy loss than a centralized solution.

We now consider SynchBB, another algorithm used for solving
constraint satisfaction and optimization problems in a distributed
setting. This approach can be characterized as simulating a central-
ized search in a distributed environment by imposing synchronous,
sequential search among the agents. First, the constraint structure
of the problem is converted into a chain. Synchronous execution
starts with the variable at the root selecting a value and sending it
to the variable next in the ordering. The second variable then sends
the value selected and the cost for that choice to its child. This
process is repeated down to the leaf node. The leaf node, after cal-
culating the cost for its selection, would send back the cost of the
complete solution to its parent, which in turns uses the cost to limit
the choice of values in its domain. After finding the best possible
cost with its choices, each variable communicates with its parent
and the process continues until all the choices are exhausted. As
can be seen from above, branch and bound comes into effect when
the cost of the best complete solution obtained during execution
can be used as a bound to prune out the partial solutions at each
node.

The loss of privacy in using SynchBB occurs by the inferences
that variables in the chain can make about other variables in the
chain through the cost messages that are passed. Thus, the struc-
ture of the chain is a key factor in determining privacy loss. For
our meeting scheduling example, we consider the chain structures
displayed in Figure 2. Determining these inferences and the con-
sequent elimination of possible states is more complex in tree-like
algorithms such as SynchBB, due to the partial and aggregated na-
ture of information. To illustrate how possible states can be elim-
inated in SynchBB, we outline the inferences that one can make
from messages received in Chain 1.

1034

AB

ABC

A

C

AB

ABC

ABC

B

1

2

3

4

5

6

CHAIN 1

AB

ABC

A

C

AB

ABC

ABC

B

CHAIN 2

Figure 2: SynchBB Chain Structures

An upward message contains a number r, which is equal to the
best currently known total reward for the chain. For PEAV, the to-
tal reward for the chain is equal to the sum of differences between
the valuation of a scheduled meeting and the valuation of the time
slot it occupies for every scheduled meeting for every person. We
henceforth use the term delta to denote the change in utility (meet-
ing valuation - time slot valuation) for a single agent when a single
meeting is assigned a time slot (if the meeting is chosen to be un-
scheduled, the delta will be zero). If a node P receives an upward
message from its child such that r has changed since the last mes-
sage it received from its child, then P knows that the current context
has allowed its child to find a better solution. Node P knows that
r = d + u, where d = sum of deltas downstream from P and u
= sum of deltas upstream from P. Because it has received it in a
downstream message from its parent and P knows the value of u,
P knows d exactly. If r has not changed, then P knows r ≤ d + u,
which gives P a lower bound on d. Since A knows when meet-
ing ABC is scheduled, a message from C to A (mCA) allows A to
know VC(tABC) (the valuation vector component of C at the time at
which meeting ABC is scheduled). If mCA contains a new r, then
this value is known exactly, otherwise a lower bound is obtained.
Since B knows when both meetings are scheduled, a message from
A to B allows B to know vA(tAB) + vA(tABC) + vC(tABC). If mAB con-
tains a new r, then this value is known, otherwise a lower bound is
obtained.

Downward messages contain a number u, which is exactly equal
to the current sum of deltas that exists upstream from the sender.
They also contain the current values of all variables upstream from
the receiver of the message. Since the values of all meetings are
known, this means that a message from B to A (mBA) allows A to
know the exact value of vB(tAB) + vB(tABC). A message from A to
C (mAC) allows C to know the exact value of vA(tABC) + vA(tAB) +
vB(tABC) + vB(tAB). By collecting these relationships and making
appropriate reductions in possible states ,we can obtain the privacy
loss for SynchBB for the PEAV-DCOP privacy metrics introduced
earlier.

We ran 10 cases for each chain and each (K,T) ∈ {3, 4, 5, 6, 7}2,

Figure 3: Privacy loss as K increases (chain 1)

where each case has valuations chosen uniformly fromV for each
time slot for all agents. Figures 3, 4, 5, and 6 provide privacy loss
results for increasing K and T , for two different chains and the
six metrics along with OptAPO and centralized search. In all the
graphs, the y-axis denotes the average privacy loss (averaged over
10 runs) , while the x-axis denotes the problem type, K ∗ T . Fig-
ure 3 presents results of privacy loss as K is increased from 3 − 7
for the six metrics presented in Section 5.1 along with OptAPO and
Centralized. Each line indicates the privacy loss associated with a
metric, for instance the LinearS metric gives that the privacy loss
varies from 0.7 − 0.9 as K increases. Note that OptAPO and Cen-
tralized are fixed at 2/3 and 1/3, regardless of metric. Here are the
key observations that can be made from Figure 3:

1. Different metrics give distinct values of privacy loss. For
instance, LogS provides privacy loss in the range 0.45-0.6,
while LinearS is in the range (0.7 - 0.9).

2. The phenomena (the relative privacy loss) observed across
different metrics is not identical. For instance, the relative
privacy loss (as K increases) associated with LinearS is “0.2”
(0.9 at 3*7 - 0.7 at 3*3), whereas for GuessS it is “-0.1” (0.55
at 3*7 - 0.65 at 3*3).

3. All the metrics (except GuessS) indicate that the privacy lost
using a centralized approach is far less than that lost by dis-
tributed approaches, SBB and OptAPO. For instance, all met-
rics except GuessS are in the range 0.45-0.9, while central-
ized has a privacy loss of 0.33.

5.4 Implications
This first key result of our experiments is the variance in levels of

privacy loss for the same communication message exchange across
various metrics. Most current research focuses on cross-algorithm
performance for a fixed metric. VPS and the idea behind unifying
the metrics into a common framework and critically within a com-
mon span for best and worst case privacy levels (by choosing the
appropriate α and β parameters above) lead to the first cross-metric
comparison in our community. As we can see, for a fixed algo-
rithm, the measure of its performance with respect to privacy can
be selected arbitrarily by the capriciousness in selecting a metric.
It is not only the absolute measure that varies, but also the phe-
nomena as we vary the number of valuations and number of time-
slots. We see that for some metrics, the privacy loss increases and
for other metrics the privacy loss decreases as the possible world

1035

Figure 4: Privacy loss as K increases (chain 2)

Figure 5: Privacy loss as T increases (chain 1)

Figure 6: Privacy loss as T increases (chain 2)

space increases. These results imply that while investigating pri-
vacy, one must spend considerable effort justifying the appropri-
ateness of a particular measure of privacy for a particular domain.
All the metrics suggested here could be considered “reasonable” as
they were generated to meet some justifiable qualitative property,
yet they have vastly different implications on the conclusions about
privacy loss in collaboration. Developing methodologies to eval-
uate privacy metrics will be a key challenge and VPS provides a
quantitative framework from which to pursue this investigation.

A second key result is the superiority of centralization in protect-
ing privacy. Most research ignores centralization in cross-algorithm

performance analysis as it is assumed that distribution is a superior
course of action. We see here that it is not the case. In fact, the only
case where distribution comes close to matching centralization is
when the metric easiest to dismiss, GuessS. The GuessS metric cap-
tures another agent’s ability to guess the observed agent’s schedule
accurately. Thus, if one began with 10,000 possible states, it would
have to be whittled down to 20 before a 5% loss in privacy was
observed. The GuessS metric is the one that depicts the least pri-
vacy loss from the experiments. According to all the other metrics,
centralization significantly outperformed SynchBB and OptAPO.
This implies that in building any distributed communication mech-
anism for privacy, its performance must always be compared with
centralization as a baseline to justify distribution as a path to pri-
vacy preservation. It also implies that we must look more closely
at the algorithms that we as a community develop, and investigate
message protocols more deeply to ensure that privacy is protected.

From our experiments, we have extracted the notion that the key
to managing privacy loss is minimizing the inferences that other
agents are able to make about one’s possible states from the mes-
sages transmitted. We chose to investigate SynchBB over Adopt [7]
as it uses synchronization to greatly reduce the number of messages
sent. We note that SynchBB sends costs in two directions while
Adopt only sends costs in one. It would be interesting to see if
this unidirectional feature can counter the vastly greater number of
messages generated in Adopt. Another possible key for the source
of our results is the size of the scheduling example. As justified
in [8], meeting scheduling is an incremental scheduling problem
where events to be scheduled arrive gradually. Thus, being able
to schedule a small number of meetings that appear dynamically
is a critical problem and thus, this example represents a significant
canonical problem in the domain. To assure diversity, we varied
the number of time slots and the range of valuations. To gener-
ate different inference rules, we considered both a clustered and
an interspersed chain. In all scenarios, our two key findings, the
variance in metrics and the stunning performance of centralization,
were virtually identical.

6. SUMMARY
Three key contributions of this paper are (1) a general frame-

work, Valuations of Possible Worlds (VPS) to quantitatively evalu-
ate privacy loss in multiagent settings, (2) the unification of existing
notions of privacy into VPS, and (3), the analysis of DCOP algo-
rithms and privacy metrics using VPS. This analysis leads to the
implications that (1) the conclusions that can be drawn about pri-
vacy loss for any algorithm can vary widely depending on the met-
ric used, and (2) centralization should not be ignored when com-
paring algorithms with regard to privacy. This paper should serve
as a call to arms for the community to improve privacy protection
algorithms and further research on privacy.

Acknowledgments
This material is based upon work supported by DARPA, through
the Department of the Interior, NBC, Acquisition Services Divi-
sion, under Contract No. NBCHD030010.

7. REFERENCES
[1] CALO: Cognitive Agent that Learns and Organizes, 2003.

http://www.ai.sri.com/project/CALO, http://calo.sri.com.
[2] M. S. Franzin, F. Rossi, E. C. Freuder, and R. Wallace.

Multi-agent constraint systems with preferences: Efficiency,
solution quality and privacy loss. Computational
Intelligence, 20(2):264–286, 2004.

1036

[3] K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In G. Smolka, editor, Principles and
Practice of Constraint Programming, pages 222–236, 1997.

[4] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham. Taking DCOP to the real world: efficient
complete solutions for distributed multi-event scheduling. In
AAMAS 2004, New York, NY, July 2004.

[5] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
Proceedings of Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004),
pages 438–445, 2004.

[6] A. Meisels and O. Lavee. Using additional information in
discsps search. In Distributed Constraint Reasoning,
Toronto, CA, 2004.

[7] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed constraint
optimization. In Proceedings of the Second International
Conference on Autonomous Agents and Multi-Agent Systems,
Sydney, Australia 2003.

[8] P. J. Modi and M. Veloso. Multiagent meeting scheduling
with rescheduling. In DCR, 2004.

[9] P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable
autonomy for the real-world. Journal of Artificial
Intelligence Research, 17:171–228, 2002.

[10] M. C. Silaghi and B. Faltings. A comparison of distributed
constraint satisfaction approaches with respect to privacy. In
DCR, 2002.

[11] M. C. Silaghi and D. Mitra. Distributed constraint
satisfaction and optimization with privacy enforcement. In
IAT, 2004.

[12] M. C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with private constraints. In
Proceedings of Autonomous Agents, pages 177–78, 2000.

[13] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed
constraint satisfaction: Reaching agreement without
revealing private information. In Principles and Practice of
Constraint Programming - CP 2002, LNCS 2470, pages
387–401, Berlin, 2002. Springer.

1037

