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ABSTRACT
We present a new method for computing pure strategy Nash equi-
libria for a class ofn-person games where it is computationally
expensive to compute the payoffs of the players as a result of the
joint actions. Previous algorithms to compute Nash equilibria are
based on mathematical programming and analytical derivation, and
require a complete payoff matrix as input. However, determining a
payoff matrix can itself be computationally intensive, as is the case
with combinatorial auctions. This paper proposes an approach,
based on best-response dynamics and tabu search, that avoids the
requirement that we have a complete payoff matrix upfront, and
instead computes the payoffs only as they become relevant to the
search. The tabu features help break best-response cycles, and al-
low the algorithm to find pure strategy Nash equilibria in multi-
player games where best-response would typically fail. We test the
algorithm on several classes of standard and random games, and
present empirical results that show the algorithm performs well and
gives the designer control over the tradeoffs between search time
and completeness.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and prob-
lem complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory, Tabu Search, Algorithms for computing Nash equi-
libria, Multi-Agent Systems
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1. INTRODUCTION
Game theory is an important analytical tool used to study a wide

variety of human interactions [12, 15] in which the outcomes de-
pend on the joint strategies of two or more persons. Anequilibrium
is a stable outcome of the game. Although there are a variety of
equilibrium concepts in the literature, Nash equilibrium is arguably
the most important and overwhelmingly the most studied. A Nash
equilibrium is a profile of strategies such that each player’s strategy
is an optimal response to the other players strategies [13].

Computing Nash equilibria of general normal form games is a
hard problem. Several algorithms have been proposed over the
years to compute equilibria (see [11] for an overview), including
the Lemke-Howson algorithm [9] for two-player games, and the
Govindan-Wilson algorithm [7] and an algorithm based on simpli-
cal subdivision [23] forn-player finite games. Several other algo-
rithms for solving finite games are implemented in Gambit [10],
which is a library of game theory software and tools for the con-
struction and analysis of finite extensive and normal form games.
The appropriate algorithm for computing the Nash equilibria for a
game depends on a number of factors, including whether you want
to find pure strategy equilibria or mixed strategy equilibria, and
whether you want to find just one equilibrium or all the equilibria.

One critical assumption underlying the majority of the current
algorithms is that a complete payoff matrix is available as an input
to the algorithm. However, determining a payoff matrix can itself
be computationally intensive. For example, if it requires an hour
to determine the values of each cell of the payoff matrix in a nor-
mal form game, then it will take many days to fill out the game
matrix for a 2 player game in which each player has 10 actions.
Despite the small size of the game, determining the Nash equilibria
becomes time consuming because the cost of computing the pay-
offs dominates the cost of find the equilibria. Similarly, when there
are large number of players and actions, the size of the file input to
the algorithm can be unmanageable. For example, in a game with
6 players each with 10 actions to chose from, there are one million
entries in the normal form game. Computing the payoffs and stor-
ing this type of game as a text file can be very time consuming and
can easily consume many mega-bytes of disk space.

One example of the problem arises fromcombinatorial auctions
(CAs), a class of auctions that allow participants to bid on combina-
tions of items [1, 2, 16, 20, 26]. When the bidders’ preferences ex-
hibit complementarity and substitutability, combinatorial auctions
can reach an economically efficient allocation of goods and ser-
vices where auctioning individual items sequentially or in parallel
may not. There has been a recent surge of research addressing the
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c1 c2 c3 c4 c5

r1 6, 8 4, 12 4, 18 4, 13 8, 4
r2 6, 12 6, 18 6, 4 8, 6 6, 6
r3 4, 8 8, 6 21, 14 12, 20 4, 12
r4 2, 2 14, 5 5, 6 12, 8 18, 20
r5 8, 4 12, 6 8, 8 16, 18 14, 14

Table 1: An example game matrix.

strategic and computational aspects of CAs. Although the equilib-
ria for some CAs, such as the Generalized Vickrey Auction, can
be solved directly, others have no known closed form solution. For
the latter class, we can discretize the strategy spaces and define the
corresponding normal form game, but we are soon faced with the
computational cost of computing the outcome of a combination of
bidding strategies. It is well known that, in general, solving the
winner-determination problemin a CA is NP-hard [2, 4, 21], and
for iterative CAs, this must be done many times.

Similar issues arise in many other real-world markets and multi-
agent decision making situations. One such example is the Trad-
ing Agent Competition (TAC) [25]. TAC is a test-bed developed
to challenge the research community to study strategic decision
making in multi-agent systems. The TAC family of games in-
cludes a supply-chain management scenario and a travel agent sce-
nario, both of which pit several software agents against each other
while trying to maximize their individual utilities. While the strate-
gies employed in TAC are heuristic in nature, abstractions of these
strategies could be formulated as a normal form game and reasoned
about. However, in the TAC games, like the combinatorial auctions,
computing the outcome of a a single cell in the matrix is costly: the
supply chain game takes 55 minutes to run, and the travel game
takes 15 minutes. In general, the complexity of specifying and
solving games has limited the application of game theory to small
models.

This paper proposes a novel approach to searching for pure strat-
egy equilibria in games that marries tabu search [5, 6] with best-
response dynamics. The approach sacrifices completeness to gain
the ability to work with partially specified payoff matrices. Be-
cause we use best-response dynamics, the algorithm is capable of
finding only pure strategyequilibria. Concepts from tabu search
are used to combat the cycling problem that often plagues the best-
response analysis. In addition, the tabu framework parameters give
the user control over some of the tradeoffs that can be made in
the search. Note that Nash’s original proof that equilibrium in fi-
nite, normal form games always exists [13] holds only by including
mixed-strategies. Thus, by limiting ourselves to looking at only
pure strategies, we may not be able to solve games in which the
only equilibria are mixed.

2. BACKGROUND

2.1 Best-Response Dynamics
Best-response dynamics is a means of looking for a Nash equi-

librium by iteratively letting each player select the best response
to their opponent’s current best strategies. To see how the process
works, consider the example game in Table 1. Assume the search
starts from the initial action profile{r1, c1}, which is clearly not
a Nash equilibrium because each player can benefit by unilaterally
deviating. Assume we analyze the column player first. The column
player’s best respsonse tor1 is c3, thus the current solution candi-
date becomes{r1, c3}. Now it is the row player’s turn, and he finds

c1 c2 c3 c4 c5

r1 5, 10 7, 6 8, 9 9, 8 4, 12
r2 0, 7 0, 3
r3 1, 5 Nash Eq. 3, 6
r4 3, 7 4, 8
r5 3, 12 6, 7 0, 0 3, 3 9, 5

Table 2: A game with a best-response cycle.

r3 is better to play when the column player is playingc3. From
{r3, c3}, the column player switches to{r3, c4}, and from there
the row player switches to{r5, c4}. {r5, c4} is a point in the space
of outcomes in which both player’s actions form best responses to
one another, and thus is a Nash equilibrium.

Note that different choices of starting locations or first agents
may lead to the other Nash equilibrium. If we had started the search
at{r2, c1} and let the column player search first, she would choose
{r2, c2}. From there, the row player would switch to{r4, c2} to
which the column player would respond by selecting{r4, c5}, thus
finding the second (and dominant) equilibrium to this game.

It is important to note that standard best-response dynamics may
not converge to a Nash equilibrium even if one exists. Table 2 is an
example of a normal-form game where starting the best-response
analysis from any of the corners creates a clockwise cycle, and fails
to find the Nash equilibrium in the middle of the matrix.

2.2 Tabu Search
Tabu search is one of many gradient search techniques designed

for large, combinatorial optimization problems. Tabu search was
first presented by Glover [5, 6] with additional formalization re-
ported by Hansen [8] and de Werra and Hertz [3]. Like hill climb-
ing, tabu search is a neighborhood search technique. Beginning
from a seed solution, the algorithm iteratively moves from one so-
lution to its best neighbor until a termination condition is satisfied.
The key enhancement of tabu search over hill climbing is the addi-
tion of atabu list, which records a subset of the recent solutions ex-
amined and which is used to prevent the search from backtracking.
This feature is particularly useful in search problems with many
plateaus or rugged topology.

The memory feature is typically referred to asadaptive memory
because the tabu list has a fixed size and old moves are removed
from the list once their tabu tenure is reached. The adaptive mem-
ory typically comes in two forms: explicit memory or attribute-
based memory.Explicit memoryrecords complete solutions and
prevents the search from returning to recently visited states. In
the context of our search through game matrices, explicit mem-
ory would record the joint strategies that define a particular cell.
Explicit memory is shared by all of the players.

Attribute-based memoryschemes record a feature of theopera-
tion that was used to move from one state to another, and which
cannot be repeated as long as it remains on the tabu list. For exam-
ple, in a graph optimization problem, attributes can be operations
on particular nodes or arcs, such as addition, deletion, or reposition-
ing. In the context of our problem domain, attribute-based mem-
ory becomes interesting when we have three or more players. An
attribute-based memory scheme would record that the row player
choseri and thus when it is the row player’s turn to respond, she
will not be allowed to selectri again.

Consider a game with three players: row, column and depth.
Suppose the tabu tenure is 2 and the row player responds to{r1, c1, d1}
by choosingr2. The actionr2 is placed on the row player’s tabu list.
Suppose the sequence of best responses that follows is{r1, c1, d1} →
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{r2, c1, d1} → {r2, c3, d1} → {r2, c3, d4} → {r3, c3, d4} →
{r3, c5, d4} → {r3, c5, d6}. Now it is the row player’s turn to
respond, andr2 is still be on row’s tabu list, thus the row player
is blocked from choosingr2 even if it is the best response to the
choices{c5, d6} made by the other players.

Attribute-based memory blocks a larger set of possible outcomes
than explicit memory, which can be both beneficial and harmful.
By blocking an operation instead of just a state, it can eliminate
a large number of inferior solutions and force the search into new
areas. The harm comes about if a better solution was in the set
entail by the blocked operation. To allow the search to select a
solution that may be covered by the attributes on the tabu list, an
aspiration criteriais used. When the value of the blocked solution
exceeds the aspiration criteria, the operation is permitted despite
its tabu status. Note that with this attribute-based memory scheme
each player maintains her own tabu list.

By allowing aspiration values below 1.0, tabu search can capture
some of the behavior of simulated annealing that allows it to escape
from local maxima. When a local maximum is reached that is not a
Nash equilibria (it is a local maximum only because better actions
for some players are currently on the tabu list), the algorithm can
permit a non-increasing move if the decrease in value to the agent
in question is within the tolerance. Note that, in general, when
using aspiration levels below 1.0 it is necessary to remember the
best solution found so far, in case we later move away from it and
don’t find one better. In the context of searching games, we do not
need to do this because we do not need to return to solutions that
are not equilibria.

3. TABU BEST RESPONSE SEARCH

3.1 Formal description
Consider ann-player game in normal form whereI is the set

of players. For each playeri ∈ I there is a nonempty setAi that
specifies the set of actions available to playeri. The number of
actions available to each player is denoted by|Ai|. Thus, the size of
the search space is

Q
i∈I |Ai|.Let x be an action profile consisting

of one action from each player. Letxi denote the action of player
i in the action profilex, andx−i denote the actions of all other
players inx.

For x∗ to be a Nash equilibrium, it must be that no playeri can
profitably deviate given the actions of the other players. That is,

(x∗i , x∗−i) �i (xi, x
∗
−i) ∀xi ∈ Ai. (1)

The tabu best-response search algorithm maintains a tabu list,T ,
with lengthL. In the case of attribute-based memory, each player
maintains its own tabu list,Ti. We use a neighborhood function
the returns all outcomes that can be reached by playeri unilater-
ally changing her action. Playeri has a method of evaluating her
best response to the actions of the other agents. Letβi(Ai|x−i)
be playeri’s best choice among its actions set,Ai, to the actions
of the other agents inx. When we are using explicit memory, let
βi(Ai|x−i, T ) be playeri’s best response excluding actions that
lead to solutions already inT . When using attribute-based mem-
ory, the best-response function isβi(Ai|x−i, Ti). For simplicity,
we assume thatβi(Ai|x−i, Ti) is sensitive to the aspiration criteria
and will admit actions inTi if they improve on the best solution.

Figure 3.1 shows the pseudocode for the algorithm when explicit
memory is used. When attribute-based memory is used, simply
replace theT ’s with Ti’s. One termination condition is that a Nash
equilibrium is found. It is also necessary to be able to terminate
without finding an equilibrium if, for instance, an upper limit on
the number of iterations is reached.

Initialize T to empty
Choose random starting solution,x
Until termination criteria is satisfied{

i← next player
x← {βi(Ai|x−i, T ), x−i}
remove oldest item inT if |T | = L
pushx ontoT

}

Figure 1: Pseudocode for tabu best-response with explicit mem-
ory.

c1 c2 c3 c4

r1 9, 5 3, 3 2, 5 4, 8
r2 6, 4 8, 8 3, 0 5, 3
r3 2, 2 2, 1 3, 2 4, 6
r4 4, 4 2, 0 2, 2 9, 3

Table 3: Another example game.

3.2 Example
To illustrate the algorithm, we present the example game in Ta-

ble 3. A standard best-response approach, when started from any
of the corners, would result in a cycle, and would be unable to find
the Nash equilibrium at{r2, c2}. Table 4 shows the five steps re-
quired by our algorithm to find the Nash equilibrium using explicit
memory and a tabu tenure of 3. The critical step occurs att = 3,
where the row player choose to deviate tor2 because the solution
{r1, c1} is in the tabu list. This breaks the best-response cycle and
allows the algorithm to find the equilibrium.

4. EXPERIMENTAL RESULTS
To test our algorithm we generated large normal form games us-

ing GAMUT, a suite of game generators designated for benchmark-
ing game-theoretic algorithms [14]. The GAMUT library includes
thirty-five base games from which a large number of well-known
game structures can be generated with variable numbers of players
and equilibria. We used different parameter settings in GAMUT
to generate both well known games and random games in normal
form which were fed into our tabu best-response algorithm.

Our overall objective is to speed up the process of finding Nash
equilibria, but rather than measure time directly, we chose two mea-
sures that are proportional to run time.

1. Percent of solution space explored:Because our approach
is motivated by games in which computing the payoffs for a
set of joint strategies is expensive, the most important metric
for our algorithm is the percentage of the search space that

t x Tabu List Best Response
0 {r1, c1} ∅ c1 → c4

1 {r1, c4} {r1, c1} r1 → r4

2 {r4, c4} {r1, c1}, {r1, c4} c4 → c1

3 {r4, c1} {r1, c1}, {r1, c4}, {r4, c4} r4 → r2

4 {r2, c1} {r1, c4}, {r4, c4}, {r2, c4} c1 → c2

5 {r2, c2} termination condition satisfied

Table 4: The five steps of applying the tabu best-response to the
example in Table 3.
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Figure 2: The maximum and average number of steps to con-
verge in random games with explicit memory, as a function of
the number of pure strategy Nash equilibria in the game.

must be explored in order to converge to a Nash equilibrium.
Note that this measure includes not just the candidate solu-
tions, but the solutions accessible by each agent’s possible
deviations. Thus, even if we seed the algorithm with a Nash
equilibrium, it must examine a certain number of cells in or-
der to confirm the equilibrium. If there aren players and
each playeri has|Ai| possible actions, then the minimum
value of the percentage solution space explored is

1 +
P

i∈I(|Ai| − 1)Q
i∈I |Ai|

2. Number of steps to converge:The number of steps is incre-
mented each time an agent changes its best response during
the search process. The minimum number of steps to reach
equilibrium is zero, and occurs where the seed solution itself
is a Nash equilibrium.

Our first set of experiments involved random games generated
by GAMUT. Each game had 5 players and 10 actions each, which
means the searchable solution space has105 cells. Keeping the size
of the game constant, we generated games with varied numbers of
Nash equilibria, creating several games of each type. We ran the
algorithm once from every possible initial seed, and tracked the
average number of steps to converge and the average amount of
the solution space explored for each game. We also include the
maximum values recorded.

Figures 2 and 3 show the average and maximum number of steps,
and the average and maximum percentage of the space examined
to find an equilibrium when using explicit memory as a function
of the number of equilibria in the game. Note that, as these are
random games–they have no inherent structure–and the number of
equilibria is a very small percentage of the searchable space (4 to
16 equilibria in 100,000 cells). Not surprisingly, when there are
more equilibria in the game, it takes fewer steps to find them and
less of the solution space is explored. It is somewhat surprising
how sensitive this relationship is. With four equilibria in the space,

0
10
20
30
40
50
60
70
80
90

100

4 8 12 16
Number of pure strategy Nash equilibria

%
 o

f s
tra

te
gy

 sp
ac

e 
ex

am
in

ed

Weighted average percentage of solutions explore
Maximum percentage of solutions explored

Figure 3: The maximum and average percent of the joint strat-
egy space explored with explicit memory, as a function of the
number of pure strategy Nash equilibria in the game.

nearly 45% of the space is examined before one is found. However,
with 16 equilibria, only 2% of the space needs to be explored.

Tables 4 and 5 show the same types of results when the algo-
rithm uses attribute-based memory. The shapes of the curves are
the same as for explicit memory, although attribute-based mem-
ory required approximately five times as many iterations to find
an equilibrium. On the other hand, the attribute-based approach
examined slightly less of the space to be examined, on average.
The worst case results, however, are somewhat discouraging for
attribute-based memory; for at least one run, when only four equi-
libria were present, the attribute-based memory had to fill in 98%
of the matrix to find an equilibrium.

Our procedure for evaluating the algorithm–starting at every pos-
sible seed and running until a solution was found–allowed us to col-
lect statistics on each equilibrium in the game. Table 5 shows statis-
tics for a five-player, ten-action random game with four equilibria.
The equilibria are labeled by a concatenation of the strategies (0–9)
in each player position. The statistics were recorded for a particular
game solved using explicit memory. Solution 64598 was the most
likely to be found, accounting for more than 96% of the termina-
tions. In contrast, solution 91904 was found in only 0.16% of the
searches. Neither the number of steps required to converge nor the
percentage of the space explored seem sensitive to the frequency
with which a solution is found; this suggests that the Nash equi-
libria don’t have nicely demarcated basins of attraction, but instead
the landscape is much more knotted.

The last two lines of Table 5 show counters kept during the
search process that measure the impact of the tabu features on the
best response search. The fact that the tabu condition is enforced
typically hundreds of times is evidence that the feature is block-
ing cycles in the best-response dynamics. Further, by running with
the aspiration criteria set below 1.0, we allowed the algorithm to
take non-improving moves which helped it move into new territory
when a best response was on the tabu list.

Table 6 shows similar data collected for a random game with
five players, ten actions, and six equilibria. Solution 49660 was by
far the most frequently found, and its statistics appear to be about
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Nash Equilibria
36473 64598 80337 91904

Number of times found 2550 96240 1050 160
Average number of steps 8484 5915 5764 2790
Maximum number of steps 11477 12137 10116 7726
Average percentage of solutions explored (%) 55.85 44.08 41.81 21.91
Maximum percentage of solutions explored (%)68.17 69.99 63.38 53.56
Average Number of tabu conditions 817.4 398.4 433 154.2
Average Number of non-improving moves 103.9 54.13 59.66 22.06

Table 5: Simulation results of running the explicit memory version of the algorithm on a 5-Player 10-Action random game consisting
of four Nash equilibria.
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Figure 4: The maximum and average number of steps to con-
verge in random games with attribute-based memory, as a
function of the number of pure strategy Nash equilibria in the
game.

half that of the popular solution in Table 5. This problem also had
two very infrequently found solutions (02835 and 42559) with very
small basins of attraction. It is a topic for future study whether the
mechanism that GAMUT uses to create random games produces
ones with best-response attractors, or whether it is a by-product of
our search method.

After studying performance on the random games, we ran our al-
gorithm on several games from the GAMUT library. We tried four
different input sizes of the Traveler’s Dilemma, Minimum Effort
and Covariant games. Note that these games, unlike the random
ones used above, have inherent structure that may make finding
equilibria easier. Figure 6 shows the average percentage of the
strategy space examined by the algorithm. Like the tests above,
the experiment involved starting the search from each point in the
search space. Overall, the results are very encouraging; the algo-
rithm explored less than 2% of the strategy space in all of the tests.
The Traveler’s Dilemma and Minimum Effort games, in particu-
lar, required very little exploration to solve. The covariance game,
which Porter, et al. [17] cite as being particularly difficult to solve,
took relatively longer.1

1In their case, they are looking for mixed strategies.
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Figure 5: The maximum and average percent of the joint strat-
egy space explored with explicit memory, as a function of the
number of pure strategy Nash equilibria in the game.

Although this work was inspired by the combinatorial auction
applications, we have only preliminary analysis of our algorithm
on that application domain, largely because of the computational
costs of doing so. We have several other research efforts under-
way in an attempt to reduce the costs of searching for equilibria
in combinatorial auctions. In addition to the applications of tabu
search in this paper, we have looked at metaheuristic approaches to
searching for an individual player’s best response [22] so that not
all possible actions are studied. We have also developed algorithms
that can more quickly compute exact outcomes of proxied combi-
natorial auctions [27], which is necessary to fill in the payoffs of
the matrix for evaluation that the former two methods choose to
inspect.

Our initial simulations have applied the tabu best-response tech-
nique to two iterative combinatorial auctions: the Ascending Pack-
age Auction[1] and the Ascendingk-Bundle Auction [26]. The
preliminary results show that the average percentage of the solu-
tion space explored varies from 13% to 39%.

5. RELATED WORK
As game theoretic concepts have been adopted by the artificial

intelligence community to model multi-agent interactions, there

1027



Nash Equilibria
02835 19745 36200 42559 46903 49660

Number of times found 30 1210 740 40 830 95270
Average number of steps 1.57 1114 1067 2.15 1033 2085
Maximum number of steps 2 2861 3065 4 2729 3649
Average percentage of solutions explored (%) 0.05 9.86 9.61 0.06 9.8 18.7
Maximum percentage of solutions explored (%)0.06 25.03 26.34 0.08 23.93 3.07
Average Number of tabu conditions 0 35.32 27.32 0.0 18.73 58.93
Average Number of non-improving moves 0 4.44 3.36 0.0 1.25 5.81

Table 6: Simulation results of running the explicit memory version of the algorithm on a 5-Player 10-Action random game consisting
of six Nash equilibria

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

10P-3A 8P-4A 6P-7A 5P-11A
Game size (players-actions)

%
 o

f s
tra

te
gy

 sp
ac

e 
ex

am
in

ed

Minimum Effort Travelers Dilemma Covariant

Figure 6: Effects of game type and size on the percentage of the
strategy space explored to find a Nash equilibrium.

has been a recent surge of interest in algorithms to compute equi-
libria. For example, Reeves, et al. [18] explore equilibrium in a
complex scheduling scenario using replicator dynamics. By assign-
ing populations to strategies, they are able to run simulations that
evolve mixed strategies. In their experiments, however, they are
able to apply the technique to problems with only a small numbers
of players and strategies before being overwhelmed by the compu-
tation. More recently, Reeves and Wellman [19] have developed a
method for computing equilibrium in infinite games (games with
a continuous strategy space) that has very attractive computational
properties.

Porter, et al. [17] propose an algorithm capable of finding mixed
strategy equilibria by searching over thesupportfor various strat-
egy profiles. They measured runtimes for games of similar size to
ours, although a direct comparison is difficult because we measured
iterations rather than run times in seconds.2 More importantly, the
critical difference between the two approaches is that our method
works on incomplete game matrices, while Porter’s method, like
most other methods, requires the complete game matrix.

2Comparing run times between experiments done with different
computing hardware and operating systems can easily be mislead-
ing. For instance, Porter, et al.’s experiments were run on a cluster
of 12 high-end linux machines, while ours were run on a medium-
range iMac.

An alternative to computing the Nash equilibrium of a complete,
complex game is to to eliminate much of the strategy space and
instead restrict attention to a subset of strategies. This approach is
adopted by Walsh, et al. [24] to study equilibrium in auctions and
other complex negotiation settings. Like us, they are motivated by
complex games in which the cost of computing the outcome of a
strategy profile is high. Walsh, et al.’s key contribution is the appli-
cation of information theory to the task of selecting which strategy
profile to evaluate next. Their approach differs from ours in several
ways, most importantly in that it assumes a symmetric and struc-
tured strategy space. It seems likely that aspects of the two tech-
niques may complement each other, which will allow us to come
up with more subtle approaches.

6. CONCLUSION
We looked at the relatively unexplored area of finding pure strat-

egy Nash equilibria using search techniques which are applicable
to situations where the size of the strategy space is very large and
where it is computationally expensive to compute the payoffs. Our
method is capable of filling in the strategy space as the search
proceeds, and employs features from tabu search to prevent best-
response cycling. It is difficult to offer theoretical guarantees about
the performance of this type of algorithm as there is a large perfor-
mance variation depending on the class of game and the number of
Nash equilibria that exists in the game. However, our experimental
results are encouraging and suggest that the technique significantly
reduces the number of cells that need to be evaluated, particularly
in games with structure.

7. REFERENCES
[1] L. M. Ausubel and P. R. Milgrom. Ascending auctions with

package bidding.Frontiers of Theoretical Economics,
1(1):1–42, 2002.

[2] S. de Vries and R. Vohra. Combinatorial auctions: A survey.
INFORMS Journal on Computing, 15(3):284–309, 2003.

[3] D. de Werra and A. Hertz. Tabu search techniques: A tutorial
and an application to neural networks.OR Spektrum,
11:131–141, 1989.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions:
Optimal and approximate approaches. InSixteenth
International Joint Conference on Artificial Intelligence,
pages 548–553, 1999.

[5] F. Glover. Future paths for integer programming and links to
artificial intelligence.Computers and Operations Research,
13:533–549, 1986.

[6] F. Glover. Tabu search: Part I.ORSA Journal on Computing,
1:190–206, 1989.

1028



[7] S. Govindan and R. Wilson. A global Newton method to
compute Nash equilibria.Journal of Economic Theory,
110(1), 2003.

[8] P. Hansen. The steepest ascent mildest descent heuristic for
combinatorial programming. InTalk presented at the
Congress on Numerical Methods in Combinatorial
Optimization, 1986.

[9] C. E. Lemke and J. T. Howson. Equilibrium points of
bimatrix games.Journal of the Society of Industrial and
Applied Mathematics, 12:413–423, 1964.

[10] R. McKelvey, D. Richard, A. McLennan, M. Andrew, and
T. Theodore. Gambit: Software tools for game theory. 2004.

[11] R. D. McKelvey and A. McLennan. Computation of
equilibria in finite games. In H. Amman, D. A. Kendrick, and
J. Rust, editors,The Handbook of Computational Economics,
volume 1, pages 87–142. Elsevier Science, B.V., Amsterdam,
1996.

[12] R. B. Myerson.Game Theory: Analysis of Conflict. Harvard
University Press, Cambridge, MA, 1991.

[13] J. Nash. Equilibrium points in n-person games.Proceedings
of the National Academy of Sciences, 21:128–140, 1950.

[14] E. Nudelman, J. Wortman, K. Leyton-Brown, and
Y. Shoham. Run the GAMUT: A comprehensive approach to
evaluating game-theoretic algorithms. InThird International
Joint Conference on Autonomous Agents and Multi-Agent
Systems 2004, pages 880–887, 2004.

[15] M. J. Osborne.An Introduction to Game Theory. Oxford
University Press, 2004.

[16] D. C. Parkes and L. H. Ungar. Iterative combinatorial
auctions: Theory and practice. InSeventeenth National
Conference on Artificial Intelligence, pages 74–81, 2000.

[17] R. Porter, E. Nudelman, and Y. Shoham. Simple search
methods for finding a Nash equilibrium. InAAAI-04:
Nineteenth National Conference on Artificial Intelligence,
pages 664–669, 2004.

[18] D. Reeves, M. P. Wellman, J. K. MacKie-Mason, and
A. Osepayshvili. Exploring bidding strategies for
market-based scheduling.Decision Support Systems, to
appear.

[19] D. M. Reeves and M. P. Wellman. Computing best-response
strategies in infinite games of incomplete information. In
Twentieth Conference on Uncertainty in Artificial
Intelligence, page 470478, 2004.

[20] M. H. Rothkopf, A. Pekěc, and R. M. Harstad.
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