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ABSTRACT

Agents often want to protect private information, while at
the same acting upon the information. These two desires
are in conflict, and this conflict can be modeled in strategic
games where the utility not only depends on the expected
value of the possible outcomes, but also on the information
properties of the strategy an agent uses. In this paper we
define two such games using the information theory concepts
of entropy and relative entropy. For both games we compute
optimal response strategies and establish the existence of
Nash equilibria.

Categories and Subject Descriptors
1.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-

tificial Intelligence—Multiagent systems; K.4.4 [COMPUTERS

AND SOCIETY]: Electronic Commerce—Security

General Terms
Theory

Keywords

game theory, privacy, utility, information theory, security,
entropy

1. INTRODUCTION

Information is valuable, and thus agents do not always
want to give it away. Both organisations and individuals
often want to keep certain information private. At the same
time they might want to act upon it. Does this reveal the
information? In this paper we study how agents should act
if they want to maximize their utility, while at the same time
not giving away too much information. We do this by defin-
ing two classes of games in which the utility for each agent
does not only depend on the payoff of the chosen action,
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but also on the information properties of the used strat-
egy. These games are called minimal information games
and most normal games and can be applied to the following
situations.

e Supermarkets and e-commerce shops register which
customer buys what. Customers know this and even
assist in this process by using so-called ‘bonus cards’
(Albert Heyn) or ‘club cards’(Tesco). Nevertheless
many customers are worried about their privacy. They
would prefer it if the shop knew less about them. Cus-
tomers can do something to minimize the knowledge
of the shop. First of all they can make their shop-
ping less regular (i.e. randomly buy items so that the
shop is not sure which products the customer actually
uses). Secondly they can sign up for more than one
card(account) or swap cards between each other. On
the Internet, deleting cookies at random intervals and
using a different IP number can have the same effect.

e In a second prize auction it is optimal to bid exactly
as much as you think the item is worth [11]. However,
you might have spent a lot of time to estimate the
value of the item, so you do not want to reveal your
estimate. Since your bid has to be public, it seems
that you might do better by bidding slightly random.
By modeling this as a minimal information game, one
can compute how one should randomise. A similar ar-
gument applies when you send out an artificial agent
to do your shopping. If the agent is sent over an in-
secure network, everyone can inspect the source code
and thus the bidding strategy of the agent. You might
not want to send an agent that is exactly optimal for
your preferences, in order to hide your preferences.

e Many public places are now guarded by closed circuit
television systems. If you come to one such place reg-
ularly, the camera attendants learn a lot about your
habits and thus about you. You feel this as a breach of
your personal privacy, and decide to hide your habits
by changing your behaviour often, for instance by go-
ing to different shops in a different order every time.
This situation can also be modeled as a minimal infor-
mation game. Again one can translate this example to
the domain of artificial agents and the Internet.

e Consider now the case of a criminal who wants to steal
from a shop guarded by a closed circuit television sys-
tem. He wants to look like a regular shopper, but has
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different goals. He thus wants to behave so that he
can steal the most, while at the same time appear to
be a normal shopper. This can be modeled as a most
normal game.

In this paper we define the two types of games mentioned,
the minimal information game and the most normal game.
As the similar setting of the last two examples suggest, these
two games are related. From these examples it should also
be clear that we assume that the strategies that agents use
are publicly known. This assumption makes our results
stronger (if you have privacy while your strategy is pub-
lic, you will have even more privacy when you can keep your
strategy secret).

Privacy has received a lot of attention from economists
or in a legal setting. Some key sources have been collected
on a website [1]. This paper differs from these economic
papers for two reasons. First of all we only deal with per-
sonal information privacy, whereas the word ‘privacy’ also
has other meanings. The second difference is that these pa-
pers try to explain the need for personal privacy in terms of
economic utility. Odlyzko for instance relates privacy and
price discrimination [14]. This paper is written under the
assumption that privacy is a fundamental value, that is not
instrumental to any gain. Privacy itself is a good cause that
can be enjoyed directly.

The games defined in this paper use a soft (probabilistic,
quantitative) approach towards information. They deal with
probabilities explicitly, and can make subtle distinctions be-
tween possible, likely and almost certain events. This soft
approach can be contrasted to the hard approach (discrete,
qualitative) of logic and model checking. When taking a
hard approach in protocol analysis, one is only interested in
what is possible and what not, with a complete disregard
for the relative likelihoods of different outcomes. Both the
soft and the hard approach have been used for multi agent
systems. The use of epistemic logic to understand the game
of Cluedo [17] is an example of the hard approach, as well as
other logical approaches to reasoning about knowledge and
knowledge change [8, 4, 16, 3, 19]. Recent work on privacy
preserving auctions [5] and work on the Dining cryptogra-
pher problem [6] or the Russian Cards problem [17, 18] can
also be classified as ‘hard’. At the same time there is some
work on reasoning about uncertainty [9, 10] that combines
logic and a soft approach to information. The soft approach
is more precise than the hard approach and in certain cir-
cumstances this is an advantage. The hard approach can
tell us that agents do best by randomising their strategy,
but does not indicate the exact probabilities of an optimal
strategy. On the other hand the higher level of abstraction
of the hard approach makes it easier to interpret the results.

The layout of this paper is as follows. Section 2 describes
a detailed example problem. The next section, section 3,
introduces basic information theory notions such as entropy.
Then we introduce strategic games in section 4. In section
5 we define minimal information games, and calculate the
best strategies in these games. In section 6 we do the same
for most normal games. Then we present our conclusions
in section 7. Finally section A of the appendix contains a
technical result that is not essential to the main argument
of this paper.

2. EXAMPLE

The following problem serves as an example. Alice (agent
1) needs to buy one box of breakfast cereals every week.
Every week she is faced with the following choice: whether
to buy Allgrain(A), Barley(B) of Cornflakes(C'). Alice is
not indifferent to which brand she eats. In fact she likes A
better than B and B better than C, as is indicated by the
following matrix of utilities.

action | A B C |
utility | 3.0 | 2.0 | 1.0 |

If Alice is solely interested in maximising her expected
utility, she should buy A every day. However Alice knows
that the shop is watching her shopping behaviour closely,
and she is concerned about her privacy. She decides that
the decision that she makes should be private, and she can
achieve this by flipping a coin and letting her decision de-
pend on this coin flip. This way the shop cannot predict her
decision.

Alice first attempts to use the following random strategy.

action A B (@)
probability | 0.98 | 0.01 | 0.01

If Alice uses this strategy, then the shop does not know
anything about her decision: all three actions may occur
with positive probability. At the same time her expected
payoff is still very high, because the suboptimal actions oc-
cur with a very low probability. Problem solved, so it seems.
But this is not the whole story. Even though the shop does
not gain any knowledge, it does gain information from this
strategy. If the shop learns, from repeated observation, that
Alice uses this strategy, then it is quite certain that she will
buy A. Therefore the shop has gained quite a lot of infor-
mation. Therefore the indicated strategy is not the right
strategy if one analyses the situation using information the-
ory.

One can argue that if Alice is concerned about her privacy,
then that fact should be represented in her utility function.
This is not possible, because the utility function can only
express properties of single actions, whereas privacy is a
property of the whole strategy. One could also decide to
include an extra player that tries to guess Alice’s actions. It
is however not clear how one should estimate all the variables
that one needs for this larger game. These consideration
have convinced us that it is easier to treat privacy as an
independent aspect of an agent’s utility.

3. INFORMATION THEORY

Information theory is the field of science that deals with
the measurement of information [7]. It has applications
in signal processing,communication networks, cryptography
and error correction codes. In this paper we use informa-
tion theory, and its central notion entropy, to estimate the
amount of information in strategies. Strategies will be mod-
eled as stochastic variables ranging over a finite set of ac-
tions, so we define entropy over stochastic variables. The
entropy of a stochastic variable is the amount of random-
ness in, the disorder of, or uncertainty about the value that
the variable will take. The concept of entropy was intro-
duced by Shannon [15], and it is widely seen as the most
natural measure for information [7]. We define the following
function f(z, y), that is helpful for the definition of entropy.
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Figure 1: The function E((z,1 — z))

Let lg be the base 2 logarithm.
0 ifr=0andy=0
flz,y)=¢ oo ifx>0andy=0
—zlgy ifz>0andy >0

For a random variable X we define the entropy E(X), which
is measured in bits, in the following way.

E(X) = 3" F(p(X = k), p(X = k))

A random variable X with values in the domain {1,2,..., m}

can be specified by giving a vector of length m with the prob-
abilities of each value: (p(X = 1),p(X = 2),...,p(X =
m)). For a mixed strategy, the numbers {1,2,...,m} rep-
resent the available actions. A requirement for probabil-
ity measures on stochastic variables is that the probabilities
should add up to 1. We can thus only use vectors z that
indeed add up to 1. Define the sets P™ and Q™.

P" ={z €[0,1]" Zz =1}
Q" ={z € (0,1]"] Z z =1}

The set P™ contains all vectors of length m that add up to
1, and Q™ contains all vectors that add up to 1 and do not
take the value 0. The set Q™ is important in some of the
proofs, but often we work with the more general set P™.
We can apply the notion of entropy to probability vectors
zeP™.

E(z) = Zf(kak)
3

In figure 1 the function E((z,1 — z)) is displayed. In the
context of strategies, a strategy with a higher entropy leaves
observers with more uncertainty, and thus gives the agent
that uses that strategy more privacy. Below we give five
examples of entropy. The example strategy vectors can all
be seen as strategies over three basic actions. A strategy
(a, b, ¢) contains the probability a of selection the first ac-

tion, b for the second action and ¢ for the third.
E((1/3,1/3,1/3)) = 1.585 bits
E((0.5,0.25,0.25)) = 1.5 bits
E((0.5,0.5,0)) = 1 bit
E((0.98,0.01,0.01)) = 0.161 bits
E((1.0,0,0)) = 0 bits

Pure strategies, in which only one action gets a positive
probability, have an entropy of zero bits. The entropy func-
tion is bounded. It cannot be negative, and a vector z of
length m can have at most an entropy of Ig m. It has this en-
tropy if all the entries x; are equal to 1/m, thus if the vector
represents a stochastic variable with a uniform distribution.
The second idea that we use from information theory is
relative entropy [7]. The function r(z,y) can be used to
compare two probability vectors z,y € P". The underlying
idea is that r(z, y) measures how much difference one would
notice if probability vector z is used instead of y for selecting
actions. In order to compute this difference, we add up the
differences for each action k. Using Bayes’ law one can derive
that the relative likelihood of strategy x instead of strategy
y when observing that action k is chosen is zx/yr. This
observation is the motive behind the following definition.

r(z,y) =Y f (e, ge/on)
k

The function r almost behaves as a norm or distance func-
tion. It is never negative and only zero if x = y. It is
infinite if for some k£ it is the case that xz; > 0 and y; = 0.
The only difference between this function and a distance or
norm function is that r is not symmetric. In many cases

r(z,y) # r(y, z).
7((0.5,0.5), (0.75,0.25)) = 0.2075 bits
7((0.75,0.25), (0.5, 0.5)) = 0.1887 bits
7((0.9,0.1), (0.75,0.25)) = 0.1045 bits
((0.75,0.25), (0.9,0.1)) = 0.1332 bits

If £ has a higher entropy than z’, then on average for a
random vector y it is the case that r(y,z) < r(y,z’). It is
harder to notice a difference between y and a high entropy
vector z than to notice a difference between y and a low
entropy vector z’.

4. STRATEGIC GAMES

Games can be presented in different forms. A very natural
but detailed form is as an extensive game. In this form there
are a number if decision points in each play of the game,
and the outcome is determined by all these decisions. This
model is too detailed for our purposes. Therefore we study
games in strategic or normal form. In this form, each agent
has a number of strategies available at the beginning of the
game, and each agent independently picks a strategy. We
can calculate the utility of each agent in the game directly,
without going into details which actions have been played.
The general definition for an n-agent normal form game is
the following. We let ¥ be the set of all agents, and assume
that ¥ ={1,2,...,n} for some n > 0.

DEFINITION 1. A game G is a tuple (X, {S}s, ) where
for each X € X the set Sx is a set of strategies for agent X,
and 4 : (S1 X ... X Sy) — R¥ is a utility function.
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Each agent tries to maximize its utility. The sets of strate-
gies do not have to be finite. A vector § = (s1,...,8n) is
a strategy vector for game G if G = (X,{S}s, ) and for
all ¢ we have s; € S;. If t € S then we define [s_;,t] =

,Sn] as the strategy vector where s;
1

[517 ceey Si—1, t, Sj41y. .-
is replaced by t. For example [(a, b, ¢)—2,d] = (a, d, c).

We assume that every agent X always has a finite number
of basic actions mx to choose from, and that the total util-
ity of a strategy somehow depends on the payoff of each ac-
tion. The payoff of each action is typically given in the form
of a matrix A. Since the number of agents may be larger
than two, we extend the idea of a matrix to the following
definition of a multi-matrix. A m1 X ma... X m, multi-
matrix is a function A such that for each vector #1% ...
with 4; € {1,...,m;} and X € {1,...,n}, the function A4
returns a real number AX(il #1...9,) € R. The expres-
sion A(itis...4,) denotes a real vector v € R¥ such that
v = Al(il B2...10p), U2 = A2(i1 i2 ... 1) etcetera.

For a given multi-matrix A one can define different games.
The simplest type of game is the pure strategy game. In this
game the strategy of each agent X consists of a single action
ax and the payoff is then A(a1 ... an). This definition does
not allow agents to play randomly. For our purposes this
definition is thus too restrictive. In a mixed strategy game,
the strategy of an agent is a probability distribution over
the available actions. The payoff is the expected (weighted
average) value of A. This type of game is defined in the next
definition.

The shorthand A (3) denotes the expected payoff of ac-
tion 4 for agent X when the other agents use strategies from
3. It can be defined in the following way. Define the set
VX = {¥|lvy € Sy,vx = i}. Thus this set contains the
pure strategy profiles in which agent X selects action 3.

Az)((g) = Z (v + Sux_1Svx41 """ svn)AX(ﬁ)

gevyX

DEFINITION 2. Let A be a m1 X ma ... X my, multi-matriz.
The mized strategy game Mx(A) of A is a tuple (X,{S}s, L)
where 3 = {1,2,...,n}, the strategy sets are Sx = P"X and
4 (@) =32, s AT ()

The fact that agents can play mixed strategies is explicitly
defined in this definition of a mixed strategy game. We as-
sume that all agents are equipped with random number gen-
erators (coins, dice or whatever) so that they can randomize
their behavior exactly as specified in their strategy.

The central question in game theory has always been the
question about the ‘solution’ of a certain game. Intuitively
the solution is the strategy vector containing the best possi-
ble strategy for each agent. However not every game has a
unique solution in this sense. Therefore game theorists work
with different solution concepts. One of the best known is
the Nash Equilibrium. Every mixed strategy game has a
Nash equilibrium, but very often it is not unique.

For the next definition we need the function argmax that
returns all inputs that maximize a given function. Thus

Tt is a game-theoretic convention that s_; denotes the vec-
tor s with the jth element removed. Thus (a,b,c)—2 =
(a,c). The construct [s,z] is used to denote the vector
s with z inserted in an appropriate place: [(a,c),d] =
(a,d,c). Determining what the appropriate place is can
be difficult, therefore I only define the combination of these
two constructs.

argmax, f(z) = {z|-3y : f(z) < f(y)} We use the function
argmax to define what a ‘good’ strategy is: A good strategy
is a strategy that returns a maximal utility. The function
bX returns the set of best response strategies for agent X
for a given game and strategy vector.

DEFINITION 3. Let (3, {S}s,p) be a game and § € (] Sx)

a strategy profile. The best response b(5) is defined as b(5)
b1 (5) x - -+ x b"(5)) where each term b~ is defined as

b¥(8) = argmax, U~ ([s_x, t])

The set b(S) thus contains the strategy vectors ¢ such that
tx is optimal if all opponents Y use the strategy sy. In a
decision theory problem we could assume that the strategy
of the opponents is fixed. The set b*(5) is the set of best
decisions for agent X. In game theory things are not that
simple, because the other agents might want to change their
strategy once they learn that X uses a strategy in U (3).
However this interaction is nicely captured by the definition
of a Nash equilibrium.

DEFINITION 4. Let (3,{S}s,4) be a game and 5 € (J]y Sx)
a strategy profile. The vector S is a Nash Equilibrium iff
5€b(3)

Every mixed strategy game has at least one Nash equilib-
rium [13]. There has been some discussion in the literature
whether the notion of a Nash equilibrium needs to be re-
fined. Several refinements have been proposed, but none of
them have the appealing simplicity of the Nash equilibrium.

5. MINIMAL INFORMATION GAMES

The next definition of a minimal information game aims
to capture the following situation. Agents choose a mixed
strategy with two goals in mind. First of all they want a
high payoff. Secondly they want privacy. They feel that
they have more privacy if others are more uncertain about
the action they will choose, and thus they prefer strategies
with a high entropy. These games thus model the situation
where agents have a fundamental desire for privacy.

We have to specify how the agent would like to trade
privacy against payoff. This is governed by a parameter
a > 0 that indicates the value of privacy. It expresses how
much expected payoff the agent is willing to trade against
a bit of privacy. The higher «a, the more the agent values
privacy.

DEFINITION 5. Let A be a m1 X ma ... X m, multi-matriz
and a > 0. The minimal information game Mi%(A) is a
tuple (3, {S}o,U) where X = {1,2,...,n}, the strategy sets
are Sx = P™ and UX(3) = 3. s¥ AX(3) + aB(sY)

The parameter o regulates how much all the agents value
the fact that there is uncertainty over their next action. If
we would allow a = 0, then the game becomes a mixed
strategy game: Mi’(A) = Mx(A). As « approaches infinity,
the actual payoff becomes less and less important. It would
have been possible to choose « differently for each agent,
but this would have made the definition less clear. One can
always scale the utilities in such a way that one value for «
works for all agents.

As an example, we consider the shopping game from the
introduction. This game has only one agent, that has three
options A, B, C' with respective payoffs 3,2,1. The optimal
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strategies for the minimal information game with different
values of « is given in the next table. It also lists the utility
of s that the agent would get in the mixed strategy game
Mx(A) for the given strategy s and the utility that the agent
would get in the minimal information game Mi®(A).

a | p P2 s Mx(A4) Mi%(A)
0.1]0999 4-107°> 2.107° 3.0 3.0
0.5 | 0876  0.117 0.015 2.852 3.168
1.0 | 0.665  0.244 0.090 2.575 3.775

The best payoff that the agent can get is 3.0 by only choos-
ing the first action. However this would result in no privacy,
because if everybody knows that the agent uses this strat-
egy, then any observer knows beforehand what the agent
will do every day. For a low value of a the utility of s in
Mi*(A) is very close to this optimal value of 3. For higher
values, the average payoff without entropy becomes lower.
We could call this the cost of privacy. From the table we
can see that if the agent values privacy at one unit per bit
(a is expressed in units per bit) then the agent does best by
paying 0.425 in order to obtain 0.775 bits of privacy.

The question is of course how we can calculate the strate-
gies that maximize the utility in minimal information games.
For the linear functions of the mixed strategy games this is
a solved problem, but for more complicated functions, such
as the utility function of a minimal information game, this
can be difficult. In the next theorem the solution for this
optimisation problem is shown.

THEOREM 1. Let Mi%(A) be a minimal information game

and 3 a strategy profile. The set b™(3) is a singleton {b}
such that

2or1Af<(§)
- Zk 9a~1AX(5)

PRrROOF. Let Mi%(4) = (X,{S}s, ) be a minimal infor-
mation game. We have to prove that the set b~ (8) contains
one element, and that that element is described by the given
formula. We first show that all points in b% () are interior
points. Then we derive an equation that any best response
must satisfy, and show that this equation has a unique so-
lution, namely the one given in the theorem.

Let n be the number of actions that agent X can choose
from. Take any vector Z € Sx and assume that ¥ € P"\ Q".
We are going to show that there is a better vector §, and
thus 7 is not a best response. There is some ¢ such that
z; = 0 and some j such that z; # 0. We will show that
there is some e such that § = [[z—i,€]—j,z; — €] is a bet-
ter vector: UN([_x,7]) > U*([5_x,7]). To show this,
note that the utility function 4% is continuous and dif-
ferentiable. Note further that - 4% ([3_x,Z]) = +oo and

ox;
%LLX([ELX,J?]) < 400. Therefore, for sufficiently small e,

b;

the gain from raising z; outweighs the potential loss from
lowering x;. Therefore for sufficiently small € we have that
U ([5x, 7)) > U¥([5-x, 7)) and thus Z ¢ b¥ (5).

Now suppose that b € b (5). We know that b € Q™. Take
i,7 € {1,2,...,m} as two different indices. Since b is opti-
mal, it should not be possible to increase 4* by increasing
b; while decreasing b;, and therefore for any optimal point
it must be the case that (Sibzﬂx([ix, b)) = %ﬂ.x([?_x, b]).
We can use this as a starting point for the following link of
equations. Fist we compute the derivative %ﬂx([ix, b]).

0
0b;

() B A (5, ) + B () =

U ([5-x, b)) =

AX ) + g (B() =

AX(G) 4+ a(=1gb —lge) =
AX(3) —algh —alge

Using this derivative one can reduce the equation given
above in the following way.

5f)iux([§_x, b)) = éibjux([g_x, b)) o
AF () —algbi = AF(3) —algb; &
AX(3) — AF(5) = alg b —algb; &
24% (3) b
A ® b

Since b € P" it must be the case that b sums up to Zl b, =
1. For any b € b(5) one can find some positive constant ¢

such that b; = ¢ - 907" AT @) | It now follows from the1 a?(ove
equation that for any b; it is the case that b; = 2% 47 (¥,

We can now calculate >, by =1=1¢)_, 2724% ) and thus

we know that % =3 227" 4¢3 Thus we have proven

that there is a unique point b € b (5) which satisfies the
equation in theorem 1 [

THEOREM 2. Every minimal information game Mi%(A)
has a Nash equilibrium.

PRrROOF. Let f be the function from S; X ... x S, to S1 X

. X S, that returns the strategy vector with the best re-
sponses for each agent. Thus f is the function that for each
x returns the unique point f(z) such that f(z) € b(z). The
previous theorem shows that this is a continuous function.
The set S1 X ... Sy is topological isomorphic to some closed
sphere B™. We can now use Brouwer’s fixed point theorem,
which tells us that every continuous function f : B™ — B™
must have a point z with f(z) = z [2]. We thus obtain a
strategy vector z with f(z) = z, and thus a point z such
that z € b(z). This point is a Nash equilibrium. [J

6. MOST NORMAL STRATEGIES

So far we have discussed the situation in which the agents
try to protect their privacy against an opponent interested in
their next action. In this section we look another situation,
in which agents try to hide their preferences. The assump-
tion is here that an average strategy for ‘normal’ users is
given. One agent however has different preferences from the
normal users, but does not want to be identified as not nor-
mal. Therefore the agent is searching for a strategy that
appears as normal as possible and maximizes its payoff at
the same time.

We approach the problem in exactly the same way as we
have approached the first problem. We define most normal
games Mn®(A) that depend on a parameter o expressing
how important normal behaviour for the agent is.
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DEFINITION 6. Let A be a mi X ma...X my, multi-matriz,
let a > 0, and let  be a strategy vector for the game Mx(A).
The most normal game Mn®(A, ) is a tuple (3, {Sx},4)
where ¥ = {1,2,...,n}, the strategy sets are Sx = P™X
and X (3) =3, sF AK(3) — ar(s™,tY)

The parameter o again determines the trade-off between
selecting actions with a high payoff and acting normal.

THEOREM 3. Let Mn®(A, %) be a most normal game and
% a strategy profile for this game. The set b (3) is a single-
ton {b} such that

tz_xzaflAf(;)

L 3, ti{?“_l‘“i'(G)

PROOF. Let Mn®(A4, ) be a most normal game, 3 a strat-
egy profile and X € ¥ an agent. Suppose that b € b* (5) is
the best response for agent X and let i be one of B’s actions.
If t; = 0 and b; # 0, then the relative entropy becomes in-
finite, and the utility thus infinitely low. This cannot be
optimal, thus if b maximizes the utility, then ¢; = 0 implies
b; = 0. Thus in this case the optimal point is not an interior
point. It follows that if ¢, = 1, then for any optimal strategy
b we must have b; = 1.

Consider now the case where t; > 0. We calculate the
derivative of the relative entropy function.

0 xy O ) X N — ) X
5—bir(b,t )7%12; bi(lgt —lg b)) =lg b, +1ge—lgt;

We see that if b; > 0 approaches zero, then this derivative
becomes negative infinity. If b; is sufficiently small, then we
would lower the utility 4% ([5_x, b]) by decreasing b; further.
Therefore for any optimal value of b, it cannot be the case
that ¢ > 0 and b; = 0.

Since we have shown that t; = 0 implies b; = 0, it remains
for us to find the optimal vector in the space S = {b €
[0,1]™[>,bi = 1A (ti = 0 — b = 0)}. The previous
argument has shown that b is an interior point of this set
S. Such points can only be optimal if (S%ZL(X([ELX, b)) =
(%LLX([E'_X, b]) for any pair ¢,j with ¢,¢ > 0. The next
computation will show that there is a unique point satisfying
this condition. Since any continuous function on a closed
domain must have a maximum, this point b will maximize
agent X'’s utility in the normal form game.

First we calculate the derivative.

oo
o (5, ) =
X o 0 Xy
A7 (3) aébir(b,t )=

AY(E) —a(lgh +1ge —1gt’) =
A (5) —algh —alge+algt)

Now find the points b where the derivatives %L(X and

5 (X
6—%11 are equal.

L _ 8 xe
ke ([sfx,b])—dbjil ([8-x,b]) &
AX(F) —algh +algt] = AX(3) —algh; +algt) <
alg(bi/b;) — alg(t /") = AL (5) = AT (5) &

b e e
b gxoe AT
Again we can choose ¢ such that b, = ctix2a71Af((§) and

show that 1/¢ = ", t32a71A§(§>. This leads to the next
formula.

(X oo tAK (®)
This formula gives us b; = 1if t;, = 1, and b; =0 if ¢;, = 0.

Therefore this formula gives us the optimal strategy for any
normal form game. [

Discussion

One consequence of the theorem is the following observation.
If a certain action i is not considered by normal agents (¢ =
0) then the non-normal agent should not consider action 4
either (b; = 0). If one had used a hard, logical approach
one could have reached the same conclusion. In the most
extreme case one can consider the case where normal agents
use a pure strategy. In that case the non-normal agent has to
use the same pure strategy. If the non-normal agent values
all actions equally, he also does best by copying the normal
strategy. In all other cases the best strategy for the non-
normal agent is different. Apparently the agent does best
by always taking some risk and getting a higher utility.

7. CONCLUSION

Two new kinds of games have been defined. First of all
minimal information games, in which agents want to max-
imize the uncertainty that observers have over their next
move. Secondly most normal games, in which agents want
to behave as similar as possible to an existing ‘normal’ agent,
while maximizing their payoff. In order to do so we borrowed
the concepts entropy and relative entropy from information
theory. In two theorems we have shown what the optimal
best responses are in these games. These turn out to be
unique in each situation, and to depend continuously on the
payoff matrix and the opponent strategies. From this con-
tinuity one can derive that Nash equilibria exist in these
games.

Minimal information games can be used to analyse situ-
ations with privacy-minded agents. If agents attach some
value to privacy, the best strategy always gives them some
privacy.

In most normal games, the situation is slightly more com-
plicated. How well the non-normal agent X can do depends
very much on the strategy that normal agents use. If the
normal agents use a pure strategy, then X has no choice but
to adopt the same strategy. The situation however becomes
a lot better if the normal agents are privacy-minded. In this
case they choose a high-entropy strategy, and this leaves the
wanting-to-be-normal agent a lot of room to pursue its own
agenda.
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One can extend the work in these games in several ways.
First of all it would be interesting to look at experimental
data, to see whether most-normal or minimal-information
strategies are used in the real world. Secondly one could
implement these strategies in order to obtain privacy. The
question is then whether the soft approach to privacy is what
users want. A small simulation is available at:
www.bluering.nl/sieuwert/programs/privacysim/simprivacy.html

On a theoretical side, it seems that these games give ap-
proximations to the Nash equilibrium with very nice techni-
cal properties. Two of these properties are continuity of the
best response function and the fact that best responses are
always interior. In the appendix of this paper we already
use minimal information games to define a refinement of the
Nash equilibrium, as an example of how these properties are
technically useful.
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APPENDI X
A. EQUILIBRIUM REFINEMENTS

In this appendix a refinement of the Nash equilibrium is
defined in order to make some technical observations.

By introducing minimal information games we have intro-
duced a game with a new kind of utility function. For small
values of a the game Mi*(A) is very similar to the mixed
strategy game Mx(A). One can, with some imagination, see
a Nash equilibrium z of Mi*(A) as a solution of Mx(A). In
that case, one has a new solution concept for mixed strat-
egy games Mx(A). Such a solution z of some game Mi“(A)
is not a Nash equilibrium of Mx(A), but an approximation
of it. How good this approximation is depends on the pa-
rameter a. We can define a Nash equilibrium by letting «
approach zero. This way, we can define a ‘minimal informa-
tion’ equilibrium.

DEFINITION 7. The strategy profile z is a minimal infor-
mation equilibrium of Mx(A) iff there is a sequence a1, az, . . .
of positive numbers such that lim;—..c a; = 0, a sequence
x1, 22, ... such that x; is a Nash equilibrium of Mi% (A) and
lim; ooz = .

THEOREM 4. Every mized strategy game Mx(A) has a
minimal information equilibrium.

PRrROOF. Define the sequence 1, B2, ... by 8; = 1/i. This
sequence converges to zero. By theorem 2 each game Mi® (4)
has some Nash equilibrium y;. The strategy space Si1 X
... x S, is a closed and bounded subset of R™ for some m.
Therefore, since any closed and bounded subset of R™ is
compact [20} we derive that every sequence in S1 X ... X S,
has some converging subsequence. Let zi,z2,... be a con-
verging subsequence of 1, y2,... and let z be the limit of
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lim; oo #;. Let ag, az, ... be the corresponding subsequence
of B1,B2,..., so that z; is a Nash equilibrium of Mi% (A4).
When a approaches infinity, the utility function of Mi% (A)
converges uniformly to the utility function of Mx(A4). Since
z; is always maximizing each agents utility in Mi® (A), it
must be the case that z maximizes the utility of Mx(A) for
each agent. Therefore z is a Nash equilibrium of Mx(4). O

Every minimal information equilibrium is a proper equi-
librium as defined by Myerson, and therefore it is also a
trembling hand perfect equilibrium [12]. These refinements
can thus be motivated (if one wants to) by an appeal to pri-
vacy minded agents. Perhaps there are other applications
where one needs a response concept that selects interior so-
lution points, for instance to avoid division by zero. In that
case the minimal information best responses seem suitable.
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