
Predicting Possible Conflicts in Hierarchical planning for
Multi-Agent Systems

Toshiharu Sugawara1 Satoshi Kurihara2 Toshio Hirotsu3 Kensuke Fukuda4 and
Toshihiro Takada1

1NTT Communication Science
Laboratories

4NTT Network Innovation Laboratories
2–4 Keihanna City,Soraku-gun

Kyoto 619-0237, Japan

{sugawara,fukuda,takada}@t.ecl.net

2Inst. of Scientific and Industrial
Research

Osaka University

kurihara@ist.osaka-
u.ac.jp

3Dept. of Information and
Computer Sciences

Toyohashi University of
Technology

hirotsu@entia.org

ABSTRACT
This paper proposes a learning method to select the most
appropriate abstract plans during hierarchical planning in
the context of multi-agent systems (MAS). In hierarchical
planning, a plan is first created at the most abstract level,
and is then refined to a more concrete plan, level by level.
Thus, selecting an appropriate plan at the abstract level is
very important because the selected plan restricts the scope
of lower concrete-level plans. This restriction can enable
agents to create plans efficiently, but if all the plans un-
der the selected plan contain serious and difficult-to-resolve
conflicts with other agents’ plans, the resulting plan does
not work well or is of low quality. We propose a method
in which, from the conflict pattern among agents’ plans, an
agent learns which abstract plans will cause conflicts with
less probability or which conflicts are easy to resolve, thus
inducing probabilistically higher-utility concrete plans after
conflict resolution. We also show some experimental results
to evaluate our method, with the results suggesting struc-
tures of resources where tasks are executed.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
genceMultiagent systems

General Terms
Theory

Keywords
Planning, Coordination, Cooperation, Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
Our project focuses on applications using ubiquitous net-

works/computers with many types of sensors and a num-
ber of effectors/robots[15]. In this application, a number
of agents are located in sensors, effectors, robots, PCs and
other appliances. They predict persons’ activities from sensed
data and assist these activities through a system embedded
in the environment. To develop this kind of assistance, an
agent has to construct a series of actions (or programs).
Planning in AI involves a process for generating a plan that
is a course of actions designed to achieve a given goal from
a specific initial state. Thus, a plan can be considered an
abstract form of programming. Planning for agents’ actions
is a key issue in our application domain [13].

Agents should generate their own plans within a reason-
able time because people will complete their intended ac-
tions without waiting. Additionally, the processes for con-
flict detection among resources in agents’ plans and their
resolutions are necessary in the context of multi-agent sys-
tems (MAS). This MAS issue reflects the fact that a number
of persons will act in the environment in parallel. For effi-
cient planning, we adopt hierarchical planning[3, 7, 11] using
the decision-theoretic planning (DTP) approach[5]. More-
over, both descriptive information and utility are used for
plan generation. An abstract plan is first created, and its
individual action is refined, level by level, into a sequence
of concrete actions (refinement) based on description infor-
mation such as pre- and post-conditions. Because there is
usually a number of refinements for each abstract action, the
planner in an agent selects the appropriate one to maximize
the value of the utility U(p), where p is the finally generated
plan, that is, the sequence of primitive actions.

However, the utility-based selection of actions/plans does
not always lead to good results in MASs. If many possi-
ble conflicts are found, additional processes for avoiding the
conflicts (conflict resolution) are invoked and some extra ac-
tions (such as waiting for synchronization and detouring)
are added to the plan as a result of this process. Thus,
the second- or third-best plans that cause no conflict might
be better for overall performances from the global multi-
agent viewpoint. Furthermore, the determination of which
actions easily cause conflicts depends on the environments
where agents are deployed. Thus, it is impossible to provide
this kind of utility for all possible situations in any envi-

813

ronment. Agents are therefore required to adaptively select
refinements of their abstract plans by learning from past
experience, to some extent.

In particular, appropriate selections of actions at the ab-
stract levels are essential in hierarchical planning, since an
abstract plan restricts the subsequent refinements at more
concrete levels. If the most appropriate refinement existed
under another abstract plan, it would never be selected; in
this case, the agent has to cancel the resulting plan and re-
turn to the abstract level, or give up the effort to generate
an acceptable plan.

In this research, we introduce the patterns of conflicts at
a certain abstract level called the screening level. Then we
introduce an additional negative utility, called conflict dis-
count, that cumulatively predicts, from screening-level plans
and conflict patterns, the cost of resolutions and the qual-
ity/performance of the resulting plans with the possibility of
conflicts in the subsequent refinement processes. The con-
flict discount is initially given as 0, and then it’s learned by
some statistical learning method to estimate more appro-
priate refinement at the screening level. We assume that
the initial utility results in appropriate plans for the single-
agent cases. This may also lead to satisficing plans, but
it’s not optimal in the MAS context, and thus agents learn
the conflict discount for the environment to select appropri-
ate screening-level plans when combined with the original
utility.

This paper is organized as follows: First, we discuss how
to apply the case described above to our application sys-
tems. We then explain the process of conflict detection and
resolution. Following that, we introduce conflict patterns
to classify situations of conflicts with other agents’ plans.
Finally, we present the experimental results obtained in a
simulated laboratory and state our concluding remarks.

2. BACKGROUND

2.1 Hierarchical Planning in a MAS Context
In hierarchical planning, plans are generated based on

an abstract hierarchy of the domain model, which includes
tasks and resources (Fig. 1). Initial states and goals are
first described in the most abstract (or uppermost) model,
and a number of task sequences are generated to achieve
these goals in this model. (An example of the task hierar-
chy established in accordance with the model hierarchy is
shown in Fig. 2.) This plan generation is usually based on
the descriptive information represented in the corresponding
model. One of the sequences is selected according to a par-
ticular planning strategy (the utility is used in the case of
DTP), and then each task in the sequence is further refined,
that is, the sub-task sequences in the less-abstract model for
achieving the task are generated. These sequences are called
refinements of the task.

This refine-and-select process is subsequently iterated un-
til all tasks in the sequences have been refined to primitive
tasks that are expressed in the lowest model and that di-
rectly correspond to executable forms of programs and pro-
cedures. Higher-layer (more abstract) models are simpler
and thus do not contain complete information, but they are
appropriate for understanding the global and long-term pic-
ture of activities. Naturally, the lower-layer models are more
informative and complicated, but they are used for detailed
descriptions of local and sectional plans.

Level 1

Level 2

Level 3

Level 0

(Higher)

(Lower)

(The level 0, the most
abstract, is the floor map
where any room is
expressed as an entity)

Level 0

Region R

Region R2

1

: obstacles

Figure 1: Example of Hierarchical Description.

....

....

Move(room1 to room7)

Move((A,B) to (B,B))

Move((a,b) to (b,b))

Move((1,2) to (1,3))

SenseEvent(S (A,B))human

SenseEvent(S (a,b))human

SenseEvent(S (1,2))human

....

....

....

S (A,B) : the set of human sensors covering
 the area (A,B) at the level 1

human

Other Tasks (related to sensors): GetSensorData(*), ControlSensor(*),
Other tasks (related to robot/actuators): DisplayInfo(*), StopAt(*),
Other types of sensors: temperature, lightness,

Level1

Level2

Level 3
= primitive level

Figure 2: Hierarchical Task Structure.

An agent selects the plan that may lead to the highest
utility (plan selection). However, the utility value is de-
termined from the primitive task/plan, so the utility of a
non-primitive task or plan is expressed as a range calcu-
lated by the possible lower-level refinements. It has been
reported that agents should choose the plan that contains
the highest utility and expand it to the next layer for effec-
tive planning[5].

2.2 Main Issue
The actual conflicts are also determined when all tasks

are expanded to primitive tasks, since the required amount
of resources and the time needed for plan execution are pre-
cisely identified at this level. An agent can partly investigate
the possibility of conflicts at an abstract level and resolve

814

them. For example, if a certain room is roughly modeled
as a single object at the abstract level (such as level 0 in
Fig. 1) and two agents have plans to work in the room at
the same time, they can resolve this possible conflict by one
agent’s replanning to work another time. However, this pre-
dicted conflict may not occur after all when all plans are ex-
panded as primitive plans because they can work at different
places in the room. Thus conflict resolution at an abstract
level is redundant. A similar situation arises when the plan-
ner takes into account other used/consumed resources such
as power current, sensors, effectors, robots, displays, etc,,
because a single entity of the resource description at non-
primitive levels corresponds to the set of resources grouped
according to a certain perspective, as shown in Fig. 2. In
general, the process of conflict detection and resolution in
abstract layers is simple because its domain model and the
related operators are simple, but the resulting plans may
not be appropriate. In applications where real-time perfor-
mance is stipulated, agents preferably can predict whether
the conflicts will vanish or the resolutions will be easy or
difficult during the remainder of the planning.

Normal utility functions do not usually take into account
possible conflicts with other agents. As a result, they can
create acceptable plans when there is no interference be-
tween agents’ plans, but, otherwise, they might not. It is
important, therefore, to provide another utility for plan se-
lection when there is the possibility of conflicts arising. How-
ever, what conflicts and which tasks easily cause them re-
flect the locations of scarce or heavily used resources, so the
outcome depends heavily on the environment. This type of
information cannot be provided a priori in the design time.
Furthermore, agents have to predict possible conflicts in a
real-time manner; therefore, agents are required to learn an
additional utility for the MAS context.

2.3 Related Work
An abstract task is considered to be a subroutine or a

subfunction to be learned; accordingly, our work is related
to hierarchical reinforcement learning (RL) such as [6, 1,
4, 8, 10, 14], although our approach is not RL. For exam-
ple, in [14], a frequently used task sequence is identified as
a single operation in order to improve learning efficiency.
In the MAXQ approach[4], a task is divided into subrou-
tines that are individually learned by RL methods, improv-
ing each subroutine. Our approach is to select an appro-
priate subroutine for each situation, but MAXQ also needs
to do this. In MAXQ any conflict discount is assumed to
be already learnt at lower levels. However, in a multi-agent
setting, it is naturally difficult to define the task hierarchy
over all agents simultaneously.

In the MAS context, some hierarchical planning and co-
ordination issues were also discussed. For example, [2] pro-
posed methods to choose the most appropriate abstract task/plan
using summary information that is summed up from the
primitive tasks and plans in a bottom-up fashion. [12] dis-
cussed the RL method to learn coordinated activities using
local resource information. The main difference from these
studies is that our major problem is to lower the cost of
conflict resolution and to improve the quality of the plans
resulting after conflict resolution.

3. LEARNING SITUATIONS AND AN AS-
SUMPTION

3.1 Application Environment
We aim to achieve effective planning for ubiquitous com-

puting/network systems. In this type of application, a num-
ber of people enter the environment, identify their objec-
tives, and receive assistance in their activities. In such a
case, a number of agents are already working based on their
plans. Furthermore, the system must have their plans in
order to detect possible interference among agents. It is,
however, costly to collect and analyze all primitive plans.

The application system of our proposed architecture shares
only plans described in a certain abstract-level model; the
manager agent holds the plans being executed at this level.
This level is called the screening level. We assume that these
plans are simple enough but not too simple to be analyzed
for conflict detection. These plans also provide details on
overall and long-term activities of the activated agents. The
manager agent maintains all screening-level plans being ex-
ecuted. When an agent starts to create its plan for this
environment, it requests the manager agent to investigate
the possible conflicts between this new plan and other ex-
ecuted current plans at the screening level. If conflicts are
detected, the agent that has the new plan directly requests
the primitive plans from the partner agent to accurately an-
alyze the possible conflicts. This system architecture allows
the agents to identify a plan that has no conflicts and to use
the normal utility for planning. If conflicts are predicted,
agents will use the utility with the conflict discount. Thus
our aim is to learn to predict conflicts at the screening level
for this purpose. We think that this architecture can lower
the cost of predicting conflicts and their resolutions. Ad-
ditionally, we focus on plans that frequently appear, that
is, actions that are the repeatedly observed series of sensor
data that suggest a person’s daily activities[9].

We introduce the assumption that all possible conflicts
are detected in the screening-level analysis by the manager
agent. Some conflicts will vanish in the lower-level planning.
However, this assumption means that if no conflicts with
other plans are detected, no conflicts will actually occur in
the subsequent planning as long as the agent does not change
its screening-level plan.

In our proposed system, some agents are already running
in the system. When another agent joins them, it creates the
plan for its goal, starting from the most abstract level. Then,
once a number of screening-level plans have been generated,
these plans are sent to the manager agent. The manager
agent investigates possible conflicts using all screening-level
plans being executed. It then returns conflict information
with other screening-level plans to the agents. This infor-
mation states (1) if the agent is not expected to have any
conflict, its utility, or (2) if the agent may have conflicts,
other agents’ plans expected to have conflicts, the locations
of these conflicts in the plans, and its utility with the conflict
discount. Note that the other plans are already executed;
therefore, in the current implementation, the executed plans
are not modified (at least, the plans that once were recog-
nized as executed should be preferred). Often this restricts
the quality of the resulting plan. Our aim, however, is to
select the most appropriate screening-level plan. If all of
the generated plans at the screening-level appear to result
in high-discount conflicts, the agent can backtrack and se-

815

lect another plan at the upper level; the agent still creates
a relatively simple plan, so this cost is not so high.

3.2 Concept of Conflict Discount
Let U(p) (or U(t)) be the initially given utility for a prim-

itive plan p (or a primitive task t). U(p) for a non-primitive
plan (or task) is the range which cumulatively indicates pos-
sible lower-primitive plans/tasks. We introduce the con-
flict discount, cd(a(p), e, a(p′)) for an environment e, the
screening-level plan a(p) of p, and another agent’s screening-
level plan a(p′). When no conflicts are predicted, the agent
can use only U(p) for selecting plans at this level. When
conflicts with another agent’s plan, say a(p′), are likely to
occur, it uses the modified utility

U(p) − cd(a(p), e, a(p′))

to consider the probability of the conflicts. We assume
that a(p′) contains scheduling data of the plan, that is, the
planned execution time and duration of each task (these
data are determined because this plan is already scheduled).

We try to handle conflicts among three or more agents.
Here, we define

U(p) − cd(a(p), e, a(p′), a(p′′), . . .)

when conflicts with p′, p′′, . . . are predicted at different lo-
cations in the plan p.

Our proposed method aims at adjusting cd by adopting a
statistical method for frequently appearing situations. The
conflict discount is conceptually defined as follows:

cd(a(p), e, a(p′), a(p′′), . . .) (1)

= U(pp) − U(ppm) + cost-of-conflict-resolution,

where pp is the primitive plan before conflict resolution and
ppm is the primitive plan that is modified for resolving con-
flicts with other plans. The term cost-of-conflict-resolution
is calculated by combining the cost of applied conflict res-
olution rules and the number of messages; then cd(p) is re-
defined by cumulatively adding this value; how to calculate
cd(p) is described below. We assume that U(p) is the length
of the primitive plan in our example below.

3.3 Conflict detection and resolution
A number of resolution methods, shown in Table 1, are

applied to resolve conflicts. Thus, the agents involved must
negotiate which agent (or all agents involved) should com-
mit to modifying their plans and then decide what methods
should be applied.

These resolution methods are defined as rules and applied
under a certain policy. The resulting plans usually have
extra cost for the resolutions. In this paper, we do not care
what kind of policy is used; our only concern is the cost of
resolution and the quality of the resulting plan.

4. ADJUSTING CONFLICT DISCOUNT

4.1 Conflict Detection at the screening level
At the screening level, the manager agent detects the pos-

sible conflicts, according to resource and task information
described in the model, by identifying the possibilities of
whether multiple plans will use the same resources, such
as sensors and places (which are squares in Fig. 1) in the
ubiquitous sensor network environment. An example of a

Table 1: Examples of methods of resolution.
Method Description
Synchroni-
zation

Stop until another agent performing a task
that requires a needed resource finishes the
task and releases the resource. Wait for a
primitive task or use of some resource by
another agent until the task finishes or the
agent releases the resource. This method
may insert a number for “wait for a tick”
for synchronization.

Waiting Stop until other agents finish tasks that
create pre-conditions of the local task.
This method may insert a number for
“wait for a tick” for synchronization.

Replacement Replace tasks whose post-conditions do
not affect tasks in other agents or whose
pre-conditions are not affected by tasks in
other agents. This method may replace
the conflicting task with others, but these
other tasks usually have lower utility (or
incur extra cost).

Reordering Reorder tasks to avoid negative relation-
ships.

Insertion Insert tasks whose post-conditions recover
the pre-conditions of the task. This
method adds some tasks, so the utility of
the resulting plan decreases.

Commission Entrust the task to other agents. This form
of resolution is preferable when, for exam-
ple, a conflict can only be resolved by other
agents, or if another agent can do the task
at lower cost. This method can eliminate
some tasks, though some communications,
not only for detecting the sharable tasks of
the plans but also for committing them to
another agent, take place.

conflicting situation is shown in Fig. 3, where there are two
executed plans that will conflict with the new plan.

An actual example is illustrated in Fig. 4, where the
screening level is two; the manager agent suggests that task
tl = move(cd → dd) in the new plan may have some conflict
with task t′n = move(cd → bd) in the plan presently being
executed. This conflict detection can be traced according
to the used resource data (in this example, it is possible
that some squares in the area (c,d) may be occupied by two
agents simultaneously during a certain time interval).

The manager agent also takes into account time relation-
ships between tasks in the plans because conflicts occur only
when more than two agents use some resources simultane-
ously. The required duration (that is, start to end time) of
the task in the executed plans is already determined, but
the one in the new plan is not. Thus, the manager agent
uses the expected average duration of each screening-level
task. This value is initially given as the expected required
duration in the model; for example, move(cd to bd) takes
four ticks if we assume that the robot or person can move to
the next small square in four ticks1. The expected duration

1However, the average is about five ticks, specifically 5.7

816

is then statistically adjusted according to actually generated
primitive plans.

4.2 Conflict Pattern and Prediction
Let us define a conflict pattern (CP) of a plan with other

agents’ plans as the relationship between detected conflicts,
with consideration given to time relativity. First, we focus
on each task at the screening level that is identified to have
some conflict. For example, in the previous example of Fig.
4, the CP was expressed as follows:

CP1(tl) = (tl, (t
′
n, (max(s′n − sl, 0), min(el − sl, e

′
n − sl)))),

where the final term is the relative time interval during
which the expected conflict may occur. For efficient learn-
ing, in this paper we introduce simplified expressions of
time relativity: anterior half[ah], posterior half[ph] and over-
lap[ol]. Thus, this example is,

CP1(tl) = (tl, (t
′
n, r′l)),

where r′l = ah, ph or ol. The second term (t′n, r′l) in the
right-hand side of this equation is called conflict data.

The task may have more than two conflicts with other
plans, such as the situation shown in Fig. 3, so a CP may
have two or more conflicting data; in this example situation
the CP is:

CP2(tl) = (tl, (t
′
n+1, r

′
l), (t

′′
m−1, r

′′
l))

where r′l, r′′l = ah, ph or ol.
Then, the agent iteratively adjusts the conflict discount,

cd, for a certain conflict pattern, CP, with the following
equation:

cd′
m(CP) = λ ∗ cd′

m−1(CP) + (1 − λ) ∗ differential-cost,

where 0 < λ < 1 and differential-cost means the differen-
tial utilities of the original plan and the plan resulting after
conflict resolution. For example, if the partner agent takes
route (1) in Fig. 4 and this conflict is resolved by using
“wait for two ticks” to wait until the partner agent passes
by, two of the “wait” tasks are inserted. In this case the
differential-cost is 2. This value differs if the partner agent
takes the other route (2) in Fig. 4; in this case, no conflict
will actually occur and differential-cost is 0.

Plans (a) and (b) are being executed plans in which some
conflicts with the new plan are detected in the manager agents.

t’n t’n+1t’n-1

t’’m t’’m+1t’’m-1

tl t l+1tl-1

t has the conflict with t’ during [s e] (s and e is expected the relative
time interval where this conflict will occur. If s=0, this conflict will occur
when t starts.).

l-1 n

l-1

(a)

(b)

Figure 3: Example Situation of conflicts between
plans.

ticks, for (c,d), after the statistical analysis of actual plan
data.

t’n t’n+1t’n-1

tl t l+1tl-1

n+1 n+1

Move(dd to ed)Move(bd to cd) Move(cd to dd)

Move(dd to cd) Move(cd to bd) Move(bd to bc)

b c d e

c

d

e

[s’ , e’]n n[s’ , e’]

l+1 l+1[s , e]l l[s , e]
Possibllity of some conflict

Task t is planned to be executed during time interval [s , e].

(2)
(1)

* * *So and have an overlap.l l[s , e] n n[s’ , e’]

Figure 4: Example of a Detected Conflict.

The process of cd calculation is, like the process of conflict
resolution, an iteration of the procedures for (P1) searching
the first task t in the new plan, which may have conflicts
in the execution order, and for (P2) predicting the conflict
discount cd′ for only this specific situation. This specific
situation corresponds to the conflict pattern. In procedure
P2, the additional cost for avoiding the conflicts is predicted,
and thus the start times of subsequent tasks may be delayed
for this amount of time. Because of this delay, a number of
conflicts may disappear, although some new ones may be
detected in the remaining part of the plan. In particular,
another conflict may occur with the current task t. If so,
the agent must also calculate the cd′ for this new conflict.

4.3 Window Size
CPs in the previous subsection have limited ranges of

tasks; they only focus on a single task that may have con-
flicts with other agents. However, the type of conflict and
its resolution cost may depend on other conflicts occurring
in neighboring tasks, and thus it is often essential to take
into account conflict occurrences between neighboring tasks.
For this purpose, we introduce the window size of the CP;
the general form of CP with a window size of 3 is

CP(tl−1) = [(tl−1, (t
′
n−1, r

′
l−1), . . .),

(tl, (t
′
n, r′l), . . .),

(tl+1, (t
′
n+1, r

′
l+1), . . .)]

since this pattern includes information on conflicts occurring
on the right after two tasks. Furthermore, conflict data with
the same plan are aligned in the same column; for example,
the CP for tl1 in Fig. 3 is:

CP(tl−1) = [(tl−1, (t′n, r′l−1), ()),
(tl, (t′n+1, r

′
l), (t′′m−1, r

′′
l)),

(tl+1, (), (t′′m, r′′l+1))],

where the first and second columns of conflict data corre-
spond to plans (a) and (b) in Fig. 3, respectively.

817

Each column corresponds to a single plan of another agent,
so a column of conflict data can replace another column. To
avoid multiple expressions for the same situation, we nor-
malize this expression. First, we look at the first line and
select the column whose first element is not empty. If there
are multiple columns, those columns are sorted according to
the alphabetical order of the first elements, then the second
elements, and so on (thus, they are sorted by the task name).
Next, we focus on the columns whose second element is not
empty but whose first element is empty and apply the same
sorting methods.

We define conflict discount cd from eq. (1) as follows:

cd(p) =
�

t∈p

cd′(CP(t)) + #-of-conflict-plans

where p is a screening-level plan (so t is a screening-level
task) and we assume that cd′(CP(t)) = 0 if task t is iden-
tified as having no conflict with other plans. We must note
that the values of cd′(CP(t)) in this formula are derived as
the iterated process of conflict prediction described in Sec-
tion 4.2. In the following experiments, we assume that the
cost of receiving and analyzing a primitive plan from an-
other agent is 1 (of course, this value is system-dependent).
Thus, the second term on the right-hand side is the number
of plans having conflicts with the new plan, as the approxi-
mate value of the cost of conflict resolution.

5. EXPERIMENTS
We experimentally calculated the values cd′ using our sim-

ulated laboratory room, which is based on our actual labo-
ratory rooms (see Fig. 1). In this experiment, the screening
level is two. Agent A1 randomly selects the starting point
in area R1 and the goal in area R2 and then tries to gener-
ate a new plan for this movement. There is another agent
B that already has an approved plan whose start and goal
are also randomly selected in R1 and R2. Conflicts often do
not occur at the screening level, since two agents may take
different routes such as north and south of a meeting ta-
ble; therefore, this experiment is iterated until conflicts are
detected between A1’s task move(cd → dd) and A2’s task,
which is move(cd → dd) (same direction) or move(cd →
bd) (opposite direction). We especially focus on area (c,d)
because its route is slightly narrow due to the chairs and
computer tables in the meeting room.

The screening-level plan is then actually expanded to a
primitive plan, and we investigate the conflict discount of
the plan resulting after conflict resolution. Note that this
cost may be 0 if the agent can find another route of the same
length or if no conflicts actually occur. Then, we iterate this
experiment a few hundred times to calculate cd′.

The task move(cd → dd) usually takes four to six ticks
in this environment. Consequently, we define in this exper-
iment that if the manager agent finds the possibility of a
conflict: (1) within the first two ticks, the relative time rela-
tionship is ah ; (2) within the last two ticks, the relative time
relationship is ph ; and (3) otherwise, the relative time rela-
tionship is ol as shown in Fig. 5. Consequently, we estimate
the values of cd′ for the following conflict patterns:

CP1 = (move(cd → dd), ((move(cd → dd), r)))

CP2 = (move(cd → dd), ((move(cd → bd), r))),

where r is ah, ph, or ol.

t

Move(cd to dd)
2

2

2

2
phah

Figure 5: Relative Time Relationships.

Figure 6 shows the estimated value of cd′
m (λ = 0.98) and

the average of additional costs when r = ol. Their expected
cd′ values are approximately 0.27 (opposite direction) and
0.55 (same direction). The graph is not shown here, but
when r = ph, the expected values are approximately 0.29
(opposite direction) and 0 (same direction). In these cases,
the additional cost is reasonably small, because the two-
square-width path is wide enough for two agents to pass
through the area, but agent A1 sometimes has to take a
detour to avoid conflicts. The value is higher when agents
move in the same direction because in this situation, it’s
often observed that agent A1 has to wait for one or two ticks
until another agent passes by. In the cases of the opposite
direction, the agent can often take another route through
the narrow area without incurring any additional cost.

These experimental results suggest that the values of cd′
m

depend on the resource structure of routes, especially area
(c,d) in Fig. 1. For example, in the case when two agents
move in the same direction and the relative time relationship
is ph, these agents hardly interfere with each other at all. If
they move in the opposite direction, they will meet near a
narrow path in (c,d), but in many cases, the new agent can
re-route to avoid a collision because the width of the narrow
path is 2.

Next, we investigate the cd′ values in the situation where
there are two agents that have approved plans (and thus
these plans have no conflicts), where they move in the same
direction move(cd → dd). The conflict pattern of this situ-
ation can be expressed as follows:

CP3 = (move(cd → bd), ((move(cd → dd), ol),

(move(cd → dd), ol))).

The result of the estimated conflict discount is 6.17 (plus 2
for receiving and analyzing the other agents’ plans), which is
quite different from the previous cases, as Fig. 7 shows. The
two agents have plans under execution that have no conflicts,
and thus they usually occupy the narrow route in area (c,d).
Therefore, the agent creating the new plan always has to
move aside, wait for several ticks until the agents pass by,
and move back to the original route. If the agent has a new
plan that is predicted to have a conflict with this conflict
pattern in the screening level, the new agent can select after
learning another route such as a route taking it north of the
meeting table or a route taking it south of the sofa, as in
Fig. 1. When one of the relative time relationships in CP3

is ph, the estimated cd′
m is approximately 0.98, because the

two agents move a slight distance away. Of course, if this
kind of conflict occurs at another position (such as (d,d) and
(e,d)), the agent does not have to change its screening-level
plan because these areas have enough room for three agents
to pass by each other.

Finally, we mention four important points. First, when a

818

0

0.5

1

1.5

2

1 50 100 150 200 250
Same direction

Opposite direction

Gray lines: average, Black lines: estimated values of cd’

0

0.5

1

1.5

2

1 50 100 150 200 250

E
st

im
at

ed
 v

al
ue

 o
f c

d’
E

st
im

at
ed

 v
al

ue
 o

f c
d’

Figure 6: Estimated cd′ and average values.

conflict among more than four agents is detected at (c,d),
the agent that has the new plan can often use the result of
the previous experiment. If the conflict pattern contains the
CP3 as sub-pattern, its cd′ value becomes higher than 6.17,
so the agent can decide to adopt another route. Second, al-
though start and goal positions are selected randomly in our
experiments, these might not be random in actual situations
because agents (including persons) usually have fixed start
and goal points. As a result, these features of the experi-
mental results are expected to be more noticeable. Third, it
is essential to choose an appropriate screening level. For ex-
ample, if level 1 in Fig. 1 is the screening level, this method
does not work well. This issue will be discussed elsewhere.
Finally, we introduce three relative time relationships ah,
ol and ph, but these relationships are not always necessary,
as with the case of (e,d) and (f,d), because they are not
non-scarce resources if the number of agents is not so large.

6. CONCLUSION
This paper proposed a method to predict, at some ab-

stract level called the screening level, the cost of possible
conflict resolution and the quality of the resulting plan in
order to generate better primitive (concrete) plans. We are
now interested in ubiquitous/sensor network applications,
in which a number of agents located in sensors, effectors,
robots, PCs and other appliances predict persons’ activities
from sensed data and assist in these activities. To develop
agents’ activities, real-time (and thus very efficient) plan-
ning is required. In our framework, an agent called the

0

1

2

3

4

5

6

7

1 50 100 150 200 250

E
st

im
at

ed
 v

al
ue

 o
f c

d’

Figure 7: Estimated cd′ and average values.

manager maintains the plans presently being executed at
the screening level and predicts the possible conflicts be-
tween these plans and the newly proposed plan. Then, if
necessary, a detailed analysis for primitive plans is done by
individual agents. Furthermore, selecting appropriate ab-
stract plans is very important because the selected plan re-
stricts the scope of more concrete plans. Finally, we also
showed experimental results on the expected additional cost
of the plans after conflict resolution.

We plan to add another dimension to the proposed frame-
work: determining what resolution method is most appro-
priate for each situation. We will also evaluate our method
by incorporating the total cost of planning and execution in
our experimental environment.

7. ACKNOWLEDGMENTS
The authors would like to thank Prof. Sachiyo Arai, Fac-

ulty of Engineering, Chiba University, Japan and anony-
mous referees for their valuable comments on an earlier ver-
sion of this paper.

8. REFERENCES
[1] D. Chapman and L. P. Kaelbling. Input

Generalization in Delayed Reinforcement Learning:
An Algorithm And Performance Comparisons. In
IJCAI-91, pages 726–731, 1991.

[2] B. J. Clement and E. H. Durfee. Theory for
coordinating concurrent hierarchical planning agents
using summary information. In Proc. of AAAI-99,
pages 495–502, 1999.

[3] D. D. Corkill. Hierarchical planning in a distributed
environment. In Proc. of IJCAI-79, pages 168–175,
1979.

[4] T. G. Dietterich. The MAXQ Method for Hierarchical
Reinforcement Learning. In Proc. of ICML-98, pages
118–126, 1998.

[5] R. Goldwin and R. Simmons. Search Control of Plan
Generation in Decision-Theoretic Planners. In AIPS
1998, pages 94–101, 1998.

[6] B. Hengst. Model Approximation for HEXQ
Hierarchical Reinforcement Learning. In ECML 2004,
pages 144–155, 2004.

[7] J. H. K. Erol and D. S. Nau. HTN planning:
Complexity and expressivity. In Proc. of AAAI-94,
pages 1123–1128, 1994.

819

[8] L. P. Kaelbling. Hierarchical Learning in Stochastic
Domains: Preliminary Results. In Proc. of Int. Conf.
on Machine Learning, pages 167–173, 1993.

[9] S. Kurihara, K. Fukuda, T. Hirotsu, S. Aoyagi,
T. Takada, and T. Sugawara. Multi-agent Framework
for Human-Environment Interaction in Ubiquitous
Environment. In Proc. of the Workshop on Agents for
Ubiquitous Computing (UbiAgents2004), pages 5 – 12,
2004.

[10] R. Parr and S. Russell. Reinforcement Learning with
Hierarchies of Machines. In Advances in Neural
Information Processing Systems 10, pages 1043–1049,
1998.

[11] E. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5(2):115 – 135, 1974.

[12] S. Sen, M. Sekaran, and J. Hale. Learning to
coordinate without sharing information. In Proc. of
AAAI-94, pages 426–431, 1994.

[13] T. Sugawara, S. Kurihara, K. Fukuda, T. Hirotsu,
S. Aoyagi, and T. Takada. Reusing Coordination and
Negotiation Strategies in Multi-Agent Systems for
Ubiquitous Network Environment. In Proc. of
AAMAS2004, pages 496 – 503, 2004.

[14] R. S. Sutton, D. Precup, and S. Singh. Intra-Option
Learning about Temporary Abstract Actions. In Proc.
of Int. Conf. on Machine Learning (ICML), pages
556–564, 1998.

[15] T. Takada, S. Kurihara, T. Hirotsu, and T. Sugawara.
Proximity Mining: Finding Proximity using Sensor
Data History. In Proc. of IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA2003),
pages 129 – 138, 2003.

820

