
Formalizing and Achieving Multiparty Agreements via
Commitments

Feng Wan
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7535, USA

fwpub-ncsu@yahoo.com

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7535, USA

singh@ncsu.edu

ABSTRACT
Multiparty agreements often arise in a multiagent system
where autonomous agents interact with each other to achieve
a global goal. Multiparty agreements are traditionally rep-
resented by messaging protocols or event-condition-action
rule sets in which agents exchange messages in a prede-
fined sequence to ensure both global and local consistency.
However, these models do not readily incorporate agents’
autonomy and heterogeneity, which limits their ability to
help build a flexible open system. Commitments have been
studied for modelling various agent interactions. They have
also been used as the key elements for formulating multi-
party agreements and centralized approaches for resolving
potential conflicts. This paper extends the above results by
refining the formalizations and the existing protocols and
proposing a decentralized protocol which is more efficient in
resolving conflicts. It also introduces the concept of proto-
col safety, which ensures that agents not only interact effi-
ciently but also correctly. This approach is geared toward
constructing business processes where agents are mutually
constraints in a manner that preserves their autonomy and
heterogeneity.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems; D.1.0 [Software Engineer-

ing]: Programming Techniques—general ; H.4 [Information

Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Verification

Keywords
Agents, Commitments, Agreements, Multiagent Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
In a multiagent system, agents autonomously decide on

whether to perform a particular action. When agents coor-
dinate with each other to achieve a global task, they need
to first create a multiparty agreement, which would satisfy
global goals as well as the agents’ individual constraints.
Multiparty agreements in agent communities are more sub-
tle than in other software systems where agreements are
represented by fixed protocols and each party follows a pre-
determined execution sequence.

Researchers have studied multiparty agreements from sev-
eral perspectives, including developing standard languages
and protocols such as FIPA [4], implementing domain-specific
protocols such as auction protocols, and developing method-
ologies for building agents such as AUML [7]. These ap-
proaches tend to define interaction frameworks that limit
agents’ choices. There is a rich literature on how agents
form teams and negotiate on global execution plans, e.g.,
by Tambe and colleagues [11], and on how agents with dif-
ferent attitudes communicate facts with each other to make
the right decisions, e.g., by Parson et al. [8].

Consider an example where a buyer wants to buy some
goods from a seller. The buyer may require the seller to ship
the goods before he would pay. The seller may require the
buyer to pay before he would ship. Various approaches exist
to resolve such situations in the real world, e.g., the buyer
can make an advance deposit, the buyer and seller can use
an escrow service to ensure successful execution of all steps,
and so on. In essence, the different approaches correspond
to different protocols that the agents must follow in order to
bring an agreement to a fruitful completion. This leads to
two questions of interest. What is the principled basis for
such protocols? What semantics must be incorporated into
the agreements?

Our proposed approach begins from a representation of
multiparty agreements based on commitments. Commit-
ments represent the obligations made between pairs of agents
and are used to model interactions in a multiagent system.
Commitments help agents express promises and monitor
each other’s compliance without regard to internal imple-
mentational details.

This paper uses commitments as the basic elements to
form multiparty agreements. For example, one of the agents
may strengthen its conditional commitment, replace it by an
unconditional commitment, or even perform the desired ac-
tion. Doing so may induce the other agents to perform their
desired actions resulting in overall progress. For example,

770

an agent A who is apparently deadlocked with agent B may
help their collective deal progress by making an utterance
such as “OK, I will ship if you promise to pay on receiving
the goods.” Then, B could say “I promise to pay if I re-
ceive the goods.” Assuming sufficient trust, progress could
be obtained.

More subtle such moves would be involved when the agree-
ment structures were more complex, e.g., in terms of the
number of participants involved and the richness of their
relationships. The semantics of commitments provides a
ready and rigorous basis by which the agents could decide
their conversational moves and other agents could interpret
these conversational moves with respect to the agreements
at hand. Moreover, the semantics of commitments helps us
specify particular protocols that apply in different settings,
and to analyze the effectiveness and safety of such protocols.

2. COMMITMENTS
A commitment is an obligation from a debtor x to a cred-

itor y about a particular condition p. A commitment has
the following two basic forms.

• Unconditional commitment C(x, y, p). A commitment
whose condition p will be brought about uncondition-
ally by the debtor x. The commitment behaves as a
directed obligation from the debtor x to the creditor y;
the creditor has special functions, including being able
to release the debtor (we ignore this aspect here). For
example, C(buyer, seller, pay) denotes that the buyer
promises to pay the seller.

• Conditional commitment C(x, y, e → p). A commit-
ment whose condition p will be brought about if the
precondition e becomes true. For example,
C(buyer, seller, ship → pay) denotes that the buyer
promises to pay the seller if the latter ships the goods
to him.

The precondition e of a conditional commitment can be
expressed as a compound predicate which could embed other
commitments as needed. This allows us to define com-
mitments recursively and to specify complex obligation de-
pendencies. For example, we could define a commitment
C(buyer, seller, C(seller, buyer, ship)→ pay) saying that the
buyer promise to pay the seller if the latter promise to ship
the goods. This commitment differs from the above con-
ditional commitment in that the payment only depends on
the promise of shipping and may be performed before the
actual shipping.

We require that for any inner commitment appearing on
precondition e, the creditor must be the debtor of the imme-
diate outside commitment. In other words, we require that if
a commitment has form C(x, y, . . . C(w, v, q) . . . → p), then
x = v. The motivation is that the debtor x’s commitment
is conditioned on another party doing something for x.

Commitments support several operations that combine to
capture mutual and multiparty scenarios [10]. For the sake
of simplicity, this paper is limited to four main operations.
The four operations, create, update, discharge, and cancel,
drive the lifecycle of commitments. A commitment is ini-
tially created when an agent makes a promise to another
agent. If the commitment has been fulfilled, e.g., the condi-
tions have become true, then the commitment is discharged.
However, before the commitment is discharged, the agents

involved can possibly update the commitment. The update
operation gives flexibility in manipulating agents’ context
to react to any potential requirement changes or exceptions.
Agents can also cancel their commitments, e.g., to accommo-
date exceptions. However, to cancel a commitment, agents
usually face penalties that compensate for whatever incon-
sistencies that they may have introduced. Figure 1 shows
the state diagram of the commitment lifecycle.

DischargedCancelled

Created

Updated

cancel discharge

update

cancel discharge

update

create

Figure 1: Commitment lifecycle

3. REPRESENTING MULTIPARTY AGREE›
MENTS

In a multiagent system, an important class of interac-
tions involves agents making and fulfilling commitments to
each other. The commitments themselves form protocol de-
pendencies and coordination requirements among the agents
concerned. Therefore, we define a multiparty agreement as
follows:

Definition 1. A multiparty agreement A is given by a
set of commitments {C1, C2, · · · , Cn} where Ci is either an
unconditional commitment or a conditional commitment.

An example agreement A = {C1, C2} is shown below. In
this example, the buyer conditionally promises the seller
if the latter ships the goods, then he will pay. The seller
promises to ship the goods unconditionally. The outcome of
this agreement is that the buyer pays to the seller after the
latter ships the goods to him.

C1 = C(buyer, seller, ShipGoods→ Pay)

C2 = C(seller, buyer, ShipGoods)

In another example the buyer promises the seller that if the
latter promises to ship a goods, then he will pay the seller.
The seller promises to ship the goods. The outcome of this

771

agreement is the payment and the shipment can happen in
arbitrary temporal orders.

C1 = C(buyer, seller, C(seller, buyer, ShipGoods)→ Pay)

C2 = C(seller, buyer, ShipGoods)

Section 4 shows another agreement with deadlocking de-
pendencies and describes how to resolve such cases.

3.1 Agreement Derivation Rules
Here we give a set of rules to reduce an agreement (or a

commitment set) to a set of conditions that all the agents
would eventually bring about. The purpose of the reductions
is to show how the interactions progress given a commitment
set. This also gives us a way to detect potentially dead-
locking agreements. For simplicity, we do not consider the
cancel and update operations, which usually digress from
normal executions and do not help in detecting deadlocks
introduced by the original commitment set.

E1 : Ci ∈ A⇒ Create(Ci)

E2 : Create(C(x, y, p)) 99K Discharge(C(x, y, p))

E3 : Discharge(C(x, y, p))⇒ p

E4 : e ∧ Create(C(x, y, e→ p))⇒ Create(C(x, y, p))

E1 shows that any commitment inserted into agreement A

enters the Creation state immediately. We use ⇒ to de-
note immediacy. E2 shows that the creation of an uncondi-
tional commitment will eventually reduce to a discharge of
the commitment. We use 99K to denote eventuality. This
rule expresses the idea that when an agent makes an uncon-
ditional obligation to another, he must fulfill it eventually.
E3 shows that a discharge of an unconditional commitment
makes the condition true immediately. Although rules E2

and E3 support concluding that the creation of an uncondi-
tional commitment can directly bring about the condition,
the Discharge operation in between allows a designer to map
concrete business activities corresponding to this operation.
E4 shows that after a conditional commitment is created,
if its preconditions are satisfied, it will be converted to its
corresponding unconditional commitment by removing the
preconditions.

The following shows a derivation on the second example
agreement above.

A
E1−→ Create(C(seller, buyer, ShipGoods)) ∧

Create(C(buyer, seller,

C(seller, buyer, ShipGoods)→ Pay))

E4−→ Create(C(seller, buyer, ShipGoods)) ∧

Create(C(buyer, seller, Pay))

E2−→ Create(C(seller, buyer, ShipGoods)) ∧

Discharge(C(buyer, seller, Pay))

E3−→ Create(C(seller, buyer, ShipGoods)) ∧ Pay

E2−→ Discharge(C(seller, buyer, ShipGoods)) ∧ Pay

E3−→ ShipGoods ∧ Pay

The derivation generates the action sequence {Pay, Ship-
Goods} in which Pay happens before ShipGoods. However,
it can also generate the sequence {ShipGoods, Pay}. Sec-
tion 4 formally shows that this agreement is satisfiable.

3.2 Generating Agreement Diagram
An agreement diagram (AD) denotes the set of constraint

dependencies among interacting agents. An AD is derived
from commitment sets and changes dynamically as agents
manipulate their commitments during business engagements.
The construction of an AD not only helps monitoring run-
time agent behaviors but also detecting any agreement dead-
locks (see Section 4). Here we present Algorithm 1 that de-
rives an agreement diagram from a given commitment set.

The algorithm creates nodes for debtor and creditor agents,
and edges for conditions. It connects these nodes following
the condition dependencies. If one of the preconditions of
commitment C1 is brought about by another outside com-
mitment C2, then we call it a hard dependency, since C2

must be discharged before C1 can be discharged. However,
if C2 is an inner commitment of C1, then we call it soft de-
pendency, since C1 is discharged based on the promise of C2,
but not necessarily before the fulfillment of C2. We use dot-
ted lines to denote soft dependencies and solid lines for hard
dependencies. The differentiation of the two types of depen-
dencies enables us to capture important subtleties in agent
interaction and thus generate flexible protocol executions.

The following is a list of some sample commitment sets
and their corresponding diagrams (see Figure 2).

A1 = {C(x, y, p)}

A2 = {C(x, y, e→ p)}

A3 = {C(z, x, e), C(x, y, e→ p)}

A4 = {C(x, y, C(z, x, e)→ p)}

A5 = {C(w, x, p3),

C(x, y, p1 ∧ C(z, x, p2) ∧ p3 → p)}

A6 = {C(w, x, p1),

C(x, y, (p1 ∧ p2) ∨ C(z, x, p3)→ p)}

4. BUILDING SATISFIABLE AGREEMENTS
In a multiagent system, each individual agent can have its

local constraints. The agents’ commitments not only spec-
ify their protocols, but also factor in their local constraints
(which in essence limit what the agents can promise others).
However, since the agents are autonomous, the constraints
of different agents may form cyclic dependencies. For exam-
ple, a buyer may want the seller to ship the goods first before
he makes the payment, but the seller may want the buyer to
pay first before he ships the goods. The two commitments
can be expressed as below.

C1 = C(buyer, seller, ShipGoods→ Pay)

C2 = C(seller, buyer, Pay → ShipGoods)

By executing Algorithm 1, we obtain an agreement di-
agram, as shown in Figure 3. Apparently, neither party
will proceed because of the deadlocking dependencies. Our
approach detects these cyclic constraint dependencies. We
propose several protocols to resolve them and produce a sat-
isfiable commitment set. First let us define what a satisfiable
multiparty agreement is.

Definition 2. A multiparty agreement is satisfiable if and
only if for any C(xi, yi, pi), pi will eventually become true;
or for any C(xi, yi, ei → pi), pi will eventually become true
if ei becomes true.

772

1 We first identify commitment entities based on the fol-
lowing rules
begin

(a) Each C(...) is a commitment entity;
(b) C1(x1, y1, W1) and C2(x2, y2, W2) are the same
if x1 = x2, y1 = y2, and W1 = W2;
(c) If ∃ C1(x, y1, W1) and C2(x, y2, W2) where y1 6=
y2 or W1 and W2 have different conditions (re-
gardless of preconditions), then rename them to
C1(x1, y1, W1) and C2(x2, y2, W2)

end

2 For each unique agent in the list of commitment entities,
draw a node labeled with the agent name.

3 For each commitment C(x, y, p) or C(x, y, e→ p), draw
an edge labeled with p from agent x’s node. If the
commitment does not form any hard dependencies, then
use a dotted line, otherwise, a solid line.

4 for each commitment C(x, y, e→ p) do

5 Convert e to DNF (Disjunctive Normal Form);
switch e do

case P1 ∧ P2 ∧ · · · ∧ Pn

6 Use an AND connector to connect edges p1,
p2, . . . , pn to node x;

case T1 ∨ T2 ∨ · · · ∨ Tn

7 Use an OR connector to connect edge T1, T2,
. . . , Tn to node x;

8 For each Ti, if it has more than one atomic
proposition, then use an AND connector and
perform step 5;

9 For each edge p created above, if there exists an
agent node generated from step 3 with edge p, then
merge the two edges;

10 If a node from step 3 has not been picked up by step 9,
then attach its original creditor node as the end node
(If the creditor is one of the debtors x in step 4, then
create a new node with a different name).

Algorithm 1: Building an agreement diagram

4.1 Detecting Agreement Deadlocks
We have an intuition that, if the agreement diagram de-

rived from a commitment set has a solid cycle (formed by all
solid lines), then it forms a cyclic hard dependency chain.
This means that no condition would be brought about. In
other words, the commitment set is not satisfiable. Here we
introduce two theorems to show what kinds of agreement
diagram are not satisfiable.

Theorem 1. If there exists a solid cycle in a given agree-
ment diagram and any node on the cycle only has AND pre-
conditions, then the agreement is not satisfiable.

Proof. 1. First we define p(t) as true or false at a
time t

2. Assume the cycle is x1

p2−→ x2

p3−→ . . . xn
p1−→ x1,

where pi is one of the AND preconditions of each node
xi, then based on steps (4) through (8) in Algorithm 1,

x ypA1

x yp

P1

P3

P2A5

x yp

P3

A6
P2

P1

or
and

and

x ypA2

z

w

w

z

e

x ypA3 ez

x ypA4 ez

Figure 2: Agreement diagram examples

buyer seller

Pay

ShipGoods

Figure 3: A deadlock agreement

we obtain a commitment set {C1, C2, . . . , Cn} where

C1 = C(x1, x2, p1 ∧W1 → p2)

C2 = C(x2, x3, p2 ∧W2 → p3)

. . .

Cn = C(xn, x1, pn ∧Wn → p1)

Wi are the rest of the AND preconditions of node xi

3. Assume C1 is eventually discharged. Then we can find
a time tm, such that p2(tm) (i.e., p2 holds at tm);

4. Based on derivation rule E4, we can find a time t1,
t1 < tm ∧ p1(t1), and ∀t, t ≤ t1 ∧ ¬p2(t).

5. For the same reason, we can find a time t2, t2 < t1 ∧
pn(t2) and ∀t, t ≤ t2 ∧ ¬p1(t).

6. Repeating step (5), we can find a time tn, tn < tn−1 ∧
p2(tn) and ∀t, t ≤ tn ∧ ¬p3(t).

7. From (4) through (6), we have tn < t1 ∧ p2(tn). This
result conflicts with “∀t, t ≤ t1 ∧ ¬p2(t)” in step (4)
above. Therefore C1 cannot be discharged and the same
conclusion applies to C2, . . ., Cn.

773

8. Since no commitment on the cycle can be discharged,
the multiparty agreement is not satisfiable.

To consider cycles that involve nodes with OR precondi-
tions, we have the following theorem.

Theorem 2. If there exists a set of connected solid cycles
in a given agreement diagram, and for any node that has OR
preconditions, each edge of the OR preconditions is also on
one of the cycles, then the agreement is not satisfiable.

Proof. 1. Assume that a condition p1 on a cycle be-
comes true. Then the cycle must have at least one
node with OR preconditions. Otherwise, it conflicts
with Theorem 1.

2. In all the nodes with OR preconditions, there must ex-
ist a node whose precondition becomes true. Otherwise,
no condition will be satisfied on the cycle, which con-
flicts with the assumption in (1) above.

3. Assume the satisfied precondition is p2. Based on the
premise, p2 is also on one of the cycles.

4. If p2 is on the same cycle that p1 belongs to, by apply-
ing steps (2) through (7) in Theorem 1, we can prove
that neither of them can be satisfied.

5. If p2 is on a different cycle and the cycle has other OR
nodes, then repeat steps (2) and (3) above.

6. If p2 is on a different cycle and the cycle has no other
OR nodes, the proof is same as for step (4) above, so
p2 cannot be satisfied.

7. From the conflicts generated from steps (4) or (6) above,
we conclude that p1 cannot be satisfied. Therefore, the
agreement is not satisfiable.

There could also exist dotted cycles (formed by all dotted
lines). That is, even promises themselves may have dead-
lock dependencies. For example, the two commitments be-
low contain more subtle constraints. The analysis of this
scenario is not within the scope of this paper.

C1 = C(x, y, C(y, x, q)→ p)

C2 = C(y, x, C(x, y, p)→ q)

4.2 Resolving Agreement Deadlocks
Deadlocking constraints imposed on a group of agents do

not mean that these agents cannot engage activities at all.
Autonomous agents can negotiate to serve their interests.
To break these deadlocking dependencies, all the agents may
choose to commit what they promise to do for the others re-
gardless of what constraints they impose on the others, or
some of the agents may concede to satisfy the others first be-
fore their own constraints are satisfied. All these approaches
lead to a variety of protocols for forming satisfiable multi-
party agreements. For the sake of simplicity, we only show
how to resolve a solid cycle that only has nodes with AND
preconditions. We use the following three commitments as
the example agreement:

C(x, y, p→ q), C(y, z, q → r), C(z, x, r → p)

By applying Algorithm 1, we can tell that its agreement
diagram is a deadlocking cycle. The following protocols de-
scribe different approaches to resolve this deadlock.

4.2.1 Two-Phase (2PC) Protocol
The two-phase (2PC) protocol is inspired by a similar pro-

tocol, called two-phase commit, which is widely used in dis-
tributed database systems where task executors either all
commit or all abort their transactions to ensure task atom-
icity and preserve system consistency [5]. For the present
purpose, we apply this protocol to agents who have dead-
locking constraints, which prevents them from discharging
any commitment to each other. The goal of the protocol is
to make sure that all the involved agents commit first before
their preconditions are met. The following shows the steps
of the 2PC protocol.

1 A coordinator tells all the agents that are involved in a
solid cycle that a 2PC protocol is started;

2 Each agent sends yes or no to indicate whether it wants
to unconditionally discharge its commitments;
if all the agents answer yes then

3 The coordinator sends yes to all agents;
4 Each agent replaces its conditional commitment

with a corresponding unconditional commitment by
removing the preconditions;

else

5 No solution can be found.

Algorithm 2: 2PC protocol

By executing the 2PC protocol, q, r, and p will be uncon-
ditionally performed by x, y, and z, respectively. Once these
conditions become true, they would also satisfy each precon-
dition in the above commitments. In terms of this aspect,
the 2PC protocols essentially convert all the conditional
commitments to their corresponding unconditional commit-
ments provided all agents agree. Therefore, the above three
commitments become

C(x, y, q), C(y, z, r), C(z, x, p)

An assumption of the 2PC protocol is that, for any com-
mitment C(x, y, p→ q), p is not required to happen before q,
but must happen eventually. However, there may be other
constraints which require that p happens before q can hap-
pen (Section 4.3 returns to a discussion of protocol safety).
The 2PC protocol does not apply in such a case and we need
other protocols to resolve such conflicts.

4.2.2 Unconditional Yield
If an agent is willing to convert its conditional commit-

ment to an unconditional commitment, we say that this
agent yields unconditionally. In the above example, agent
x may promise y to perform q without being satisfied by p

first. This usually happens when the debtor of p, which is z

in this example, has developed enough credit with x, which
makes the latter believe that p will be eventually performed
by z, even after x’s unilateral concession. This protocol
differs from the 2PC protocol in that it is based on trust
whereas 2PC is based on an unanimous agreement. Here
we construct a protocol to convey x’s intention and propa-
gate it to other agents to make corresponding commitment
changes.

774

1 A coordinator notifies all the agents that are involved in
a solid cycle that an Unconditional Yield protocol has
been initiated;

2 Each agent sends yes or no to indicate whether it is
willing to unconditionally discharge its commitment;
if at least one agent answers yes then

3 pick the first agent (say agent x) who answers yes
and forward its answer to all agents;

4 Agent x will replace its conditional commitment
with a corresponding unconditional commitment by
removing the preconditions.

else

5 No solution can be found.

Algorithm 3: Unconditional yield protocol

By executing the protocol on the above example, the three
commitments are changed to

C(x, y, q), C(y, z, q → r), C(z, x, r → p)

in which case agent x will commit q unconditionally to y

(intuitively, based on its implicit belief that agent z will
eventually commit p to it if r happens.)

4.2.3 Conditional Yield
This is a more complicated scenario in that the agent will-

ing to make an unconditional commitment does not place
enough trust on the other agents. It must conditionally rely
upon other agents’ promises to it before it can perform its
action. Conditional yield usually involves two agents. For
example, let them be agent x and z. Agent x will bring
about q if agent z promises x to bring about p. Agent z

may make the promise, but may not fulfill it until its pre-
condition r is satisfied. However, in the meantime, agent x

can bring about q because of z’s promise. This protocol is
described in Algorithm 4.

1 A coordinator notifies all the agents involved in a
solid cycle that a Conditional Yield protocol has been
started;

2 Each agent sends yes or no to indicate whether it is
willing to conditionally discharge its commitments;
for each agent x who answers yes do

3 Let z be the agent that x depends on;
4 Contact z to see if it can make a promise to x;

if z answers yes then

5 The coordinator picks agent x and z, and notifies
the result to all the agents;

6 Agent z converts its conditional commitment to
an unconditional commitment;

7 Agent x converts its hard dependency commit-
ment to a soft dependency commitment, which
is based on z’s promise;

8 Stop the protocol;

9 No solution can be found.

Algorithm 4: Conditional yield protocol

By executing the protocol on the above example, the three
commitments are changed to

C(x, y, C(z, x, p)→ q), C(y, z, q → r), C(z, x, p)

Note that, although agent z creates an unconditional com-
mitment, it may wait for r to happen before bringing about
p.

4.2.4 Decentralized Protocol
The above three protocols are centralized and they re-

quire a coordinator. In such protocols, the agents are forced
to wait for the voting results from the coordinator before
proceeding. This would potentially delay the commitment
fulfillment for the agents who are willing to yield, which
in turn reduces the protocol efficiency. Also, a centralized
coordinator would create a single point of failure and af-
fect robustness. To overcome the above disadvantages, we
devised a decentralized protocol, which allows an agent to
construct partial agreement diagrams locally. If a deadlock-
ing cycle is detected by the agent, it can yield at its own
will without coordinating with other agents. This protocol
yields more agent autonomy and generates more flexible ex-
ecutions. Due to the space limitation, we only describe the
skeleton of the protocol in Algorithm 5.

for each commitment made to others do

if the commitment has preconditions then

1 Find the agents who can satisfy the precondi-
tions;

2 Send a message to each such agent informing
them that this agent depends on those precon-
ditions;

3 On receiving a message informing of a dependency,
4 Place the sending agent in the dependency list of the

corresponding conditions;
if this agent relies upon other agents to bring about the
conditions then

5 Propagate the sending agent’s name (along with
own name) to those agents;
if received dependency request refers to this agent
then

6 A deadlock is detected;
7 Apply local policies to decide whether to yield

or not, or whether yield unconditionally or con-
ditionally.

Algorithm 5: Decentralized protocol (one copy for each
agent)

Here we give an example to illustrate the algorithm. If
there exists a solid cycle, assume it represents the following
commitment set.

C1 = C(x2, x1, p2 ∧W2 → p1)

C2 = C(x3, x2, p3 ∧W3 → p2)

. . .

Cn−1 = C(xn, xn−1, pn ∧Wn → pn−1)

Cn = C(x1, xn, p1 ∧W1 → pn)

Figure 4 shows a partial protocol execution that starts
from agent x2, in which x2 sends message to x3 saying it

775

depends on p2 to fulfill its commitments to others; x3 then
puts x2 in p2’s dependency list. Since x3 relies on p3 to bring
about p2, it sends a message to x4 saying x2 should be in p3’s
dependency list. The propagation eventually ends at x2, in
which p1’s dependency list is filled with {x2, . . . , xn, xn−1}.
When x2 finds that itself is in the dependency list of p1, the
condition that it is expected to bring about, it can conclude
that it is involved in a dependency deadlock.

x1

X2

X3

Xn

P1

P2

P3

Pn

Pn-1
{X2}

{X2,X3}

{X2, ..., Xn}
{X2, ..., Xn, X1}

{X2, ..., Xn-1}

...

Figure 4: A decentralized protocol

4.3 Protocol Safety
Commitment-based protocols differ from other protocols

in that promises can be used as dependency constraints and
these constraints can be manipulated on the fly. This char-
acterization is extremely useful in a multiagent system where
agents interact autonomously and system behaviors can only
be validated by the commitments that agents make to each
other. However, when considering the flexibility of protocol
execution, we also need to take the correctness of execution
into account. In other words, a flexibly generated execution
sequence should not violate global business policies. Since
the policies may or may not fall into the local view of agents,
it is possible that agents behave incorrectly. Here we give
two definitions to show what safe executions are.

Definition 3. A global policy is defined as
GP =

⋃n

i
ei → pi where both ei and pi are events and pi

can happen only when ei happens.

Definition 4. An agreement is protocol safe (with re-
spect to a given policy GP) if for any of its derivation se-
quence {p1, p2, ..., pn}, ∀pi, pj where pi happens before pj ,
pj → pi /∈ GP .

Protocol safety ensures that the manipulation of commit-
ments and the resulting execution sequences should comply
with a global policy. This requires all the protocols pre-
sented above should take safety into account. The validation
is relatively straightforward for centralized protocols, since
the coordinator has the global view and can make right de-
cisions. However for decentralized protocols, we may need
to take extra steps to pass global static constraints to each
agent. The research on an efficient solution is still undergo-
ing.

5. DISCUSSION
Argumentation-based dialogue theory has been used for

building multiagent systems. In recent work, Parsons et
al. [8] have studied a set of agent attitudes by categoriz-
ing agents’ truth telling behavior as confident, careful, and
thoughtful. These attitudes are further used to define a set
of agent dialogues such as Information-Seeking, Inquiry, and
Persuasion. The motivation behind this work is to enable
agents with different level of knowledge and credibility to
communicate facts with others and to make right decisions.
As a counterpart of their work, our approach enables agents
to convey constraints and promises instead of their knowl-
edge so that our agents care more about whether a promise
is fulfilled instead of whether a fact is true.

Research of constraint satisfaction problems (CSP) in dis-
tributed systems, e.g.,by Liu et al. [6], has shown much
promise. The models behind CSP are computational since
the entire multiagent environment and individual agents are
represented by variables, formulas, and constraints, which
are made ready to compute based on mathematical rules.
However, these models in most cases require homogeneous
agents who sense and act in exactly the same manner, so
they are not suitable for a real business-to-business world
where parties are heterogeneous and loosely coupled. Our
approach trades off complexity in the agent models with
flexibility of the agents’ behaviors. The outcome of our
problem-solving is a set of satisfiable commitments.

Economou et al. study obligations among agents [1]. In
their theory, if deontic states are entered, then the commit-
ments have to be fulfilled. This is similar to our approach. A
key difference is that we respect agent autonomy and allow
agents to manipulate commitments on the fly. Doing so not
only produces optimal executions but can also help avoid
deadlocks as discussed above. In this manner, our approach
complements deontic theory. It reconciles obligations and
autonomy to enable modeling and enactment of practical
agent applications.

Commitments are widely recognized as the key elements
to capture the interactions among agents; this goes back
to work by Singh [9] and Castelfranchi [3]. The essence of
commitments is to create a structure to specify the obli-
gations that each agent makes to others. By tracking the
lifecycles of these commitments, one can monitor agents’ ex-
ternal behaviors and detect any violation and system incon-
sistency without knowing the agents’ internal structure [12].
Current research emphasizes how commitments are fulfilled
or whether they are violated after they have been created.
We are not aware of work that directly addresses how com-
mitments can coexist from the very beginning. This is the
aspect studied by this paper. In other words, we develop a
means to detect deadlocking commitments and resolve them
to ensure the progress of agent interactions.

Business-to-business applications are the main motivation
for our approach. By looking at the existing approaches that
model business processes, such as Agent UML (AUML) [7]
and Business Process Execution Language (BPEL) [2], we
can observe that they all impose inflexible protocols in which
actions must happen in a predefined order. Agents get no
opportunity to express whether they want to perform tasks
differently than explicitly specified. Commitments enable
agents to tell each other what they are going to do and
what conditions that have to be satisfied to make it happen.
This not only enables autonomous agents to perform their

776

tasks based on their local preferences, but can also avoid
potentially deadlocking interactions caused by improper as-
sumptions made by each agent. Our approach incorporates
commitments into protocols and thus enable an open and
flexible environment for various parties doing business.

This paper introduced commitments as the key elements
for formulating a multiparty agreement from which we can
derive agent interactions, detect potential commitment dead-
locks, and resolve these deadlocks. The approach is a natu-
ral extension of our recent work [13] on commitment causal
relations where the interaction among business agents are
modelled via commitments and causal relations among com-
mitments while agent autonomy and heterogeneity are still
preserved.

Key future directions include the following. One, create a
complete list of agreement patterns to cover most of today’s
e-business interactions. Two, extend the decentralized pro-
tocol described above to give more negotiation capabilities
to agents so as to maximize their autonomy. Three, more
deeply study the role of trust in the above kinds of protocols.

6. REFERENCES
[1] G. Economou, M. Tsvetovat, K. Sycara, and

M. Paolucci. Implicit commitments through
protocol-level semantics. In Proc. 2nd Workshop on
Norms and Institutions in MAS, 2001.

[2] BPEL. Business process execution language for web
services, version 1.1, May 2003.

[3] C. Castelfranchi. Commitments: From individual
intentions to groups and organizations. In ICMAS,
pages 41–48, 1995.

[4] FIPA. FIPA interaction protocol specifications, 2003.

[5] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, San
Mateo, 1993.

[6] J. Liu, H. Jing, and Y. Tang. Multi-agent oriented
constraint satisfaction. Artificial Intelligence,
136:101–144, 2002.

[7] J. Odell, H. V. D. Parunak, and B. Bauer. Extending
UML for agents. In AOIS 2000.

[8] S. Parsons, M. Wooldridge, and L. Amgoud.
Properties and complexity of formal inter-agent
dialogues. Logic and Computation, 13(3):347–376,
2003.

[9] M. P. Singh. Social and psychological commitments in
multiagent systems. AAAI Fall Symposium on
Knowledge and Action at Social and Organizational
Levels, 104–106, 1991.

[10] M. P. Singh. An ontology for commitments in
multiagent systems: Toward a unification of normative
concepts. Artificial Intelligence and Law, 7:97–113,
1999.

[11] M. Tambe. Agent architectures for flexible, practical
teamwork. In AAAI, pages 22–28, 1997.

[12] M. Venkatraman and M. P. Singh. Verifying
compliance with commitment protocols. Autonomous
Agents & Multi-Agent Systems, 2(3):217–236, 1999.

[13] F. Wan and M. P. Singh. Commitment and causality
in multiagent design. In AAMAS 2003.

777

