
On the Dynamics of Delegation, Cooperation, and Control:
A Logical Account

Wiebe van der Hoek and Michael Wooldridge
Department of Computer Science

The University of Liverpool
L69 3BX UK

wiebe, mjw@csc.liv.ac.uk

ABSTRACT
We present dcl-pc: a dynamic logic of delegation and co-
operation. The logical foundation of dcl-pc is cl-pc, a
logic for reasoning about cooperation in which the powers
of agents and coalitions of agents stem from a distribution of
atomic Boolean variables to individual agents – the choices
available to coalitions in cl-pc correspond to the possible
truth assignments to the propositions they control. The
basic modal constructs of cl-pc are of the form “coalition
C can cooperate to bring about ϕ”. dcl-pc extends cl-pc
with dynamic logic modalities in which atomic programs are
of the form “agent i gives proposition p to agent j”. By com-
bining these dynamic delegation operators with cooperation
modalities, it is possible to reason about delegation and how
it affects the power structure within a society. We give two
alternative semantics for the logic, (a “direct” semantics,
in which we directly represent the distributions of atomic
propositions to agents, and a more conventional Kripke se-
mantics), and prove that these semantics are equivalent. We
then present a sound and complete axiomatization, and in-
vestigate the computational complexity of the model check-
ing and satisfiability problems for dcl-pc.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination, Multiagent Systems; I.2.4 [Artificial In-
telligence]: Knowledge Representation Formalisms and Meth-
ods—Modal Logic

General Terms
Verification, Design

Keywords
Propositional control, cooperation, delegation, dynamics,
modal logic, dynamic logic, powers of agents and coalitions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
In recent years, there has been a flurry of activity in

the development of logics for reasoning about the strate-
gic abilities of agents and coalitions of agents in game-like
multi-agent systems. Pauly’s Coalition Logic [7] and the
Alternating-time Temporal Logic (atl) of Alur, Henzinger,
and Kupferman [1] are perhaps the best-known examples of
such work. Although they differ on details, the basic con-
struct in both logics is the cooperation modality, a construct
which is expressed in atl as 〈〈C 〉〉ϕ, with the intended mean-
ing that C can cooperate in such a way as to ensure that
ϕ becomes true. However, the origin of an agent’s powers
– where these powers derive from – is rarely discussed in
the cooperation logic literature: powers are simply defined
in the models that underpin the logic.

One exception is the mocha system for model checking
coalitional power properties, in which powers are specified
by defining, for every variable in a system, a unique agent
that controls this variable [2]. Control, in this sense, means
the unique ability to choose a value for this variable. Mo-
tivated by this observation, van der Hoek and Wooldridge
developed cl-pc, a cooperation logic in which powers are
specified by allocating every Boolean variable to a unique
agent in the system: the choices (and hence powers) avail-
able to a coalition then correspond to the possible assign-
ments of truth or falsity that may be made to the variables
under their control [11]. van der Hoek and Wooldridge gave
a complete axiomatization of cl-pc, and showed that the
model checking and satisfiability problems for the logic are
both pspace-complete. However, one failing of cl-pc is that
the power structures underpinning the logic – that is, the al-
location of variables to agents – is fixed. Hence, ultimately,
coalitional powers remain static in cl-pc.

In this paper we study a variant of cl-pc which allows us
to reason about dynamic power structures. The logic dcl-
pc extends cl-pc with dynamic logic operators [4], in which
atomic actions are of the form a1 ;p a2, which is read as
“agent a1 gives variable p to agent a2”. The pre-condition
of such an action is that variable p is in agent a1’s alloca-
tion of variables, and executing the program has the effect of
transferring control of variable p from agent a1 to agent a2.
Thus the dynamic component of dcl-pc is concerned with
delegating control in systems, and by using the logic, we can
reason about how the abilities of agents are affected by the
transfer of control of variables in the system. Note that,
as in conventional dynamic logic, atomic programs may be
combined in dcl-pc with the usual sequential composition

701

(“;”), non-deterministic choice (“∪”), test (“?”), and itera-
tion (“�”) operations, to make complex delegation programs.
For example, the following dcl-pc formula asserts that, if
agent i gives either p or q to j , then j will be able to achieve
ϕ.

[(i ;p j) ∪ (i ;q j)]�jϕ

In the remainder of the paper, following an introduction
to the logic, we prove three main results with respect to dcl-
pc. First, we give two alternative semantics for the logic: a
“direct” semantics, in which models directly represent the
allocation of propositions to the agents that control them,
and a more conventional Kripke semantics, and we prove
that these two semantics are equivalent. Second, we give an
axiomatization of dcl-pc, and show that this axiomatiza-
tion is complete (with respect to both semantics). Finally,
we show that, for fragments of dcl-pc in which delegation
programs are “well-behaved” (in the sense of Halpern and
Reif’s sdpdl [3]), the satisfiability and model checking prob-
lems for dcl-pc are both pspace-complete, and hence no
worse than the corresponding problems for cl-pc. We con-
clude with some comments on related work and conclusions.

2. THE LOGIC DCL-PC
The language of dcl-pc extends classical propositional

logic with cooperation modalities, of the form �Cϕ. These
modalities are used to express contingent ability [11]: �Cϕ

means that, under the assumption that the world remains
otherwise unchanged, the set of agents C have the ability to
achieve ϕ. As shown in [11], (and as defined below), stronger
ability operators, roughly corresponding to Pauly’s Coali-
tion Logic cooperation modality [7] may be derived from
these: we express the fact that C have a choice such that,
no matter what the agents outside C do, ϕ will become true,
as 〈〈C 〉〉

α
ϕ (the “α” is for “α-effectivity” [7, p.20]).

In dcl-pc, these operators may be combined with dy-
namic delegation modalities, of the form [δ]ϕ, which means
“after the delegation program δ is executed, ϕ will hold” (cf.
dynamic logic [4]). Delegation programs express the trans-
fer of control between agents, and are built from an atomic
set of delegation expressions of the form i ;p j , meaning
“agent i gives proposition p to agent j”. Such a program
can be executed iff agent i owns this proposition, and the
effect is to transfer ownership to j . These atomic programs
may then be combined with the usual program constructs
(;, ?, ∪, �) of regular dynamic logic [4], and of course, con-
ventional program constructs such as while and if may be
straightforwardly defined in terms of these.

Notice that executing such a program – and hence chang-
ing the distribution of ownership of atomic propositions in
the structure – changes the abilities of agents and coali-
tions. Thus we can reason about the effect that such dy-
namic power allocation programs have on the abilities of
agents and coalitions. As an example, the following for-
mula asserts that it is possible for agent i to give away its
propositions to agent j , non-deterministically choosing one
proposition at a time, until agent j has the ability to achieve
ϕ.

〈while ¬�jϕ do
�

p∈ � i

i ;p j 〉>

2.1 Syntax
Figure 1 defines the syntax of dcl-pc. Thus we use > as

a logical constant for truth, “¬” for negation, and “∨” for
disjunction. As usual, we define the remaining connectives
of classical propositional logic as abbreviations: ⊥ =̂ ¬>,
implication is defined by ϕ → ψ =̂ ¬ϕ ∨ ψ, conjunction is
ϕ ∧ ψ) =̂ ¬(ϕ → ¬ψ) and implication is defined as ϕ ↔
ψ =̂ (ϕ→ ψ) ∧ (ψ → ϕ). Finally, exclusive or 5 is defined
by (ϕ5ψ) =̂ (ϕ∨ψ)∧¬(ϕ∧ψ). With respect to delegation
programs, while and if constructs are defined as follows [4,
p.167]:

if ϕ then δ1 else δ2 =̂ ((ϕ?; δ1) ∪ (¬ϕ?; δ2))
while ϕ do δ =̂ ((ϕ?; δ)∗;¬ϕ?)

Where there is no possibility of confusion, we will omit
set brackets for cooperation modalities, for example writ-
ing �1,2 rather than �

{1,2}. A dcl-pc formula containing
no modalities is said to be an objective formula.

Let � (ϕ) denote the set of propositional variables occur-
ring in dcl-pc formula ϕ, and let � (ϕ) denote the set of all
agents named in ϕ.

2.2 Direct Semantics
We now introduce the first of the two semantics for dcl-

pc. Given a (fixed, finite, non-empty) set � of agents, and
a (fixed, finite, non-empty) set � of propositional atoms,
we say an allocation of � to � is an indexed tuple ξ =
〈 � 1, . . . , � n〉 where there is an indexed element � i for each
i ∈ � , such that � 1, . . . , � n forms a partition of � . The
intended interpretation of an allocation ξ = 〈 � 1, . . . , � n〉 is
that � i ⊆ � is the set of propositional variables under agent
i ’s control. That is, agent i has freedom to allocate whatever
Boolean values it sees fit to the members of � i.

Now, we say a model for dcl-pc is a structure:

M = 〈 � , � , ξ0, θ〉
where:

• � = {1, . . . , n} is finite, non-empty a set of agents;

• � = {p, q , . . .} is finite, non-empty set of propositional
variables;

• ξ0 = 〈 � 1 . . . , � n〉 is the initial allocation of � to � , with
the intended interpretation that � i is the subset of �
representing those variables initially under the control
of agent i ∈ � ; and finally,

• θ : � → {tt, ff} is a propositional valuation func-
tion, which determines the initial truth value of every
propositional variable.

Some additional notation is convenient in what follows. We
define the size of a modelM = 〈 � , � , ξ0, θ〉 to be | � |+| � |; we
denote the size of M by size(M). A coalition, C is simply
a subset of � , i.e., C ⊆ � . For any such C ⊆ � we denote
the complement of C , (i.e., � \ C) by C . We will write
� C for �

i∈C
� i. For two valuations θ and θ′, and a set of

propositions Ψ ⊆ � , we write θ = θ′ (mod Ψ) if θ and θ′

differ at most in the atoms in Ψ, and we then say that θ and
θ′ are the same modulo Ψ. We will sometimes understand
the modelM = 〈F , θ〉 to consist of a valuation θ on top of a

702

CL-PC formulae:
cl ::= > /* truth constant */

| p /* primitive propositions */
| ¬cl /* negation */
| cl ∨ cl /* disjunction */
| �Cϕ /* contingent cooperative ability */

DCL-PC formulae:
dcl ::= cl /* CL-PC formulae are DCL-PC formulae */

| ¬dcl /* negation */
| dcl ∨ dcl /* disjunction */
| 〈δ〉cl /* existential dynamic operator */

Delegation programs:
δ ::= i ;p j /* i gives p to j */
| δ; δ /* sequential composition */
| δ ∪ δ /* non-deterministic choice */
| δ∗ /* iteration */
| cl? /* test */

Figure 1: Syntax of DCL-PC: p ∈ � is a primitive proposition, C ⊆ � is a set of agents, and i , j ∈ � are agents.

frame F = 〈 � , � , ξ0〉. Given a model M = 〈 � , � , ξ0, θ〉 and
a coalition C in M, a C-valuation is a function:

θC : � C → {tt, ff}.

Thus a C -valuation is a function that assigns truth values
to just the primitive propositions controlled by the members
of the coalition C . If M = 〈 � , � , ξ0, θ〉 is a model, C is
a coalition in M, and θC is a C -valuation, then by M⊕
θC we mean the model 〈 � , � , � 1, . . . , � n, θ

′〉, where θ′ is the
function defined as follows

θ
′(p) =̂ � θC (p) if p ∈ � C

θ(p) otherwise

and all other element of the model are as in M. Thus
M⊕ θC denotes the model that is identical to M except
that the values assigned by its valuation function to propo-
sitions controlled by members of C are as determined by
θC . Obviously, we will use these ‘hops’ between valuations
to interpret the �C -modalities. We also need a mechanism
to interpret the basic delegation construct i ;p j and arbi-
trary programs δ: this is given in the next section.

2.3 Delegation Program Relations
Readers familiar with dynamic logic will have been ex-

pecting this section: to give a modal semantics to the dy-
namic logic constructs of dcl-pc, we must define, for every
delegation program δ a binary relation Rδ over models such
that (M1,M2) ∈ Rδ iffM2 is a model that may result from
one possible execution of program δ. We start by defining
the relation Ri;p j , for primitive delegation programs of the
form i ;p j , i.e., agent i gives control of proposition p to
agent j . LetM = 〈 � , � , ξ0, θ〉 andM′ = 〈 � ′ , � ′, ξ′0, θ

′〉, with
ξ0 = 〈 � 1, . . . , � n〉 and ξ′0 = 〈 � ′

1, . . . , � ′

n〉. Then (M,M′) ∈
Ri;p j iff either i = j , p ∈ � i andM =M′, or else:

1. p ∈ � i (agent i controls p to begin with)

2. � ′

i = � i \{p} (agent i no longer controls p afterwards);

3. � ′

j = � j ∪ {p} (agent j controls p afterwards); and

4. all other components of M′ are as inM.

For the remaining constructs of delegation programs, we de-
fine the program relations inductively, in terms of the rela-
tions for primitive delegation programs, as given above. Let
the composition of relations R1 and R2 be denoted R1 ◦R2,
and let the reflexive transitive closure (ancestral) of relation
R be denoted R�. Then the accessibility relations for com-
plex programs are defined as follows [4, p.168] (|=d will be
defined shortly):

Rδ1;δ2 = Rδ1 ◦ Rδ2

Rδ1∪δ2 = Rδ1 ∪ Rδ2

Rδ� = (Rδ)
�

Rϕ? = {(M,M) | M |=d ϕ}

2.4 Truth Conditions
We interpret formulae of dcl-pc with respect to models,

as introduced above. Given a modelM = 〈 � , � , ξ0, θ〉 and a
formula ϕ, we writeM |=d ϕ to mean that ϕ is satisfied (or,
equivalently, true) inM, under the “direct” semantics. The
rules defining the satisfaction relation |=d are as follows:

M |=d >

M |=d p iff θ(p) = tt (where p ∈ �);

M |=d ¬ϕ iff M 6|=d ϕ;

M |=d ϕ ∨ ψ iff M |=d ϕ or M |=d ψ;

M |=d �Cϕ iff there exists a C -valuation θC such that
M⊕ θC |=

d ϕ.

M |=d 〈δ〉ϕ iff there exists a model M′ such that
(M,M′) ∈ Rδ and M′ |=d ϕ.

We assume the conventional definitions of satisfiability and
validity: a dcl-pc formula ϕ is d-satisfiable iff there exists a

703

dcl-pc modelM such thatM |=d ϕ, and ϕ is d-valid iff for
every dcl-pc model M we have M |=d ϕ. We write |=d ϕ

to indicate that ϕ is d-valid.
Let us define the natural box dual “2

···
” of the �

···
co-

operation modality:

2Cϕ =̂ ¬�C¬ϕ.

Where C is a coalition and ϕ is a formula of dcl-pc, we
write controls(C , ϕ) to mean that C can choose ϕ to be
either true or false:

controls(C , ϕ) =̂ �Cϕ ∧�C¬ϕ

By using the controls(. . .) construct, we can capture the
distribution of propositions among agents in a model.

Lemma 2.1 ([11]). LetM = 〈 � , � , ξ0, θ〉 be a model for
dcl-pc, i ∈ � be an agent, and p ∈ � be a propositional
variable in M. Then M |=d controls(i , p) iff p ∈ � i.

Although we will not use them in what follows, we note
that the basic cooperation operators of atl [1] and Pauly’s
Coalition Logic [7] can be defined as follows (where C̄ is the
complement of C):

〈〈C 〉〉
α
ϕ =̂ �C2C̄ϕ

Thus 〈〈C 〉〉
α
ϕ means that C have a choice such that if they

make this choice, then no matter what the agents outside C
do, ϕ will be true. We refer the reader to [11] for details.

2.5 A Kripke Semantics
For some purposes, it is more natural to conceive of the

semantics for dcl-pc as a multi-modal one. Taking a valu-
ation of � as a world, there are basically two, “orthogonal”
accessibility relations (cf. Figure 2 where, in the model M ,
p ∈ � i) between them: first of all, we have a “horizontal” re-
lation for agent i between two worlds w and u if agent agent
i is able, given the valuation in w , to turn it into the valua-
tion as described by u, just by choosing appropriate values
for his atoms. In other words, Riwu iff w = u (mod � i).
Such a relation does not affect the partition ξ. Let us there-
fore define our Kripke models to be M = 〈Θ,Ri∈ � , ξ〉 where
Θ is the set of all valuations θ over � . We denote the set of
all such Kripke models by K(� , �).

Secondly, there is a ‘vertical’ relation between pointed
models (M , θ) and (M ′, θ′) (with M = 〈Θ,Ri∈ � , ξ〉,M

′ =
〈Θ,Ri∈ � , ξ

′〉 ∈ K(� , �)), which indicates a change of the
partition ξ to ξ′. Since these do not affect the valuation, we
have for such pairs that θ = θ′. Slightly abusing notation,
we define (M , θ)(i ;p j)(M ′, θ′) exactly when either i = j ,
p ∈ � i and M = M ′, or else p ∈ � i, � ′

i = � i \ {p} and
� ′

j = � j ∪ {p}, and all the other sets � h remain the same.

The truth relation |=k interpreting formulae over Kripke
structures holds between pairs of the form M , θ and formulae
ϕ. It’s definition is obvious: for �i - formulas, we stay in M ,
and for 〈i ;p j 〉- formulas, we hop to another M ′, θ (see also
Figure 2). The following lemma is then easily established by
induction on ϕ:

Lemma 2.2. For any fixed sets of agents � and atoms � ,
the direct semantics and the modal semantics are equivalent,

R j

R i

1 2 n<P , P ,, P >ξ =

w

u

v

¬p,q,r

p,q,r

¬p,¬q,r

kR

R h

ξ n<P’ , P’ ,, P’ >21’ =M’

R l

R m

<P’’ , P’’ ,, P’’ >1 2 nξ ’’ =

w

u

v

¬p,q,r

p,q,r

¬p,¬q,r

M’’

i p j

h p l

w

u

¬p,q,r

p,q,r

¬p,¬q,r

M

v

Figure 2: K(� , �) for DCL-PC.

i.e., for any ϕ and any M ∈ K(�)(�) with M = 〈Θ,Ri∈ � , ξ〉
and model M = 〈 � , � , ξ, θ〉:

M |=d
ϕ iff M , θ |=k

ϕ

2.6 Some Observations
It is important to note that �iϕ is read as “agent i has

the power, by assigning values to his variables, to make ϕ
true”. If i controls p, he also “has the power” to ensure
for instance controls(j , p), but this is expressed through the
delegation modality: 〈i ;p j 〉controls(j , p) We will in the
next section see that these types of “control” are indeed
rather orthogonal. For instance, 〈i ;p j 〉�jϕ (i can give
p to j , who then can achieve ϕ) and �i,jϕ (i and j can
cooperate, to achieve ϕ) are logically incomparable. For
instance, taking ϕ = 〈j ;p i〉> gives |=d controls(i , p) →
(〈i ;p j 〉ϕ ∧ ¬�i,jϕ), while for ϕ = 〈i ;p j 〉> we have |=d

controls(i , p)→ (¬〈i ;p j 〉ϕ ∧ �i,jϕ). However, if the goal
is an objective formula, we can relate atomic control and
delegation, as we will shortly see.

Consider the delegation program

αi = (
�
p∈ �

controls(i , p)?;
�
j∈ �

i ;p j)

Then 〈αi 〉ϕ would express that i has a way to give one
of his atoms to one of the agents (possibly himself) in such
a way, that consequently ϕ holds. Thus, 〈α�

i 〉ϕ means that
i can distribute his variables among the agents in such a

704

way, that afterwards ϕ holds. So, when reasoning about i ’s
power, the ‘strongest’ that he can achieve is any ϕ for which
�iϕ∨〈α

�

i 〉ϕ expressing that i can achieve ϕ by either choos-
ing an appropriate value for his atoms, or by distributing his
atoms over � in an appropriate way.

The program α can be generalised to incorporate coali-
tions that can give away atoms, and those that can send:
let

αC;D =
�
c∈C

�
p∈ � c

controls(c, p)?;
�

d∈D∪{c}

〈c ;p d〉

This program αC;D lets an arbitrary agent c from C ei-
ther give one of his arbitrary atoms p to an arbitrary mem-
ber of D , or do nothing (give it to himself). Now, for objec-
tive formulas ϕ, we have the following, where i is a dedicated
agent from C : �Cϕ↔ 〈α

�

C;{i}〉�iϕ. In words: a coalition
can choose values for their atoms such that ϕ, if and only
if they have a way to give all their atoms to the dedicated
agent i , who then can achieve ϕ. Note that we are in general
not able to eliminate all occurrences of �’s, since this is the
only way to reason about a “different valuation”.

3. A COMPLETE AXIOMATIZATION
A complete axiomatisation for the logic dcl-pc is given in

Figure 3. The Dynamic Component is an immediate adapta-
tion of Propositional Dynamic Logic (see [4]). The Control
Axioms are inherited from [11]. Note that partition only
specifies that we have a partition, while in contrast, for the
fixed partition ξ that was assumed in [11], one could explic-
itly state that controls(i , p), for every p ∈ � i.

For the Delegation & Control Axioms, atomic permanence
states that no program δ changes the valuation. From this,
one easily extends this to arbitrary objective formulas (ob-
taining objective permanence, see Lemma 3.1). The ax-
iom persistence1(control) says that i ’s control over p is not
affected when we move to another valuation, and axiom
persistence2(control) specifies how i remains in control over
p, even when a delegation program is executed: either the
atom passed in that program is not p, or the delegating agent
is not i . The axiom precondition(delegation) expresses that
agents can only give atoms away that they possess, and, fi-
nally func says that the transition relation associated with
an atomic delegation program is functional: at most one
resulting state emerges.

Lemma 3.1. The schemes of Figure 4 are derivable in
DCL-PC. (The occurrence of `(p) refers to a literal in p:
it is either p or ¬p, with the obvious meaning for ¬`(p).)
Moreover, from [11] we know that the axioms K (i),T (i),B(i)
and effect(i) have coalitional counterparts K (C),T (C),B(C)
and effect(C) that are derivable for any coalition C .

We now proceed to prove that the system dcl-pc of Fig-
ure 3 is complete. First, some notation. Given the set
of atoms � , we denote conjunctions of literals (p or ¬p)
over them by π, π1, π2 . . . , and disjunctions of such π′s are
denoted by σ, σ1, It is well known that every objec-
tive formula ψ has an equivalent Disjunctive Normal Form
DNF (ψ). For instance, if � = {p, q , r}, then DNF (p ∧ q) =
(p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r).

Consider the language without programs, in which we only
have propositional logic and abilities �C . Models for these

at-least(control) :
(`(p) ∧ controls(i , p))→ �i¬`(p)

at-most(control) :
`(p)→ (�i¬`(p)→2j `(p)) (i 6= j)

non-effect(i) :
(�i`(p) ∧ ¬controls(i , p))→2i`(p)

inverse :
controls(i , p)→ (ϕ↔ [i ;p j ; j ;p i]ϕ)

reverse :
([i ;p j][k ;q h]ϕ)↔ ([k ;q h][i ;p j]ϕ)
where (j 6= k and h 6= i) or p 6= q

persistence(non − control) :
(¬controls(i , p)↔2j¬controls(i , p))

objectivepermanence :
〈δ〉> → (ϕ↔ [δ]ϕ) where ϕ is objective.

Figure 4: Theorems of DCL-PC.

are M , M ′ ∈ K(�)(�) In [11] it was shown that in that
program-free language, every formula ϕ is equivalent to one
without any occurrences of coalition operators. For instance,
suppose that p, q ∈ � i. Then a formula �i (¬p ∧ r) is equiv-
alent to (p ∧ r) ∨ (¬p ∧ r) (we “read off” the current value
of atom r outside i ’s control).

We now establish a similar result for the full language.
Any state (M , θ) is completely characterised when we know
which atoms are true in it, and what the allocation of atoms
to agents is. In such a case, the truth of all objective for-
mulas, formulas involving abilities and delegation programs
is completely determined.

Hence, apart from formulas σ in DNF, we also need dis-
junctions ω over conjunctions ξ, corresponding to parti-
tions of � . To be more precise, for any partition ξ of �
in 〈 � 1, . . . , � n〉, we will also write ξ for the conjunction�

i∈ �
�

pi∈ � i
pi exactly enumerating this partition. For any

set of constraints Γ of the form controls(i , p) and ¬con-
trols(i , p), let ωΓ be the disjunction of conjunctions ξ that
are compatible with Γ. For instance, if � = {p, q , r} and Γ
enforces that p ∈ � 1 and q 6∈ � 2 (� = {1, 2}), then ωΓ =
(controls(1, p)∧controls(1, q)∧controls(1, r)) ∨(controls(1, p)
∧ controls(1, q) ∧ controls(2, r)).

Lemma 3.2. Let ϕ be an arbitrary formula and ζ a con-
junction of assertions of the form (¬)controls(i , p). Then,
in DCL-PC, we have ` �C (ϕ ∧ ζ)↔ (ζ ∧�Cϕ).

Theorem 3.1. Every formula ϕ is DCL-PC-provably equiv-
alent to either ⊥ or else a formula of the form σ ∧ω, where
σ is an objective formula in DNF, and ω is a disjunction of
conjunctions of ξ’s, each ξ corresponding to a partition ξ of
� .

Proof. The proof is an induction over ϕ. In the case
of ϕ = p, the result is obvious: take for σ the disjunction
of all conjunctions p ∧ π, where π runs over all possible
conjunctions of literals over � \ {p}. For ω we just can take
the disjunction of all possible ξ.

Let us enumerate all possible (full) conjunctions of literals
over � (with | � | = k) with W = π1, π2, . . . , π2k , and all

705

Propositional Component

Prop ϕ where ϕ is any objective tautology

Dynamic Component

K (δ) [δ](ϕ→ ψ)→ ([δ]ϕ→ [δ]ψ)

union(δ) [δ ∪ δ′]ϕ↔ ([δ]ϕ ∧ [δ′]ϕ)

comp(δ) [δ; δ′]ϕ↔ ([δ][δ′]ϕ)

test(δ) [ϕ?]ψ ↔ (ϕ→ ψ)

mix (δ) (ϕ ∧ [δ][δ∗]ϕ)↔ ([δ∗]ϕ)

ind(δ) (ϕ ∧ [δ∗](ϕ→ [δ]ϕ))→ ([δ∗]ϕ)

Control Axioms

K (i) 2i (ϕ→ ψ)→ (2iϕ→2iψ)

T (i) 2iϕ→ ϕ

B(i) ϕ→2i�iϕ

empty 2
∅
ϕ↔ ϕ

control controls(i , p)↔ (�ip ∧ �i¬p)

partition
�

p∈P(controls(1, p)5 · · ·5controls(n, p))

effect(i) (ψ ∧ `(p) ∧ controls(i , p))→ �i (ψ ∧ ¬`(p)) where

�
p 6∈ � (ψ), and
ψ is objective

Comp-∪ 2C1
2C2

ϕ↔2C1∪C2
ϕ

Delegation & Control Axioms

atomic permanence 〈δ〉> → (p ↔ [δ]p)

persistence1(control) (controls(i , p)→2j controls(i , p))

persistence2(control) controls(i , p)→ [j ;q h]controls(i , p) where i 6= j or p 6= q

precondition(delegation) 〈i ;p j 〉> → controls(i , p)

delegation controls(i , p)→ 〈i ;p j 〉controls(j , p)

func controls(i , p)→ (〈i ;p j 〉ϕ↔ [i ;p j]ϕ)

Rules of Inference

ModusPonens ` ϕ,` (ϕ→ ψ) ⇒ ` ψ

Necessitation ` ϕ ⇒ ` 2ϕ 2 = [δ], [i ;p j], or 2i

Figure 3: Axioms of DCL-PC.

possible partitions over � by P = ξ1, ξ2, . . . , ξm , where m
denotes the number of passions in n sets of k elements. Let
us now assume the theorem to be proven for ψ, and let its
equivalent be

ψ ≡ σ ∧ ω = (�
i∈I

πi) ∧ (�
j∈J

ξj)

where I is some index set ⊆ {1, 2, . . . , 2k} (narrowing
down the number of possible ’worlds’), as is J ⊆ {1, 2, . . . ,m}
(constraining the set of possible partitions). We now con-
sider cases, focusing on those including the dynamic com-
ponent, i.e., where ϕ = [δ]ψ, with ψ of the mentioned form.
We proceed now by induction over the program δ. The basic
program yields ϕ = 〈i ;p j 〉ψ, i.e., ϕ ≡ 〈i ;p j 〉(σ ∧ ω).
By the axiom for precondition(delegation) and func, this is
equivalent to controls(i , p) ∧ [i ;p j]ψ. Given that ψ ≡
(σ ∧ ω) this gives controls(i , p) ∧ [i ;p j]σ ∧ [i ;p j]ω. By

objective permanence, the conjunct [i ;p j]σ is equivalent
to σ. The remainder is equivalent to 〈i ;p j 〉ω, which is
〈i ;p j 〉 �

j∈J
δj . The latter is equivalent to �

j∈J
〈i ;p

j 〉δj . Consider an arbitrary 〈i ;p j 〉δj . Again, this is
equivalent to controls(i , p) ∧ [i ;p j]δj . Recall that δj is a
conjunction of basic assertions of the form ±controls(h, q).
Thus, [i ;p j]δj is equivalent to a conjunction of [i ;p

j] ± controls(h, q). Hence, controls(i , p) ∧ [i ;p j]δj is
equivalent to a conjunction of formulas of the form 〈i ;p

j 〉 ± controls(h, q). We argue how those are reduced:

1. (q = p, h = j)
〈i ;p j 〉controls(j , p) reduces to controls(i , p) (use
delegation) and 〈i ;p j 〉¬controls(j , p) reduces to ⊥
(use delegation, func and partition).

2. (q = p, h 6= j)
〈i ;p j 〉¬controls(h, p) reduces to controls(i , p) (use

706

delegation and partition) and 〈i ;p j 〉controls(h, p)
reduces to ⊥ (use delegation and partition).

3. (p 6= q)
〈i ;p j 〉controls(h, q) reduces to controls(h, q) ‘←’ fol-
lows from persistence2(control) and func, ‘→’ follows
from delegation and partition. Also 〈i ;p j 〉¬controls(h, q)
reduces to ¬controls(h, q) (‘←’ follows from func and
the other equivalence proven in this item, and ‘→’ fol-
lows from partition and delegation)

For programs δ composed by union, sequential composi-
tion and test, we can immediately apply the induction hy-
pothesis and use the axioms given in Figure 3, in the Dy-
namic Component. The case for � is more complex, and we
omit it due to space restrictions: the key observation is that
we can essentially eliminate the star operator by noting that
a delegation program can only be applied a finite number of
times before revisiting a previous configuration.

We can use Theorem 3.1 directly to generate a canonical
model for a consistent formula ψ, as follows. First, calculate
its equivalent σ ∧ ω = (�

i∈I
πi) ∧ (�

j∈J
ξj). Include this in

a maximal consistent set Γ. We then get both �
i∈I

πi ∈ Γ
and �

j∈J
ξj ∈ Γ. Since Γ is maximal consistent, and the fact

that both the πi ’s and the ξj ’s exclude each other, we find
exactly one i and j such that πi ∈ Γ and ξj ∈ Γ. But then
we can immediately ‘read off’ in which world M , θ we are in
the canonical model: the world (which is a valuation) θ is
dictated by πi , and the partition ξ is completely determined
by the formula ξj . All in all, we have

Theorem 3.2. The system DCL-PC is sound and com-
plete with respect to both the modal and the direct semantics.

4. EXPRESSIVITY AND COMPLEXITY
We know from the results of van der Hoek and Wooldridge

(see [11]) that the model checking and satisfiability problems
for cl-pc are pspace-complete, and since dcl-pc subsumes
cl-pc, this implies a pspace-hardness lower bound on the
corresponding problems for dcl-pc. The obvious question is
then whether the additional expressive power of dcl-pc aris-
ing from the dynamic constructs implies a more complex de-
cision problem. We now show that, for fragments of dcl-pc
in which delegation programs are “well behaved”, the model
checking and satisfiability problems are no worse: they are
both pspace-complete. (When we consider the model check-
ing problem in this section, we consider the problem with
respect to direct models, not Kripke models. Of course, with
respect to satisfiability, it makes no difference: a formula is
satisfiable with respect to direct models iff it is satisfiable
wrt Kripke models.)

The ∗-free fragment of dcl-pc is the fragment in which
delegation programs are constrained to contain no ∗ opera-
tors (but may contain other complex program constructs).
The deterministic fragment of dcl-pc is the fragment in
which the only choice operator permitted is if . . . then. . . else. . . ,
and the only loop construct permitted is while. . .do. . . (cf.
[3]). Thus, in deterministic dcl-pc, we are not permitted to
use arbitrary non-deterministic choice (∪) or iteration (∗)
constructs: we can only use choice and iteration in their
well-behaved if and while forms. Delegation programs in

1. function eval(ϕ,M = 〈 � , � , ξ0, θ〉) returns tt or ff
2. if ϕ ∈ � then
3. return θ(ϕ)
4. elsif ϕ = ¬ψ then
5. return not eval(ψ,M)
6. elsif ϕ = ψ1 ∨ ψ2 then
7. return eval(ψ1, 〈 � , � , ξ0, θ〉)
8. or eval(ψ2, 〈 � , � , ξ0, θ〉)
9. elsif ϕ = �Cψ then
10. for each C -valuation θC
11. if eval(ψ, 〈 � , � , ξ0, θ〉 ⊕ θC) then return tt

12. end-for
13. return ff

14. elsif ϕ = 〈δ〉ψ then
15. for each model M′ over � , �
16. if (M,M′) ∈ Rδ then
17. if eval(ϕ,M′) then return tt

18. end-for
19. return ff

20. end-function

Figure 5: A model checking algorithm for dcl-pc.

deterministic dcl-pc are strictly deterministic: given the
same initial configuration, such a program will always be-
have in exactly the same way. With this observation in mind,
we can prove the following.

Theorem 4.1. The model checking problems for deter-
ministic dcl-pc and ∗-free dcl-pc (with respect to direct
models) are both pspace-complete.

Proof. Given that both of these fragments subsume cl-
pc, we only need to prove the upper bound. Consider the
function eval(· · ·) in Figure 5. Soundness is obvious by con-
struction. First note that the algorithm is strictly analytic:
recursion is always on a sub-formula of the input. That the
algorithm is in pspace follows from the fact that the loops
at lines 10–12 and 15-18 involve, in the first case simply bi-
nary counting with the variables � C , and in the second sim-
ply looping through all direct models over � and � : we do
not need to record these models once they are checked, and
so this can be done in polynomial space. It only remains to
justify that the check (M,M′) ∈ Rδ on line 16 can be done
in polynomial space. The only non-obvious case is where δ
is a loop, i.e., of the form while ϕ do δ′. To see that this
relation can be checked in polynomial space, recall that the
program must be deterministic, and that there are only expo-
nentially many models over � and � . So, while ϕ do δ′ can
only be executed exponentially times before either terminat-
ing or re-entering a state that has previously been reached
– in which case, since programs are deterministic, it must
be looping. So, we repeatedly execute the statement, keeping
track (by counting) of how many times it has been executed.

If, after O(2p(size(M))) executions (for polynomial p(· · ·)),
the statement has not terminated, then it must be looping,
and hence we can assert (M,M′) 6∈ Rδ. (We can count to

2p(n) using only O(p(n) + 1) bits.) If the program termi-
nates, we simply need to check that the model which results
is M′. The proof for the ∗-free case is similar.

The proof of the following is identical to the equivalent
result of [11].

707

Lemma 4.1. A dcl-pc formula ϕ is satisfiable, iff it is
satisfied in a (direct) model M such that | � | = | � (ϕ)| + 1
and � = � (ϕ).

The ‘additional agent’ is needed in e.g., ¬controls(a, p):
if agent a does not control p, someone else must. (Ha-
ving noticed this, it may seem a bigger surprise that only
one additional agent is sufficient, for every formula.). Note
that a consequence of Lemma 4.1 is that a dcl-pc formula
ϕ is satisfiable iff it is satisfied in a model M such that
size(M) = | � (ϕ)|+ |Ag(ϕ)|+ 1.

This gives us:

Theorem 4.2. The satisfiability checking problems for de-
terministic dcl-pc and ∗-free dcl-pc are pspace-complete.

Proof. Given a formula ϕ, loop through each model M
containing � (ϕ) and � (ϕ) such that size(M) = | � (ϕ)| +
| � (ϕ)| + 1, and if M |=d ϕ then return “yes”. If we have
considered all such models, return “no”. By Theorem 4.1,
we can check whether M |=d ϕ in polynomial space.

5. CONCLUSIONS
In this paper, we have built upon a logic of strategic co-

operative ability, in which the control that agents have over
their environment is represented by assigning them specific
propositional variables, for which the agents that “owns
them” can determine their truth value. We added a dy-
namic component to this logic, thus obtaining an expressive
language in which one can reason about what agents (and
coalitions of agents) can achieve by setting their assigned
variables, or by giving the control of them to others. We
gave two related semantics for this language, and provided
a complete axiomatisation for them.

The key property that establishes the proof of complete-
ness is the fact that every formula in the language is prov-
ably equivalent to a disjunction of conjunctions of literals
over atoms p and assertions of the form controls(i , p). We
also investigated the complexity of the model checking and
satisfiability problems for the logic, and showed that, for
“well behaved” delegation programs, these problems were
no worse than for the program-free fragment. Although
other researchers have developed formal systems for reason-
ing about delegation (e.g., [6, 5]), to the best of our knowl-
edge dcl-pc is the first such system to have a rigorous se-
mantics, and a complete axiomatization.

The possible extensions of this work are multiple. For
instance, we have assumed that agents are omniscient: they
know ‘where they are’ and which atoms are under control of
which other agents. This assumption can be easily relaxed
in a similar way as was done in [10]: it would be interesting
to see however what would be ‘natural’ ways to impose such
knowledge (through an accessibility relation) in our Kripke
semantics of Section 2.5.

Secondly, we have treated all states in our Kripke seman-
tics as ‘equal’, i.e., we only considered what agents are able
to achieve if they pass or have control over certain means
that can change the state of the world. But we have not
considered why certain agents might try to bring about cer-
tain states. In [8] we add utilities to atl-like structures,
and there is no reason we could not have them in dcl-pc, so
that one could express, for instance, that, regardless whether
agent i ‘owns’ atom p or not, he prefers states in which p

is true. Finally, one might, apart from addressing agents’
individual strategies, single out certain states that are more
desirable or socially preferable for the whole community. We
hope we can apply work that we have recently developped
(see [9]) on knowledge and social laws in a general setting of
atl to the context of dcl-pc.

6. REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman.

Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, Sept. 2002.

[2] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer,
S. K. Rajamani, and S. Taşiran. Mocha: Modularity
in model checking. In CAV 1998: Tenth International
Conference on Computer-aided Verification, (LNCS
Volume 1427), pages 521–525. Springer-Verlag: Berlin,
Germany, 1998.

[3] J. Y. Halpern and J. H. Reif. The propositional
dynamic logic of deterministic, well-structured
programs. Theoretical Computer Science, 27:127–165,
1983.

[4] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
The MIT Press: Cambridge, MA, 2000.

[5] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed
authorization. ACM Transactions on Information and
System Security, 6(1):128 – 171, 2003.

[6] T. J. Norman and C. Reed. Group delegation and
responsibility. In Proceedings of the First International
Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), pages 491–498,
Bologna, Italy, 2002.

[7] M. Pauly. Logic for Social Software. PhD thesis,
University of Amsterdam, 2001. ILLC Dissertation
Series 2001-10.

[8] W. van der Hoek, W. Jamroga, and M. Wooldridge. A
logic for strategic reasoning, 2005. See elsewhere in
these proceedings of AAMAS05.

[9] W. van der Hoek, M. Roberts, and M. Wooldridge.
Knowledge and social laws, 2005. See elsewhere in
these proceedings of AAMAS05.

[10] W. van der Hoek and M. Wooldridge. Time,
knowledge, and cooperation: Alternating-time
temporal epistemic logic and its applications. Studia
Logica, 75(1):125–157, 2003.

[11] W. van der Hoek and M. Wooldridge. On the logic of
co-operation and propositional control. Artificial
Intelligence, 64(1-2):81–119, 2005.

708

